Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Targeting the Cancer Stem Cells in Endocrine Cancers with Phytochemicals

Author(s): Ravi Gor, Ilangovan Ramachandran and Satish Ramalingam*

Volume 22, Issue 31, 2022

Published on: 15 December, 2022

Page: [2589 - 2597] Pages: 9

DOI: 10.2174/1567205020666221114112814

Price: $65

Abstract

Endocrine cancer is an uncontrolled growth of cells in the hormone-producing glands. Endocrine cancers include the adrenal, thyroid, parathyroid, pancreas, pituitary, and ovary malignancy. Recently, there is an increase in the incidence of the most common endocrine cancer types, namely pancreatic and thyroid cancers. Cancer stem cells (CSCs) of endocrine tumors have received more attention due to their role in cancer progression, therapeutic resistance, and cancer relapse. Phytochemicals provide several health benefits and are effective in the treatment of various diseases including cancer. Therefore, finding the natural phytochemicals that target the CSCs will help to improve cancer patients' prognosis and life expectancy. Phytochemicals have been shown to have anticancer properties and are very effective in treating various cancer types. Curcumin is a common polyphenol found in turmeric, which has been shown to promote cellular drug accumulation and increase the effectiveness of chemotherapy. Moreover, various other phytochemicals such as resveratrol, genistein, and apigenin are effective against different endocrine cancers by regulating the CSCs. Thus, phytochemicals have emerged as chemotherapeutics that may have significance in preventing and treating the endocrine cancers.

Graphical Abstract

[1]
Chengizkhan, G.; Bhaskaran, N.; Kumaran, R.I.; Ramachandran, I. Cancer Stem Cells and Tumour Aggressiveness. In: Cancer Stem Cells: New Horizons in Cancer Therapies; Springer Nature: Singapore, Oct, 2020; pp. 137-154.
[http://dx.doi.org/10.1007/978-981-15-5120-8_8]
[2]
Veschi, V.; Verona, F.; Lo Iacono, M.; D’Accardo, C.; Porcelli, G.; Turdo, A.; Gaggianesi, M.; Forte, S.; Giuffrida, D.; Memeo, L.; Todaro, M. Cancer stem cells in thyroid tumors: From the origin to metastasis. Front. Endocrinol. (Lausanne), 2020, 11, 566.
[http://dx.doi.org/10.3389/fendo.2020.00566] [PMID: 32982967]
[3]
Mariniello, K.; Ruiz-Babot, G.; McGaugh, E.C.; Nicholson, J.G.; Gualtieri, A.; Gaston-Massuet, C.; Nostro, M.C.; Guasti, L. Stem cells, self-renewal, and lineage commitment in the endocrine system. Front. Endocrinol. (Lausanne), 2019, 10, 772.
[http://dx.doi.org/10.3389/fendo.2019.00772] [PMID: 31781041]
[4]
Shimamura, M.; Nagayama, Y.; Matsuse, M.; Yamashita, S.; Mitsutake, N. Analysis of multiple markers for cancer stem-like cells in human thyroid carcinoma cell lines. Endocr. J., 2014, 61(5), 481-490.
[http://dx.doi.org/10.1507/endocrj.EJ13-0526] [PMID: 24531915]
[5]
Kim, H.M.; Koo, J.S. Immunohistochemical analysis of cancer stem cell marker expression in papillary thyroid cancer. Front. Endocrinol. (Lausanne), 2019, 10, 523.
[http://dx.doi.org/10.3389/fendo.2019.00523] [PMID: 31428052]
[6]
Mantovani, G.; Giardino, E.; Treppiedi, D.; Catalano, R.; Mangili, F.; Spada, A.; Arosio, M.; Peverelli, E. Stem cells in pituitary tumors: Experimental evidence supporting their existence and their role in tumor clinical behavior. Front. Endocrinol. (Lausanne), 2019, 10, 745.
[http://dx.doi.org/10.3389/fendo.2019.00745] [PMID: 31708878]
[7]
Scriba, L.D.; Bornstein, S.R.; Santambrogio, A.; Mueller, G.; Huebner, A.; Hauer, J.; Schedl, A.; Wielockx, B.; Eisenhofer, G.; Andoniadou, C.L.; Steenblock, C. Cancer stem cells in pheochromocytoma and paraganglioma. Front. Endocrinol. (Lausanne), 2020, 11, 79.
