Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Mini-Review Article

Application of Modern Analytical Techniques for Quantification of Tadalafil in Pharmaceutical and Biological Matrices: Future Prospectus

Author(s): Subhadip Jana, Sasmita Kumari Acharjya*, Anita Nahak, Sanat Kumar Dash, Atyurmila Chakraborty and Bimalendu Chowdhury

Volume 19, Issue 2, 2023

Published on: 21 December, 2022

Page: [91 - 116] Pages: 26

DOI: 10.2174/1573412919666221115123010

Price: $65

Abstract

Background: Analytical techniques play a vital role in developing patient-friendly dosage forms in the pharmaceutical industry. Presently, numerous sophisticated and highly delicate modern analytical instruments are available in pharmaceutical industries to assess active pharmaceutical ingredients or other excipients present in different pharmaceutical matrices and biological fluids. Assortment of the most suitable analytical techniques for analysing any component during the drug development process is challenging as it affects the final product's quality, safety, and efficacy.

Introduction: Tadalafil (TDL) is the most flexible second-generation Phosphodiesterase-5 inhibitor. It treats erectile dysfunction, benign prostatic hyperplasia, and pulmonary arterial hypertension as first-line therapy, either alone or with other medications. This review paper aims to highlight the varieties of new analytical techniques (like UV-Visible spectroscopic technique, HPLC, HPTLC, Electroanalytical technique, Spectrofluorimetry, GC-MS, LC-MS) that have been reported for quantification of TDL as a single or in the combined form present in bulk material as well as in different biological or pharmaceutical matrices, their pros and cons, and future potential of such methods.

Conclusion: This article's reported methods are accurate, sensitive, and cost-effective. Applying AQbD and green analytical chemistry with greener organic solvents and reagents in some of the reported methods opens a new era of analytical method development that will aid in future growth for the estimation of TDL.

Graphical Abstract

[1]
Hatzimouratidis, K. A review of the use of tadalafil in the treatment of benign prostatic hyperplasia in men with and without erectile dysfunction. Ther. Adv. Urol., 2014, 6(4), 135-147.
[http://dx.doi.org/10.1177/1756287214531639] [PMID: 25083163]
[2]
Shinde, S.V.; Shaikh, F.; Gawande, A.N. Solubility enhancement and physicochemical characterization of tadalafil by inclusion complexation method. World J. Pharm. Pharm. Sci., 2018, 7(8), 687-706.
[http://dx.doi.org/10.20959/wjpps20188-12070]
[3]
USP-NF. USP 40 and NF 35.. 2017. Available from: https://www.uspnf.com/official-text/proposal-statuscommentary/usp-40-nf-35.
[4]
Council of Europ. European Pharmacopoeia, 10th ed; , 2019, III, pp. 3957-3959.
[5]
Budavari, S. Merck Index: An encyclopedia of chemicals, drugs and biologicals, 14th ed.; Division of Merck and co., Inc.: Rahway, New Jersey, USA, 2006, pp. 1550-1551.
[6]
Sweetman, S.C. Martindale- The Complete Drug Reference, 36th ed; Pharmaceutical Press, 2009, pp. 2196-2197.
[7]
Benet, L.Z.; Broccatelli, F.; Oprea, T.I. BDDCS applied to over 900 drugs. AAPS J., 2011, 13(4), 519-547.
[http://dx.doi.org/10.1208/s12248-011-9290-9] [PMID: 21818695]
[8]
El-Badry, M.; Haq, N.; Fetih, G.; Shakeel, F. Measurement and correlation of tadalafil solubility in five pure solvents at (298.15 to 333.15). K. J. Chem. Eng. Data, 2014, 59(3), 839-843.
[http://dx.doi.org/10.1021/je400982r]
[9]
SCIENTIFIC DISCUSSION. This module reflects the initial scientific discussion for the approval of Cialis. For information on changes after approval please refer to module 8., Available from: https://www.ema.europa.eu/en/documents/scientific-discussion/cialis-epar-scientific-discussion_en.pdf
[10]
Fejős, I.; Kazsoki, A.; Sohajda, T.; Márványos, E.; Volk, B.; Szente, L.; Béni, S. Interactions of non-charged tadalafil stereoisomers with cyclodextrins: Capillary electrophoresis and nuclear magnetic resonance studies. J. Chromatogr. A, 2014, 1363, 348-355.
[http://dx.doi.org/10.1016/j.chroma.2014.08.045] [PMID: 25193174]
[11]
de Tejada, I.S.; Goldstein, I.; Azadzoi, K.; Krane, R.J.; Cohen, R.A. Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. N. Engl. J. Med., 1989, 320(16), 1025-1030.
[http://dx.doi.org/10.1056/NEJM198904203201601] [PMID: 2927481]
[12]
Rotella, D.P. Phosphodiesterase 5 inhibitors: Current status and potential applications. Nat. Rev. Drug Discov., 2002, 1(9), 674-682.
[http://dx.doi.org/10.1038/nrd893] [PMID: 12209148]
[13]
Corbin, J.D. Mechanisms of action of PDE5 inhibition in erectile dysfunction. Int. J. Impot. Res., 2004, 16(S1), S4-S7.
[http://dx.doi.org/10.1038/sj.ijir.3901205] [PMID: 15224127]
[14]
Burnett, A.L.; Lowenstein, C.J.; Bredt, D.S.; Chang, T.S.K.; Snyder, S.H. Nitric oxide: A physiologic mediator of penile erection. Science, 1992, 257(5068), 401-403.