[http://dx.doi.org/10.3389/fendo.2020.00079] [PMID: 32158431]
[8]
Lloyd, R.V.; Hardin, H.; Montemayor-Garcia, C.; Rotondo, F.; Syro, L.V.; Horvath, E.; Kovacs, K. Stem cells and cancer stem-like cells in endocrine tissues. Endocr. Pathol., 2013, 24, 1-10.
[http://dx.doi.org/10.1007/s12022-013-9235-1] [PMID: 23435637]
[9]
Suster, N.K.; Virant-Klun, I. Presence and role of stem cells in ovarian cancer. World J. Stem Cells, 2019, 11(7), 383-397.
[http://dx.doi.org/10.4252/wjsc.v11.i7.383] [PMID: 31396367]
[10]
Carlo, C.D.; Brandi, J.; Cecconi, D. Pancreatic cancer stem cells: Perspectives on potential therapeutic approaches of pancreatic ductal adenocarcinoma. World J. Stem Cells, 2018, 10(11), 172-182.
[http://dx.doi.org/10.4252/wjsc.v10.i11.172] [PMID: 30631392]
[11]
Boyer, J.; Liu, R.H. Apple phytochemicals and their health benefits. Nutr. J., 2004, 3(1), 5.
[http://dx.doi.org/10.1186/1475-2891-3-5] [PMID: 15140261]
[12]
Liao, C.C.; Chen, S.C.; Huang, H.P.; Wang, C.J. Gallic acid inhibits bladder cancer cell proliferation and migration via regulating fatty acid synthase (FAS). J. Food Drug Anal., 2018, 26(2), 620-627.
[http://dx.doi.org/10.1016/j.jfda.2017.06.006] [PMID: 29567231]
[13]
Zhu, J.; Xu, S.; Gao, W.; Feng, J.; Zhao, G. Honokiol induces endoplasmic reticulum stress-mediated apoptosis in human lung cancer cells. Life Sci., 2019, 221, 204-211.
[http://dx.doi.org/10.1016/j.lfs.2019.01.046] [PMID: 30708101]
[14]
Wang, H.; Leung, L.K. The carotenoid lycopene differentially regulates phase I and II enzymes in dimethylbenz[a]anthracene-induced MCF-7 cells. Nutrition, 2010, 26(11-12), 1181-1187.
[http://dx.doi.org/10.1016/j.nut.2009.11.013] [PMID: 20400267]
[15]
Wang, J.; Jiang, Y-F. Natural compounds as anticancer agents: Experimental evidence. World J. Exp. Med., 2012, 2(3), 45-57.
[http://dx.doi.org/10.5493/wjem.v2.i3.45] [PMID: 24520533]
[16]
Reuter, S.; Eifes, S.; Dicato, M.; Aggarwal, B.B.; Diederich, M. Modulation of anti-apoptotic and survival pathways by curcumin as a strategy to induce apoptosis in cancer cells. Biochem. Pharmacol., 2008, 76(11), 1340-1351.
[http://dx.doi.org/10.1016/j.bcp.2008.07.031] [PMID: 18755156]
[17]
Kunnumakkara, A.B.; Anand, P.; Aggarwal, B.B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett., 2008, 269(2), 199-225.
[http://dx.doi.org/10.1016/j.canlet.2008.03.009] [PMID: 18479807]
[18]
Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol., 2008, 75(4), 787-809.
[http://dx.doi.org/10.1016/j.bcp.2007.08.016] [PMID: 17900536]
[19]
Lin, Y.G.; Kunnumakkara, A.B.; Nair, A.; Merritt, W.M.; Han, L.Y.; Armaiz-Pena, G.N.; Kamat, A.A.; Spannuth, W.A.; Gershenson, D.M.; Lutgendorf, S.K.; Aggarwal, B.B.; Sood, A.K. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin. Cancer Res., 2007, 13(11), 3423-3430.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-3072] [PMID: 17545551]
[20]
Kasinski, A.L.; Du, Y.; Thomas, S.L.; Zhao, J.; Sun, S.Y.; Khuri, F.R.; Wang, C.Y.; Shoji, M.; Sun, A.; Snyder, J.P.; Liotta, D.; Fu, H. Inhibition of IkappaB kinase-nuclear factor-kappaB signaling pathway by 3,5-bis(2-flurobenzylidene)piperidin-4-one (EF24), a novel monoketone analog of curcumin. Mol. Pharmacol., 2008, 74(3), 654-661.
[http://dx.doi.org/10.1124/mol.108.046201] [PMID: 18577686]
[21]
Siwak, D.R.; Shishodia, S.; Aggarwal, B.B.; Kurzrock, R. Curcumin-induced antiproliferative and proapoptotic effects in melanoma cells are associated with suppression of IκB kinase and nuclear factor κB activity and are independent of the B-Raf/mitogen-activated/extracellular signal-regulated protein kinase pathway and the Akt pathway. Cancer, 2005, 104(4), 879-890.
[http://dx.doi.org/10.1002/cncr.21216] [PMID: 16007726]
[22]
Plummer, S.M.; Holloway, K.A.; Manson, M.M.; Munks, R.J.L.; Kaptein, A.; Farrow, S.; Howells, L. Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-κB activation via the NIK/IKK signalling complex. Oncogene, 1999, 18(44), 6013-6020.
[http://dx.doi.org/10.1038/sj.onc.1202980] [PMID: 10557090]
[23]
Haller, D.; Russo, M.P.; Sartor, R.B.; Jobin, C. IKK β and phosphatidylinositol 3-kinase/Akt participate in non-pathogenic Gram-negative enteric bacteria-induced RelA phosphorylation and NF-κ B activation in both primary and intestinal epithelial cell lines. J. Biol. Chem., 2002, 277(41), 38168-38178.
[http://dx.doi.org/10.1074/jbc.M205737200] [PMID: 12140289]
[24]
Chan, M.M.; Fong, D.; Soprano, K.J.; Holmes, W.F.; Heverling, H. Inhibition of growth and sensitization to cisplatin-mediated killing of ovarian cancer cells by polyphenolic chemopreventive agents. J. Cell. Physiol., 2003, 194(1), 63-70.
[http://dx.doi.org/10.1002/jcp.10186] [PMID: 12447990]
[25]
Tan, X.; Sidell, N.; Mancini, A.; Huang, R.P.; Wang, S.; Horowitz, I.R.; Liotta, D.C.; Taylor, R.N.; Wieser, F. Multiple anticancer activities of EF24, a novel curcumin analog, on human ovarian carcinoma cells. Reprod. Sci., 2010, 17(10), 931-940.
[http://dx.doi.org/10.1177/1933719110374239] [PMID: 20693500]
[26]
Liang, Y.; Kong, D.; Zhang, Y.; Li, S.; Li, Y.; Dong, L.; Zhang, N.; Ma, J. Curcumin inhibits the viability, migration and invasion of papillary thyroid cancer cells by regulating the miR-301a-3p/STAT3 axis. Exp. Ther. Med., 2021, 22(2), 875.
[http://dx.doi.org/10.3892/etm.2021.10307] [PMID: 34194553]
[27]
Hosseinimehr, S.J.; Hosseini, S.A.H. Radiosensitive effect of curcumin on thyroid cancer cell death induced by radioiodine-131. Interdiscip. Toxicol., 2014, 7(2), 85-88.
[http://dx.doi.org/10.2478/intox-2014-0011] [PMID: 26109883]
[28]
Sordillo, P.P.; Helson, L. Curcumin and cancer stem cells: Curcumin has asymmetrical effects on cancer and normal stem cells. Anticancer Res., 2015, 35(2), 599-614.
[PMID: 25667437]
[29]
Ramachandran, I.; Thavathiru, E.; Ramalingam, S. Natarajan, G.; Mills, W.K.; Benbrook, D.M.; Zuna, R.; Lightfoot, S.; Reis, A.; Anant, S.; Queimado, L. Wnt inhibitory factor 1 induces apoptosis and inhibits cervical cancer growth, invasion and angiogenesis in vivo. Oncogene, 2012, 31, 2725-2737.