[http://dx.doi.org/10.1126/science.1378650] [PMID: 1378650]
[15]
National Institutes of Health. Impotence. NIH Consensus statement., 1992. Available from: http://consensus.nih.gov/1992/1992Impotence091html.htm (Accessed on: 14 February 2006).
[16]
Frajese, G.V.; Pozzi, F.; Frajese, G. Tadalafil in the treatment of erectile dysfunction; an overview of the clinical evidence. Clin. Interv. Aging, 2006, 1(4), 439-449.
[http://dx.doi.org/10.2147/ciia.2006.1.4.439] [PMID: 18046921]
[17]
Med India Net. Gemca medical slip., Available from: https://www.medindia.net
[18]
Medscape. tadalafil (Rx)., Available from: https://reference.medscape.com/drug/adcirca-cialis-tadalafil-342873
[19]
Coward, R.; Carson, C. Tadalafil in the treatment of erectile dysfunction. Ther. Clin. Risk Manag., 2008, 4(6), 1315-1329.
[http://dx.doi.org/10.2147/TCRM.S3336] [PMID: 19337438]
[20]
FDA. Unique Device Identifier (UDI) and Global Unique Device Identifier Database (GUDID) Requirements., Available from: www.accessdata.fda.gov
[21]
Montorsi, F.; Verheyden, B.; Meuleman, E.; Jünemann, K.P.; Moncada, I.; Valiquette, L.; Casabé, A.; Pacheco, C.; Denne, J.; Knight, J.; Segal, S.; Watkins, V.S. Long-term safety and tolerability of tadalafil in the treatment of erectile dysfunction. Eur. Urol., 2004, 45(3), 339-345.
[http://dx.doi.org/10.1016/j.eururo.2003.11.010] [PMID: 15036680]
[22]
Medline Plus.. Tadalafil, Available from: https://medlineplus.gov/druginfo/meds/a604008.html
[23]
Udeoji, D.U.; Schwarz, E.R. Switching from nitrate therapy to ranolazine in patients with coronary artery disease receiving phosphodiesterase type-5 inhibitors for erectile dysfunction. Clin. Med. Insights Case Rep., 2014, 7, CCRep.S16915.
[http://dx.doi.org/10.4137/CCRep.S16915] [PMID: 25452706]
[24]
Kloner, R.A.; Hutter, A.M.; Emmick, J.T.; Mitchell, M.I.; Denne, J.; Jackson, G. Time course of the interaction between tadalafil and nitrates. J. Am. Coll. Cardiol., 2003, 42(10), 1855-1860.
[http://dx.doi.org/10.1016/j.jacc.2003.09.023] [PMID: 14642699]
[25]
Cialis. Tadalafil, prescribing information; Indianapolis, Ind.: Eli Lilly, 2011.
[26]
Kloner, R.A.; Mitchell, M.; Emmick, J.T. Cardiovascular effects of tadalafil. Am. J. Cardiol., 2003, 92(9), 37-46.
[http://dx.doi.org/10.1016/S0002-9149(03)00074-2] [PMID: 14609622]
[27]
Lepor, H. Alpha blockers for the treatment of benign prostatic hyperplasia. Rev. Urol., 2007, 9(4), 181-190.
[PMID: 18231614]
[28]
[29]
Forgue, S.T.; Patterson, B.E.; Bedding, A.W.; Payne, C.D.; Phillips, D.L.; Wrishko, R.E.; Mitchell, M.I. Tadalafil pharmacokinetics in healthy subjects. Br. J. Clin. Pharmacol., 2006, 61(3), 280-288.
[http://dx.doi.org/10.1111/j.1365-2125.2005.02553.x] [PMID: 16487221]
[31]
Mehrotra, N.; Gupta, M.; Kovar, A.; Meibohm, B. The role of pharmacokinetics and pharmacodynamics in phosphodiesterase-5 inhibitor therapy. Int. J. Impot. Res., 2007, 19(3), 253-264.
[http://dx.doi.org/10.1038/sj.ijir.3901522] [PMID: 16988721]
[32]
Giuliano, F.; Varanese, L. Tadalafil: A novel treatment for erectile dysfunction. Eur. Heart J. Suppl., 2002, 4(Suppl. H), H24-H31.
[http://dx.doi.org/10.1016/S1520-765X(02)90049-0]
[33]
Bhadoriya, A.; Dasandi, B.; Parmar, D.; Shah, P.A.; Shrivastav, P.S. Quantitation of tadalafil in human plasma using a sensitive and rapid LC-MS/MS method for a bioequivalence study. J. Pharm. Anal., 2018, 8(4), 271-276.
[http://dx.doi.org/10.1016/j.jpha.2018.01.003] [PMID: 30140492]
[34]
Olesovsky, C.; Kapoor, A. Evidence for the efficacy and safety of tadalafil and finasteride in combination for the treatment of lower urinary tract symptoms and erectile dysfunction in men with benign prostatic hyperplasia. Ther. Adv. Urol., 2016, 8(4), 257-271.
[http://dx.doi.org/10.1177/1756287216650132] [PMID: 27928428]
[35]
Curran, M.P.; Keating, G.M. Tadalafil. Drugs, 2003, 63(20), 2203-2212.
[http://dx.doi.org/10.2165/00003495-200363200-00004] [PMID: 14498756]
[36]
Gupta, M.; Kovar, A.; Meibohm, B. The clinical pharmacokinetics of phosphodiesterase-5 inhibitors for erectile dysfunction. J. Clin. Pharmacol., 2005, 45(9), 987-1003.
[http://dx.doi.org/10.1177/0091270005276847] [PMID: 16100293]
[37]
Huang, S.A.; Lie, J.D. PDE5 inhibitors in the management of erectile dysfunction. Pharm. Ther., 2013, 38(7), 407-419.