[http://dx.doi.org/10.1038/onc.2011.455] [PMID: 22002305]
[30]
Ramachandran, I.; Ganapathy, V.; Gillies, E.; Fonseca, I.; Sureban, S.M.; Houchen, C.W.; Reis, A.; Queimado, L. Wnt inhibitory factor 1 suppresses cancer stemness and induces cellular senescence. Cell Death Dis., 2014, 5, e1246-e1246.
[http://dx.doi.org/10.1038/cddis.2014.219] [PMID: 24853424]
[31]
Aggarwal, B.B.; Bhardwaj, A.; Aggarwal, R.S.; Seeram, N.P.; Shishodia, S.; Takada, Y. Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res., 2004, 24(5A), 2783-840.
[PMID: 15517885]
[32]
Rezk, Y.A.; Balulad, S.S.; Keller, R.S.; Bennett, J.A. Use of Resveratrol to improve the effectiveness of cisplatin and doxorubicin: Study in human gynecologic cancer cell lines and in rodent heart. Am. J. Obstet. Gynecol., 2006, 194(5), e23-e26.
[http://dx.doi.org/10.1016/j.ajog.2005.11.030] [PMID: 16647892]
[33]
Cao, Z.; Fang, J.; Xia, C.; Shi, X.; Jiang, B.H. trans-3,4,5′-Trihydroxystibene inhibits hypoxia-inducible factor 1alpha and vascular endothelial growth factor expression in human ovarian cancer cells. Clin. Cancer Res., 2004, 10(15), 5253-5263.
[http://dx.doi.org/10.1158/1078-0432.CCR-03-0588] [PMID: 15297429]
[34]
Park, S.Y.; Jeong, K.J.; Lee, J.; Yoon, D.S.; Choi, W.S.; Kim, Y.K.; Han, J.W.; Kim, Y.M.; Kim, B.K.; Lee, H.Y. Hypoxia enhances LPA-induced HIF-1α and VEGF expression: Their inhibition by resveratrol. Cancer Lett., 2007, 258(1), 63-69.
[http://dx.doi.org/10.1016/j.canlet.2007.08.011] [PMID: 17919812]
[35]
Seino, M.; Okada, M.; Shibuya, K.; Seino, S.; Suzuki, S.; Takeda, H.; Ohta, T.; Kurachi, H.; Kitanaka, C. Differential contribution of ROS to resveratrol-induced cell death and loss of self-renewal capacity of ovarian cancer stem cells. Anticancer Res., 2015, 35(1), 85-96.
[PMID: 25550538]
[36]
Hardin, H.; Yu, X.M.; Harrison, A.D.; Larrain, C.; Zhang, R.; Chen, J.; Chen, H.; Lloyd, R.V. Generation of novel thyroid cancer stem-like cell clones. Am. J. Pathol., 2016, 186(6), 1662-1673.
[http://dx.doi.org/10.1016/j.ajpath.2016.02.003] [PMID: 27060227]
[37]
Bian, P.; Hu, W.; Liu, C.; Li, L. Resveratrol potentiates the anti-tumor effects of rapamycin in papillary thyroid cancer: PI3K/AKT/mTOR pathway involved. Arch. Biochem. Biophys., 2020, 689, 108461.
[http://dx.doi.org/10.1016/j.abb.2020.108461] [PMID: 32531316]
[38]
Yu, X.M.; Jaskula-Sztul, R.; Ahmed, K.; Harrison, A.D.; Kunnimalaiyaan, M.; Chen, H. Resveratrol induces differentiation markers expression in anaplastic thyroid carcinoma via activation of Notch1 signaling and suppresses cell growth. Mol. Cancer Ther., 2013, 12(7), 1276-1287.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0841] [PMID: 23594881]
[39]
Shankar, S.; Nall, D.; Tang, S.N.; Meeker, D.; Passarini, J.; Sharma, J.; Srivastava, R.K. Resveratrol inhibits pancreatic cancer stem cell characteristics in human and KrasG12D transgenic mice by inhibiting pluripotency maintaining factors and epithelial-mesenchymal transition. PLoS One, 2011, 6(1), e16530.