[PMID: 24049429]
[38]
Rocha, F.S.; Gomes, A.J.; Lunardi, C.N.; Kaliaguine, S.; Patience, G.S. Experimental methods in chemical engineering: Ultraviolet visible spectroscopy-UV-Vis. Can. J. Chem. Eng., 2018, 96(12), 2512-2517.
[http://dx.doi.org/10.1002/cjce.23344]
[39]
Atole, D.M.; Rajput, H.H. Ultraviolet spectroscopy and its pharmaceutical applications- a brief review. Asian J. Pharm. Clin. Res., 2018, 11(2), 59-66.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i2.21361]
[40]
Yunnos, M.; Sankar, D.G.; Kumar, B.P.; Hameed, S. UV spectrophotometric method for the estimation of tadalafil in bulk and tablet dosage form. E-J. Chem., 2010, 7(3), 833-836.
[http://dx.doi.org/10.1155/2010/630576]
[41]
Ahamed, N.R. A sensitive spectrophotometric determination of tadalafil in pharmaceutical preparations and industrial wastewater samples. Baghdad Sci. J., 2012, 10(3), 1005-1013.
[http://dx.doi.org/10.21123/bsj.2013.10.3.1005-1013]
[42]
Ghurghure, S.M.; Dyawarkonda, M.S.; Yanjane, S. Development and validation of UV-visible spectrophotometric method for estimation of tadalafil in bulk and formulation. Int. J. Curr. Pharm. Res., 2020, 12(3), 74-77.
[http://dx.doi.org/10.22159/ijcpr.2020v12i3.38310]
[43]
Khan, Z.G.; Patil, A.S.; Shirkhedkar, A.A. Estimation of tadalafil using derivative spectrophotometry in bulk material and in pharmaceutical formulation. Int. J. Spectrosc., 2014, 2014, 392421.
[http://dx.doi.org/10.1155/2014/392421]
[44]
Al, K.; Gouda, A. Spectrophotometric determination of tadalafil in pure and dosage forms. Chem. Ind. Chem. Eng. Q., 2011, 17(2), 125-132.
[http://dx.doi.org/10.2298/CICEQ100816062A]
[45]
Nesalin, J.A.J.; Babu, C.J.G.; Kumar, G.V.; Mani, T.T. Validated extractive spectrophotometric estimation of tadalafil in tablet dosage form. E-J. Chem., 2009, 6(3), 611-614.
[http://dx.doi.org/10.1155/2009/983146]
[46]
Fraihat, S. Spectrophotometric methods for the determination of tadalafil in pharmaceutical forms. Int. J. Pharm. Pharm. Sci., 2014, 6(7), 443-445.
[47]
Vyas, A.J.; Gol, D.A.; Patel, A.I.; Patel, A.B.; Patel, N.K.; Chudasama, A. A stress degradation kinetic study of tadalafil bulk and tablet dosage form by UV spectrophotometry. Asian J. Pharmaceut. Anal., 2020, 10(4), 177-181.
[http://dx.doi.org/10.5958/2231-5675.2020.00032.0]
[48]
Anandakumar, K.; Varadharajan, K.; Subathrai, R.; Jothieswari, D.; Seyal, G.S. Estimation of tadalafil in bulk and in formulation by UV-visible spectrophotometry. Asian J. Research Chem, 2010, 3(1), 54-57.
[49]
Raju, G.V.H.; Ganapathy, S.; Sankar, D.G.; Naidu, P.Y. New UV-visible spectrophotometric methods for the determination of tadalafil in bulk and pharmaceutical formulation. Asian J. Res. Chem, 2010, 3(4), 958-960.
[50]
Fraihat, S.M. Indirect spectrophotometric methods for the determination of tadalafil. Int. Res. Sci., 2015, 1(2), 11-14.
[http://dx.doi.org/10.24178/ijrs.2015.1.2.11]
[51]
Anumolu, P.K.D.; Kavitha, A.; Durga, D.V.; Bindu, S.H.; Sunitha, G.; Ramakrishna, K. Spectrophotometric quantification of tadalafil by oxidative coupling reaction with MBTH reagent. Anal. Chem. Indian J., 2013, 13(9), 361-364.
[52]
Ghurghure, S.M.; Surwase, P.R.; Pathan, M.A.; Gote, P.M.; Gaikwad, K.M. Spectrophotometric method for estimation of tadalafil in bulk and tablet dosage form. World J. Pharm. Pharm. Sci., 2018, 8(5), 1645-1652.
[53]
Rezk, M.R.; Tantawy, M.A.; Wadie, M.; Weshahy, S.A. Smart spectrophotometric assessment of tamsulosin hydrochloride and tadalafil in their new pharmaceutical formulation for treatment of benign prostatic hyperplasia and erectile dysfunction. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 227, 117547.
[http://dx.doi.org/10.1016/j.saa.2019.117547] [PMID: 31734571]
[54]
El Shiekh, R.; Amin, A.S.; Hafez, E.M.; Gouda, A.A. Spectrophotometric estimation of vardenafil HCl and tadalafil in pure forms and tablets using cerium (IV) ammonium sulphate. Derr. Pharma. Lett., 2016, 8(15), 153-165.
[55]
Magdy, M.A.; Anwar, B.H.; Naguib, I.A.; Abdelhamid, N.S. Quantitative determination of Dapoxetine Hydrochloride and Tadalafil using different validated spectrophotometric methods. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 226, 117611.
[http://dx.doi.org/10.1016/j.saa.2019.117611] [PMID: 31606673]
[56]
Sudha, T.; Bhuvaneswari, N.; Geetha, S.; Mohanapriya, S.; Nivedhitha, S.; Nanthini, S. Development and validation of new UV method for simultaneous estimation of tadalafil in combination with dapoxetine hydrochloride in a pharmaceutical dosage form. European J. Pharm. Med. Res., 2019, 6(4), 424-429.
[57]
Thammana, M. A review on high performance liquid chromatography (HPLC). Res. Rev. J. Pharmaceut. Anal., 2016, 5(2), 22-28.
[58]
Malviya, R.; Bansal, V.; Pal, O.P.; Sharma, P.K. High performance liquid chromatography: A short review. J. Glob. Pharm. Technol., 2010, 2(5), 22-26.
[59]
Mohammad, Y.; Kumar, B.P.; Sreenivasm, R.; Gupta, R. A simple and sensitive RP-HPLC method for the estimation of Tadalafil in bulk and tablet dosage form. J. Chem. Pharm. Sci., 2010, 3(4), 258-261.
[60]
Sonawane, P.H.; Panzade, P.S.; Kale, M.A. Rapid estimation of tadalafil by reverse-phase high-performance liquid chromatography method in bulk and tablet formulation. Indian J. Pharm. Sci., 2013, 75(2), 230-233.
[PMID: 24019575]
[61]
Khan, Z.G.; Surana, S.J.; Shirkhedkar, A.A. Studies on HPTLC and RP-HPLC methods for determination of tadalafil in pharmaceutical dosage form. Indian Drugs, 2016, 53(1), 38-46.
[http://dx.doi.org/10.53879/id.53.01.10364]
[62]
Cheng, C.L.; Chou, C.H. Determination of tadalafil in small volumes of plasma by high-performance liquid chromatography with UV detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005, 822(1-2), 278-284.
[http://dx.doi.org/10.1016/j.jchromb.2005.06.017] [PMID: 15996535]
[63]
Bojanapu, A.; Subramaniam, A.; Munusamy, J.; Dhanapal, K.; Chennakesavalu, J.; Sellappan, M.; Jayaprakash, V. Validation and method development of Tadalafil in bulk and tablet dosage form by RP-HPLC. Drug Res. (Stuttg.), 2014, 65(2), 82-85.
[http://dx.doi.org/10.1055/s-0034-1372608] [PMID: 24782284]
[64]
Reddy, B.P.; Reddy, K.A.; Reddy, M.S. Validation and stability indicating RP-HPLC method for the determination of tadalafil API in pharmaceutical formulations. Res. Pharm. Biotech., 2010, 2(1), 1-6.
[http://dx.doi.org/10.5897/RPB.9000030]
[65]
Unnisa, A.; Babu, Y.; Suggu, S.K.; Chaitanya, S.K. RP-HPLC-PDA method development and validation for the analysis of Tadalafil in bulk, pharmaceutical dosage forms and in-vitro dissolution samples. J. Appl. Pharm. Sci., 2014, 4(12), 72-76.
[http://dx.doi.org/10.7324/JAPS.2014.41213]
[66]
Ahmed, N.R. High performance liquid chromatographic method for determination of tadalafil in tablets and waste water. Iraqi J. Pharm., 2019, 14(1), 87-94.
[http://dx.doi.org/10.33899/iphr.2019.161198]
[67]
Sathyaraj, A.; Ramesh, M.; Vijaya, B. Development and validation of RP-HPLC method for the estimation of tadalafil in bulk and pharmaceutical dosage forms. Int. J. Pharm. Anal. Res., 2019, 8(2), 169-178.
[68]
Gupta, A.; Mishra, S.K. A novel analytical method for simultaneous quantification of silodosin and tadalafil by RP-HPLC. J. Pharm. Res. Int., 2021, 33(39B), 193-202.
[http://dx.doi.org/10.9734/jpri/2021/v33i39B32195]
[69]
Muniz, A.C.; Da Rosa, P.P. Determination of Tadalafil in pharmaceutical preparation of combination therapy with complex of vitamins and minerals by HPLC-UV detector. N. Unicamp Sci. Initiat. Congr., 2019, 2019, 27.
[71]
Shen, X.; Chen, F.; Wang, F.; Huang, P.; Luo, W. The effect of grapefruit juice on the pharmacokinetics of tadalafil in rats. BioMed Res. Int., 2020, 2020, 1631735.
[http://dx.doi.org/10.1155/2020/1631735] [PMID: 32047806]
[72]
Ajit, C.P.; Dattatraya, S.R.; Ramchandra, S.P.; Bhagwat, A.M.; Ekal, A.B. RP-HPLC method development and validation of tadalafil in tablet dosage form. Asian J. Res. Chem, 2021, 14(5), 380-388.
[http://dx.doi.org/10.52711/0974-4150.2021.00065]
[73]
Sarkar, M.; Arulantony, S. A stability indicating RP-HPLC method for the estimation of tadalafil in oral jelly dosage forms. Paripex-Indian J. Res., 2013, 2(8), 19-22.
[74]
Mehanna, M.H.; Motawaa, A.M.; Samaha, M.W. Quantitation of transdermal tadalafil in human skin by reversed-phase high-performance liquid chromatography. J. AOAC Int., 2012, 95(4), 1064-1068.
[http://dx.doi.org/10.5740/jaoacint.11-083] [PMID: 22970573]
[75]
Raul, S.K.; Kumar, B.V.V.R.; Pattnaik, A.K. A RP-HPLC method development and validation for the estimation of tadalafil in bulk and pharmaceutical dosage forms. Res. J. Pharm. Technol., 2012, 5(12), 1573-1576.