[http://dx.doi.org/10.1371/journal.pone.0016530] [PMID: 21304978]
[40]
Ouyang, G.; Yao, L.; Ruan, K.; Song, G.; Mao, Y.; Bao, S. Genistein induces G2/M cell cycle arrest and apoptosis of human ovarian cancer cells via activation of DNA damage checkpoint pathways. Cell Biol. Int., 2009, 33(12), 1237-1244.
[http://dx.doi.org/10.1016/j.cellbi.2009.08.011] [PMID: 19732843]
[41]
Adhami, V.M.; Malik, A.; Zaman, N.; Sarfaraz, S.; Siddiqui, I.A.; Syed, D.N.; Afaq, F.; Pasha, F.S.; Saleem, M.; Mukhtar, H. Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin. Cancer Res., 2007, 13(5), 1611-1619.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2269] [PMID: 17332308]
[42]
Gossner, G.; Choi, M.; Tan, L.; Fogoros, S.; Griffith, K.; Kuenker, M.; Liu, J. Genistein-induced apoptosis and autophagocytosis in ovarian cancer cells. Gynecol. Oncol., 2007, 105(1), 23-30.
[http://dx.doi.org/10.1016/j.ygyno.2006.11.009] [PMID: 17234261]
[43]
Solomon, L.A.; Ali, S.; Banerjee, S.; Munkarah, A.R.; Morris, R.T.; Sarkar, F.H. Sensitization of ovarian cancer cells to cisplatin by genistein: the role of NF-kappaB. J. Ovarian Res., 2008, 1(1), 9.
[http://dx.doi.org/10.1186/1757-2215-1-9] [PMID: 19025644]
[44]
Luo, H.; Jiang, B.H.; King, S.M.; Chen, Y.C. Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Nutr. Cancer, 2008, 60(6), 800-809.
[http://dx.doi.org/10.1080/01635580802100851] [PMID: 19005980]
[45]
Dijsselbloem, N.; Vanden Berghe, W.; De Naeyer, A.; Haegeman, G. Soy isoflavone phyto-pharmaceuticals in interleukin-6 affections. Biochem. Pharmacol., 2004, 68(6), 1171-1185.
[http://dx.doi.org/10.1016/j.bcp.2004.05.036] [PMID: 15313415]
[46]
Fan, P.; Fan, S.; Wang, H.; Mao, J.; Shi, Y.; Ibrahim, M.M.; Ma, W.; Yu, X.; Hou, Z.; Wang, B.; Li, L. Genistein decreases the breast cancer stem-like cell population through Hedgehog pathway. Stem Cell Res. Ther., 2013, 4(6), 146.
[http://dx.doi.org/10.1186/scrt357] [PMID: 24331293]
[47]
Yu, D.; Shin, H.S.; Lee, Y.S.; Lee, D.; Kim, S.; Lee, Y.C. Genistein attenuates cancer stem cell characteristics in gastric cancer through the downregulation of Gli1. Oncol. Rep., 2014, 31(2), 673-678.
[http://dx.doi.org/10.3892/or.2013.2893] [PMID: 24297371]
[48]
Kim, Y.S.; Choi, K.C.; Hwang, K.A. Genistein suppressed epithelial-mesenchymal transition and migration efficacies of BG-1 ovarian cancer cells activated by estrogenic chemicals via estrogen receptor pathway and downregulation of TGF-β signaling pathway. Phytomedicine, 2015, 22(11), 993-999.
[http://dx.doi.org/10.1016/j.phymed.2015.08.003] [PMID: 26407941]
[49]
Ozturk, S.A.; Alp, E.; Yar Saglam, A.S.; Konac, E.; Menevse, E.S. The effects of thymoquinone and genistein treatment on telomerase activity, apoptosis, angiogenesis, and survival in thyroid cancer cell lines. J. Cancer Res. Ther., 2018, 14(2), 328-334.
[http://dx.doi.org/10.4103/0973-1482.202886] [PMID: 29516914]
[50]
Zhang, C.; Lv, B.; Yi, C.; Cui, X.; Sui, S.; Li, X.; Qi, M.; Hao, C.; Han, B.; Liu, Z. Genistein inhibits human papillary thyroid cancer cell detachment, invasion and metastasis. J. Cancer, 2019, 10(3), 737-748.
[http://dx.doi.org/10.7150/jca.28111] [PMID: 30719173]
[51]
Hastak, K.; Gupta, S.; Ahmad, N.; Agarwal, M.K.; Agarwal, M.L.; Mukhtar, H. Role of p53 and NF-κB in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. Oncogene, 2003, 22(31), 4851-4859.
[http://dx.doi.org/10.1038/sj.onc.1206708] [PMID: 12894226]
[52]
Nihal, M.; Ahmad, N.; Mukhtar, H.; Wood, G.S. Anti-proliferative and proapoptotic effects of (-)-epigallocatechin-3-gallate on human melanoma: Possible implications for the chemoprevention of melanoma. Int. J. Cancer, 2005, 114(4), 513-521.
[http://dx.doi.org/10.1002/ijc.20785] [PMID: 15609335]
[53]
Thangapazham, R.L.; Singh, A.K.; Sharma, A.; Warren, J.; Gaddipati, J.P.; Maheshwari, R.K. Green tea polyphenols and its constituent epigallocatechin gallate inhibits proliferation of human breast cancer cells in vitro and in vivo. Cancer Lett., 2007, 245(1-2), 232-241.
[http://dx.doi.org/10.1016/j.canlet.2006.01.027] [PMID: 16519995]
[54]
Rao, S.D.; Pagidas, K. Epigallocatechin-3-gallate, a natural polyphenol, inhibits cell proliferation and induces apoptosis in human ovarian cancer cells. Anticancer Res., 2010, 30(7), 2519-2523.
[PMID: 20682977]
[55]
Huh, S.W.; Bae, S.M.; Kim, Y.W.; Lee, J.M.; Namkoong, S.E.; Lee, I.P.; Kim, S.H.; Kim, C.K.; Ahn, W.S. Anticancer effects of (−)-epigallocatechin-3-gallate on ovarian carcinoma cell lines. Gynecol. Oncol., 2004, 94(3), 760-768.
[http://dx.doi.org/10.1016/j.ygyno.2004.05.031] [PMID: 15350370]
[56]
Almatroodi, S.A.; Almatroudi, A.; Khan, A.A.; Alhumaydhi, F.A.; Alsahli, M.A.; Rahmani, A.H. Potential Therapeutic Targets of Epigallocatechin Gallate (EGCG), the most abundant catechin in green tea, and its role in the therapy of various types of cancer. Molecules, 2020, 25(14), 3146.
[http://dx.doi.org/10.3390/molecules25143146] [PMID: 32660101]
[57]
Liu, S.; Xu, Z.L.; Sun, L.; Liu, Y.; Li, C.C.; Li, H.M.; Zhang, W.; Li, C.J.; Qin, W. (−)-Epigallocatechin-3-gallate induces apoptosis in human pancreatic cancer cells via PTEN. Mol. Med. Rep., 2016, 14(1), 599-605.
[http://dx.doi.org/10.3892/mmr.2016.5277] [PMID: 27176210]
[58]
Liu, S.; Wang, X.J.; Liu, Y.; Cui, Y.F. PI3K/AKT/mTOR signaling is involved in (-)-epigallocatechin-3-gallate-induced apoptosis of human pancreatic carcinoma cells. Am. J. Chin. Med., 2013, 41(3), 629-642.
[http://dx.doi.org/10.1142/S0192415X13500444] [PMID: 23711146]
[59]
Wei, R.; Penso, N.E.C.; Hackman, R.M.; Wang, Y.; Mackenzie, G.G. Epigallocatechin-3-Gallate (EGCG) suppresses pancreatic cancer cell growth, invasion, and migration partly through the inhibition of Akt pathway and epithelial-mesenchymal transition: Enhanced efficacy when combined with Gemcitabine. Nutrients, 2019, 11(8), 1856.
[http://dx.doi.org/10.3390/nu11081856] [PMID: 31405071]
[60]
Li, T.; Zhao, N.; Lu, J.; Zhu, Q.; Liu, X.; Hao, F.; Jiao, X. Epigallocatechin gallate (EGCG) suppresses epithelial-mesenchymal transition (EMT) and invasion in anaplastic thyroid carcinoma cells through blocking of TGF-β1/Smad signaling pathways. Bioengineered, 2019, 10, 282-291.