[76]
Sutar, A.S.; Magdum, C.S.; Patil, S.S.; Naikawadi, N.S. RP-HPLC estimation of tadalafil in tablet dosage form. Int. J. Chem. Sci., 2008, 6(2), 1223-1227.
[77]
Samala, A.; Pawar, S.; Manala, S.; Chada, S.; Nageshwar, M. RP-HPLC method development and validation of tadalafil in tablet dosage form. J. Chem. Pharm. Res., 2013, 5(4), 315-318.
[78]
Kumar, A.; Kumar, V.; Singh, R.M.; Chaudhari, J.; Kori, P. Reverse phase – High performance liquid chromatographic method for simultaneous estimation of sildenafil citrate and tadalafil in tablets dosage form. Int. J. Adv. Res. Dev., 2018, 3(4), 326-330.
[79]
Patel, J.K.; Patel, N.K. Stability-indicating RP-HPLC method for the determination of ambrisentan and tadalafil in pharmaceutical dosage form. Sci. Pharm., 2014, 82(4), 749-763.
[http://dx.doi.org/10.3797/scipharm.1403-22] [PMID: 26279975]
[80]
Dogan, A.; Basci, N.E. Green bioanalytical and pharmaceutical analysis of voriconazole and tadalafil by HPLC. Curr. Pharm. Anal., 2017, 13(6), 495-504.
[http://dx.doi.org/10.2174/1573412913666170210160251]
[81]
Saeed, S.M.A.; Mohamed, M.A.; Shantier, S.W.; Gadkariem, E.A.; Ismail, E.M.O. Determination of undeclared sildenafil citrate and tadalafil in aphrodisiac herbal preparations by TLC and HPLC. Int. J. Innov. Pharm. Sci. Res., 2015, 3(6), 688-696.
[82]
Hamad, M.; Al-Sharqawi, A.; Dayyih, W.; Mallah, E.; Arafat, T. Simultaneous estimation of esomeprazole and tadalafil in pharmaceutical formulations using High Performance Liquid Chromatography. J. Appl. Pharm. Sci., 2016, 6(4), 052-059.
[http://dx.doi.org/10.7324/JAPS.2016.60407]
[83]
Patel, R.K.; Solanki, K.; Limbachiya, J.; Mochi, N.S. A novel validated chromatographic method for tadalafil and dapoxetine hydrochloride in combined pharmaceutical formulations. Aegaeum J., 2020, 8(4), 750-758.
[84]
Deepthi, R.; Sarvani, G. Development and validation of a stability-indicating liquid chromatographic method for the simultaneous estimation of Ambrisentan and Tadalafil in bulk and its pharmaceutical dosage form. J. Glob. Trends Pharm., 2020, 11(4), 8491-8499.
[85]
Padmalatha, K.; Durga, D.V.; Rani, K.S. A new RP-HPLC method development & validation for simultaneous estimation of Ambrisentan and Tadalafil in bulk and pharmaceutical dosage form. Indo Am. J. Pharm. Sci., 2021, 8(1), 2184-2197.
[http://dx.doi.org/10.5281/zenodo.4467402]
[86]
Rajeshwari, M.; Chenthilnathan, A.; Rama, K. Validated RP-HPLC method for simultaneous estimation of tadalafil and dapoxetine hydrochloride in combined pharmaceutical dosage forms. Int. J. Pharm. Biol. Sci., 2014, 4(2), 72-82.
[87]
Vyas, A.J.; Gol, D.A.; Patel, A.I.; Patel, A.B.; Patel, N.K.; Chavda, J.R.; Lumbhani, A.; Chudasama, A. Implementing analytical quality by design (AQbD) approach for simultaneous estimation of tadalafil and macitentan by RP-HPLC Method. Anal. Chem. Lett., 2021, 11(4), 539-552.
[88]
Rezk, M.R.; Abdel-Moety, E.M.; Wadie, M.; Tantawy, M.A. Stability assessment of tamsulosin and tadalafil co‐formulated in capsules by two validated chromatographic methods. J. Sep. Sci., 2021, 44(2), 530-538.
[http://dx.doi.org/10.1002/jssc.202000975] [PMID: 33207075]
[89]
Patel, R.; Patel, M.; Dubey, N.; Dubey, N.; Patel, B. HPTLC method development and validation: Strategy to minimize methodological failures. Yao Wu Shi Pin Fen Xi, 2012, 20(4), 794-804.
[http://dx.doi.org/10.6227/jfda.2012200408]
[90]
Khan, Z.G.; Bari, S.B.; Surana, S.J.; Shirkhedkar, A.A. A review of analytical methods for estimation of Tadalafil in pharmaceutical formulations. Indian Drugs, 2015, 52(3), 5-9.
[http://dx.doi.org/10.53879/id.52.03.10290]
[91]
Patel, S.A.; Patel, N.J. High performance thin layer chromatographic method for determination of tadalafil in tablet dosage form. Am. J. Pharm Tech Res., 2011, 1(3), 138-146.
[92]
Patil, P.H.; Gurupadayya, B.M.; Hamrapurkar, P.D. Stability indicating HPTLC determination of tadalafil hydrochloride in bulk drug and pharmaceutical formulations. Res. J. Pharm. Technol., 2020, 13(6), 2608-2614.
[http://dx.doi.org/10.5958/0974-360X.2020.00464.3]
[93]
Yehia, M.A.; Rezk, M.R.; El Sayed, M.A.; Kawy, M.A. Stability-indicating methods for determination of tadalafil in presence of its degradation product. Anal. Chem. Indian J., 2014, 14(9), 351-362.
[94]
Berniati Tampubolon, H.; Sumarlik, E.; Dwi Saputra, S.; Cholifah, S.; Farina Kartinasari, W.; Indrayanto, G. Densitometric determination of tadalafil citrate in tablets: Validation of the method. J. Liq. Chromatogr. Relat. Technol., 2006, 29(18), 2753-2765.
[http://dx.doi.org/10.1080/10826070600925493]
[95]
Naguib, I.A.; Magdy, M.A.; Anwar, B.H.; Abdelhamid, N.S. A validated green HPTLC method for quantitative determination of dapoxetine hydrochloride and tadalafil in bulk and pharmaceutical formulations. J. Chromatogr. Sci., 2020, 58(4), 303-308.
[http://dx.doi.org/10.1093/chromsci/bmz115] [PMID: 31942957]
[96]
Tantawy, M.A.; Weshahy, S.A.; Wadie, M.; Rezk, M.R. Novel HPTLC densitometric methods for determination of tamsulosin HCl and tadalafil in their newly formulated dosage form: Comparative study and green profile assessment. Biomed. Chromatogr., 2020, 34(8), e4850.
[http://dx.doi.org/10.1002/bmc.4850] [PMID: 32302430]
[97]
Grebe, S. K. G.; Singh, R. J. LC-MS/MS in the clinical laboratory – where to from here? Clin. Biochem. Rev., 2011, 32(1), 05-31.
[98]
Jemal, M.; Xia, Y.Q. LC-MS Development strategies for quantitative bioanalysis. Curr. Drug Metab., 2006, 7(5), 491-502.
[http://dx.doi.org/10.2174/138920006777697927] [PMID: 16787158]
[99]
Kim, K.Y.; Nam, M.; Kwon, H.J.; Kim, K.H.; Kang, S.H.; Kim, S.I.; Kim, C.W.; Cho, S.H. Validated UPLC-MS/MS method for the determination of tadalafil in human plasma and its application to a pharmacokinetic study. Transl. Clin. Pharmacol., 2017, 25(1), 21-27.
[http://dx.doi.org/10.12793/tcp.2017.25.1.21] [PMID: 32095455]
[100]
Tőtős, R.; Balázsi, J. Validated LC-MS/MS method for the determination of Tadalafil – a competitive phosphodiesterase 5 inhibitor (pde5) – from human plasma. Stud. Univ. Babes-Bolyai Chem., 2019, 64(2 T2), 517-526.
[http://dx.doi.org/10.24193/subbchem.2019.2.44]
[101]
Karavadi, T.; Challa, B.R. Determination of tadalafil in rat plasma by liquid chromatography tandem mass spectrometry: Application to a pharmacokinetic study. Der Pharm. Lett., 2018, 4(5), 1401-1413.
[102]
Pappula, N.; Kodali, B.; Datla, P.V. Selective and rapid determination of tadalafil and finasteride using solid phase extraction by high performance liquid chromatography and tandem mass spectrometry. J. Pharm. Biomed. Anal., 2018, 152, 215-223.
[http://dx.doi.org/10.1016/j.jpba.2018.01.020] [PMID: 29427880]
[103]
Kertys, M.; Urbanova, A.; Mokry, J. Determination of phosphodiesterase inhibitors tadalafil, roflumilast and roflumilast n-oxide using LC–MS in guinea pig plasma. J. Chromatogr. Sci., 2018, 56(10), 948-954.
[http://dx.doi.org/10.1093/chromsci/bmy072] [PMID: 29992297]
[104]
Chauhan, A.; Goyal, M.K.; Chauhan, P. GC-MS technique and its analytical applications in science and technology. J. Anal. Bioanal. Tech., 2014, 5(6), 1-5.
[http://dx.doi.org/10.4172/2155-9872.1000222]
[105]
Nikolaou, P.; Papoutsis, I.; Athanaselis, S.; Alevisopoulos, G.; Khraiwesh, A.; Pistos, C.; Spiliopoulou, C. Development and validation of a GC/MS method for the determination of tadalafil in whole blood. J. Pharm. Biomed. Anal., 2011, 56(3), 577-581.
[http://dx.doi.org/10.1016/j.jpba.2011.05.036] [PMID: 21719226]
[106]
Strano-Rossi, S.; Anzillotti, L.; de la Torre, X.; Botrè, F. A gas chromatography/mass spectrometry method for the determination of sildenafil, vardenafil and tadalafil and their metabolites in human urine. Rapid Commun. Mass Spectrom., 2010, 24(11), 1697-1706.
[http://dx.doi.org/10.1002/rcm.4568] [PMID: 20486268]
[107]
Man, C.N.; Nor, N.M.; Lajis, R.; Harn, G.L. Identification of sildenafil, tadalafil and vardenafil by gas chromatography–mass spectrometry on short capillary column. J. Chromatogr. A, 2009, 1216(47), 8426-8430.
[http://dx.doi.org/10.1016/j.chroma.2009.10.016] [PMID: 19853256]
[108]
Scozzari, A. Electrochemical Sensing Methods: A Brief Review. In: Algal Toxins: Nature, Occurrence, Effect and Detection. NATO Science for Peace and Security Series A: Chemistry and Biology; Evangelista, V.; Barsanti, L.; Frassanito, A.M.; Passarelli, V.; Gualtieri, P., Eds.; Springer: Dordrecht, 2008; pp. 335-351.
[http://dx.doi.org/10.1007/978-1-4020-8480-5_16]
[109]
Zambianco, N.A.; da Silva, V.A.O.P.; Orzari, L.O.; Corat, E.J.; Zanin, H.G.; Silva, T.A.; Buller, G.A.; Keefe, E.M.; Banks, C.E.; Janegitz, B.C. Determination of tadalafil in pharmaceutical samples by vertically oriented multi-walled carbon nanotube electrochemical sensing device. J. Electroanal. Chem. (Lausanne), 2020, 877, 114501.