[http://dx.doi.org/10.1080/21655979.2019.1632669] [PMID: 31311401]
[61]
Wu, D.; Liu, Z.; Li, J.; Zhang, Q.; Zhong, P.; Teng, T.; Chen, M.; Xie, Z.; Ji, A.; Li, Y. Epigallocatechin-3-gallate inhibits the growth and increases the apoptosis of human thyroid carcinoma cells through suppression of EGFR/RAS/RAF/MEK/ERK signaling pathway. Cancer Cell Int., 2019, 19(1), 43.
[http://dx.doi.org/10.1186/s12935-019-0762-9] [PMID: 30858760]
[62]
Toden, S.; Tran, H.M.; Tovar-Camargo, O.A.; Okugawa, Y.; Goel, A. Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer. Oncotarget, 2016, 7(13), 16158-16171.
[http://dx.doi.org/10.18632/oncotarget.7567] [PMID: 26930714]
[63]
Pistollato, F.; Giampieri, F.; Battino, M. The use of plant-derived bioactive compounds to target cancer stem cells and modulate tumor microenvironment. Food Chem. Toxicol., 2015, 75, 58-70.
[http://dx.doi.org/10.1016/j.fct.2014.11.004] [PMID: 25445513]
[64]
Wang, L.; Tian, Z.; Yang, Q.; Li, H.; Guan, H.; Shi, B.; Hou, P.; Ji, M. Sulforaphane inhibits thyroid cancer cell growth and invasiveness through the reactive oxygen species-dependent pathway. Oncotarget, 2015, 6(28), 25917-25931.
[http://dx.doi.org/10.18632/oncotarget.4542] [PMID: 26312762]
[65]
Yeger, H.; Mokhtari, R.B. Perspective on dietary isothiocyanates in the prevention, development and treatment of cancer. J. Cancer Metastasis Treat., 2020, 2020, 26.
[http://dx.doi.org/10.20517/2394-4722.2020.61]
[66]
Upadhyaya, B.; Liu, Y.; Dey, M. Phenethyl Isothiocyanate Exposure Promotes Oxidative Stress and Suppresses Sp1 Transcription Factor in Cancer Stem Cells. Int J Mol Sci, 2019, 20.
[http://dx.doi.org/10.3390/2Fijms20051027] [PMID: 30818757]
[67]
Kalkunte, S.; Swamy, N.; Dizon, D.S.; Brard, L. Benzyl isothiocyanate (BITC) induces apoptosis in ovarian cancer cells in vitro. J. Exp. Ther. Oncol., 2006, 5(4), 287-300.
[PMID: 17024969]
[68]
Zhang, Q.; Li, X.T.; Chen, Y.; Chen, J.Q.; Zhu, J.Y.; Meng, Y.; Wang, X.Q.; Li, Y.; Geng, S.S.; Xie, C.F.; Wu, J.S.; Zhong, C.Y.; Han, H.Y. Wnt/β-catenin signaling mediates the suppressive effects of diallyl trisulfide on colorectal cancer stem cells. Cancer Chemother. Pharmacol., 2018, 81(6), 969-977.
[http://dx.doi.org/10.1007/s00280-018-3565-0] [PMID: 29594332]
[69]
Li, X.; Meng, Y.; Xie, C.; Zhu, J.; Wang, X.; Li, Y.; Geng, S.; Wu, J.; Zhong, C.; Li, M. Diallyl Trisulfide inhibits breast cancer stem cells via suppression of Wnt/β-catenin pathway. J. Cell. Biochem., 2018, 119(5), 4134-4141.
[http://dx.doi.org/10.1002/jcb.26613] [PMID: 29243835]
[70]
Xu, S.; Pan, J.; Cheng, X.; Zheng, J.; Wang, X.; Guan, H.; Yu, H.; Bao, J.; Zhang, L. Diallyl trisulfide, a H2S donor, inhibits cell growth of human papillary thyroid carcinoma KT‐1 cells through a positive feedback loop between H2S and cystathionine‐gammalyase. Phytother. Res., 2020, 34(5), 1154-1165.