[http://dx.doi.org/10.1016/j.jelechem.2020.114501]
[110]
Xin, C.; Gao, S.; Din, Y.; Wu, Y.; Wang, F. Direct electrodeposition to fabricate 3D graphene network modified glassy carbon electrode for Sensitive determination of tadalafil. NANO Brief Reports Rev., 2006, 1(1), 1-4.
[http://dx.doi.org/10.1142/S1793292019500097]
[111]
Yang, L.; Zhao, H.; Li, C.P.; Fan, S.; Li, B. Dual β-cyclodextrin functionalized Au@SiC nanohybrids for the electrochemical determination of tadalafil in the presence of acetonitrile. Biosens. Bioelectron., 2015, 64, 126-130.
[http://dx.doi.org/10.1016/j.bios.2014.08.068] [PMID: 25216449]
[112]
Zhao, H.; Yang, L.; Li, Y.; Ran, X.; Ye, H.; Zhao, G.; Zhang, Y.; Liu, F.; Li, C.P. A comparison study of macrocyclic hosts functionalized reduced graphene oxide for electrochemical recognition of tadalafil. Biosens. Bioelectron., 2017, 89(Pt 1), 361-369.
[http://dx.doi.org/10.1016/j.bios.2016.07.016] [PMID: 27436432]
[113]
Demir, E.; Inam, R.; Ozkan, S.A.; Uslu, B. Electrochemical behavior of tadalafil on TiO2 nanoparticles–MWCNT composite paste electrode and its determination in pharmaceutical dosage forms and human serum samples using adsorptive stripping square wave voltammetry. J. Solid State Electrochem., 2014, 18(10), 2709-2720.
[http://dx.doi.org/10.1007/s10008-014-2529-5]
[114]
Nameh, E.S.M.A.; Absi, N.A.; Al Wahish, M.A.; Hodali, H.A.; Khanfar, M.F. Electrochemical detection of tadalafil at glassy carbon electrodes modified with ruthenium(II) complex. Int. J. Electrochem. Sci., 2020, 15, 6394-6404.
[http://dx.doi.org/10.20964/2020.07.70]
[115]
Salah, A.; Hassan, M.; Liu, J.; Li, M.; Bo, X.; Ndamanisha, J.C.; Guo, L. Pt nanoparticles supported on nitrogen-doped porous graphene for sensitive detection of Tadalafil. J. Colloid Interface Sci., 2018, 512, 379-388.
[http://dx.doi.org/10.1016/j.jcis.2017.10.022] [PMID: 29080533]
[116]
Sartori, E.R.; Clausen, D.N.; Pires, I.M.R.; Salamanca-Neto, C.A.R. Sensitive square-wave voltammetric determination of tadalafil (Cialis®) in pharmaceutical samples using a cathodically pretreated boron-doped diamond electrode. Diamond Related Materials, 2017, 77, 153-158.
[http://dx.doi.org/10.1016/j.diamond.2017.07.001]
[117]
Oliveira, F.M.; Ferreira, P.A.; Neves, C.G.; Rosa, T.M.; Santos, W.T.P.; Melo, E.I.; Silva, R.A.B. Fast screening and determination of tadalafil in pharmaceutics by batch injection analysis (bia) with amperometric detection. Electroanalysis, 2020, 32(10), 2253-2259.
[http://dx.doi.org/10.1002/elan.202060106]
[118]
Alharthi, S.S.; Khali, S. Selective membrane sensors for the determination of sildenafil, tadalafil and vardanafil. Int. J. Electrochem. Sci., 2020, 15, 8336-8347.
[http://dx.doi.org/10.20964/2020.08.58]
[119]
Bose, A.; Thomas, I.; Kavitha, G.; Abraham, E. Fluorescence spectroscopy and its applications: A review. Int. J. Adv. Pharmaceut. Anal., 2018, 8(1), 1-8.
[http://dx.doi.org/10.7439/ijapa]
[120]
Kavitha, A.; Vijaya, D. D.; Hima, B. S.; Eshvendar, K.; Khaleel, N.; Pani, K. D. A. Forced degradation studies, quantification and in-vitro dissolution studies of tadalafil by spectrofluorimetry. Asian J. Pharm. Clin. Res., 2013, 6(2), 326-329.
[121]
Abu El-Enin, M.A.B.; Al-Ghaffar Hammouda, M.E.S.A.; El-Sherbiny, D.T.; El-Wasseef, D.R.; El-Ashry, S.M. Validated spectrofluorimetric method for determination of two phosphodiesterase inhibitors tadalafil and vardenafil in pharmaceutical preparations and spiked human plasma. Luminescence, 2016, 31(1), 173-178.
[http://dx.doi.org/10.1002/bio.2941] [PMID: 26019060]
[122]
Youssef, R.M.; Abdelhafez, A.M.; Hassan, E.M.; Gawad, D.A. Assay of new combination of tamsulosin and tadalafil using synchronous spectrofluorimetric method coupled with mathematical tools, Spectrochim. Acta- A. Mol. Biomol., 2022, 271, 120904.
[http://dx.doi.org/10.1016/j.saa.2022.120904]
[123]
Abdel-Raoof, A.M.; Said, R.A.M.; Emara, M.S.; El-Desouky, E.A.; Abdelzaher, A.M.; Hasan, M.A.; Osman, A.E. D-optimal design as a useful tool response surface methodology for the optimization of signals from synchronous fluorescence prior to simultaneous determination of avanafil and tadalafil. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 235, 118313.
[http://dx.doi.org/10.1016/j.saa.2020.118313] [PMID: 32251891]
[124]
Salem, H.; Abdel Aziz, B.E. Utility of gold nanoparticles for spectrofluorimetric and spectrophotometric determination of sildenafil citrate, dapoxetine, vardenafil and tadalafil in their dosage forms and biological fluids. Anal. Chem. Lett., 2020, 10(3), 321-335.
[http://dx.doi.org/10.1080/22297928.2020.1779813]
[125]
Masson, P.; Lambert, S.M.; Brown, M.; Shabsigh, R. PDE-5 inhibitors: Current status and future trends. Urol. Clin. North Am., 2005, 32(4), 511-525. [viii.].
[http://dx.doi.org/10.1016/j.ucl.2005.08.012] [PMID: 16291042]
[126]
Konstantinos, G.; Petros, P. Phosphodiesterase-5 inhibitors: Future perspectives. Curr. Pharm. Des., 2009, 15(30), 3540-3551.
[http://dx.doi.org/10.2174/138161209789206953] [PMID: 19860699]
[127]
Clinicaltrials, Available from: https://clinicaltrials.gov/
[128]
Shan, X.; Margulies, K.B. Differential regulation of PDE5 expression in left and right ventricles of feline hypertrophy models. PLoS One, 2011, 6(5), e19922.
[http://dx.doi.org/10.1371/journal.pone.0019922] [PMID: 21625548]
[129]
Ahmed, N.S. Tadalafil: 15 years’ journey in male erectile dysfunction and beyond. Drug Dev. Res., 2019, 80(6), 683-701.
[http://dx.doi.org/10.1002/ddr.21493] [PMID: 30548639]
[130]
De Nunzio, C.; Kramer, G.; Marberger, M.; Montironi, R.; Nelson, W.; Schröder, F.; Sciarra, A.; Tubaro, A. The controversial relationship between benign prostatic hyperplasia and prostate cancer: The role of inflammation. Eur. Urol., 2011, 60(1), 106-117.
[http://dx.doi.org/10.1016/j.eururo.2011.03.055] [PMID: 21497433]
[131]
Andersson, K.E.; de Groat, W.C.; McVary, K.T.; Lue, T.F.; Maggi, M.; Roehrborn, C.G.; Wyndaele, J.J.; Melby, T.; Viktrup, L. Tadalafil for the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia: Pathophysiology and mechanism(s) of action. Neurourol. Urodyn., 2011, 30(3), 292-301.
[http://dx.doi.org/10.1002/nau.20999] [PMID: 21284024]
[132]
García-Barroso, C.; Ricobaraza, A.; Pascual-Lucas, M.; Unceta, N.; Rico, A.J.; Goicolea, M.A.; Sallés, J.; Lanciego, J.L.; Oyarzabal, J.; Franco, R.; Cuadrado-Tejedor, M.; García-Osta, A. Tadalafil crosses the blood–brain barrier and reverses cognitive dysfunction in a mouse model of AD. Neuropharmacology, 2013, 64, 114-123.
[http://dx.doi.org/10.1016/j.neuropharm.2012.06.052] [PMID: 22776546]
[133]
Liebenberg, N.; Harvey, B.H.; Brand, L.; Brink, C.B. Antidepressant-like properties of phosphodiesterase type 5 inhibitors and cholinergic dependency in a genetic rat model of depression. Behav. Pharmacol., 2010, 21(5-6), 540-547.
[http://dx.doi.org/10.1097/FBP.0b013e32833befe5] [PMID: 20555254]
[134]
Roustit, M.; Blaise, S.; Allanore, Y.; Carpentier, P.H.; Caglayan, E.; Cracowski, J.L. Phosphodiesterase-5 inhibitors for the treatment of secondary Raynaud’s phenomenon: Systematic review and meta-analysis of randomised trials. Ann. Rheum. Dis., 2013, 72(10), 1696-1699.
[http://dx.doi.org/10.1136/annrheumdis-2012-202836] [PMID: 23426043]
[135]
Hirsh, L.; Dantes, A.; Suh, B.S.; Yoshida, Y.; Hosokawa, K.; Tajima, K.; Kotsuji, F.; Merimsky, O.; Amsterdam, A. Phosphodiesterase inhibitors as anti-cancer drugs. Biochem. Pharmacol., 2004, 68(6), 981-988.
[http://dx.doi.org/10.1016/j.bcp.2004.05.026] [PMID: 15313391]
[136]
Serafini, P.; Meckel, K.; Kelso, M.; Noonan, K.; Califano, J.; Koch, W.; Dolcetti, L.; Bronte, V.; Borrello, I. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J. Exp. Med., 2006, 203(12), 2691-2702.
[http://dx.doi.org/10.1084/jem.20061104] [PMID: 17101732]
[137]
Reid, G.L.; Morgado, J.; Barnett, K.; Harrington, B.; Wang, J.; Harwood, J.; Fortin, D. Analytical quality by design (AQbD) in pharmaceutical development. Am. Pharm. Rev., 2015, 2015, 868727.
[138]
Hicks, M.B.; Farrell, W.; Aurigemma, C.; Lehmann, L.; Weisel, L.; Nadeau, K.; Lee, H.; Moraff, C.; Wong, M.; Huang, Y.; Ferguson, P. Making the move towards modernized greener separations: Introduction of the analytical method greenness score (AMGS) calculator. Green Chem., 2019, 21(7), 1816-1826.
[http://dx.doi.org/10.1039/C8GC03875A]

© 2024 Bentham Science Publishers | Privacy Policy