[http://dx.doi.org/10.1002/ptr.6586] [PMID: 31984539]
[71]
Zheng, J.; Cheng, X.; Xu, S.; Zhang, L.; Pan, J.; Yu, H.; Bao, J.; Lu, R. Diallyl trisulfide induces G2/M cell-cycle arrest and apoptosis in anaplastic thyroid carcinoma 8505C cells. Food Funct., 2019, 10(11), 7253-7261.
[http://dx.doi.org/10.1039/C9FO00646J] [PMID: 31617531]
[72]
Zhang, L.; Xu, S.; Cheng, X.; Zheng, J.; Wang, Y.; Wu, J.; Wang, X.; Wu, L.; Yu, H.; Bao, J. Diallyl trisulphide, a H2S donor, compromises the stem cell phenotype and restores thyroid‐specific gene expression in anaplastic thyroid carcinoma cells by targeting AKT‐SOX2 axis. Phytother. Res., 2021, 35(6), 3428-3443.
[http://dx.doi.org/10.1002/ptr.7065] [PMID: 33751676]
[73]
Kim, A.; Ha, J.; Kim, J.; Cho, Y.; Ahn, J.; Cheon, C.; Kim, S.H.; Ko, S.G.; Kim, B.; Kim, J Natural products for pancreatic cancer treatment: from traditional medicine to modern drug discovery. Nutrients, 2021, 13, 3801.
[http://dx.doi.org/10.3390/nu13113801] [PMID: 34836055]
[74]
Clark, R.; Lee, S.H. Anticancer properties of capsaicin against human cancer. Anticancer Res., 2016, 36(3), 837-43.
[PMID: 26976969]
[75]
Chapa-Oliver, A.; Mejía-Teniente, L. Capsaicin: from plants to a cancer-suppressing agent. Molecules, 2016, 21(8), 931.
[http://dx.doi.org/10.3390/molecules21080931] [PMID: 27472308]
[76]
Rangarajan, P.; Subramaniam, D.; Paul, S.; Kwatra, D.; Palaniyandi, K.; Islam, S.; Harihar, S.; Ramalingam, S.; Gutheil, W.; Putty, S.; Pradhan, R.; Padhye, S.; Welch, D.R.; Anant, S.; Dhar, A. Crocetinic acid inhibits hedgehog signaling to inhibit pancreatic cancer stem cells. Oncotarget, 2015, 6(29), 27661-27673.
[http://dx.doi.org/10.18632/oncotarget.4871] [PMID: 26317547]
[77]
Aliebrahimi, S.; Kouhsari, S.M.; Arab, S.S.; Shadboorestan, A.; Ostad, S.N. Phytochemicals, withaferin A and carnosol, overcome pancreatic cancer stem cells as c-Met inhibitors. Biomed. Pharmacother., 2018, 106, 1527-1536.
[http://dx.doi.org/10.1016/j.biopha.2018.07.055] [PMID: 30119228]
[78]
Dong, R.; Chen, P.; Chen, Q. Inhibition of pancreatic cancer stem cells by Rauwolfia vomitoria extract. Oncol. Rep., 2018, 40(6), 3144-3154.
[http://dx.doi.org/10.3892/or.2018.6713] [PMID: 30272287]
[79]
Thakur, V.S.; Deb, G.; Babcook, M.A.; Gupta, S. Plant phytochemicals as epigenetic modulators: role in cancer chemoprevention. AAPS J., 2014, 16(1), 151-163.
[http://dx.doi.org/10.1208/s12248-013-9548-5] [PMID: 24307610]
[80]
Fang, M.Z.; Wang, Y.; Ai, N.; Hou, Z.; Sun, Y.; Lu, H.; Welsh, W.; Yang, C.S. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res., 2003, 63(22), 7563-70.
[PMID: 14633667]
[81]
Fang, M.Z.; Chen, D.; Sun, Y.; Jin, Z.; Christman, J.K.; Yang, C.S. Reversal of hypermethylation and reactivation of p16INK4a, RARbeta, and MGMT genes by genistein and other isoflavones from soy. Clin. Cancer Res., 2005, 11(19), 7033-7041.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0406] [PMID: 16203797]
[82]
Selby-Pham, S.N.B.; Miller, R.B.; Howell, K.; Dunshea, F.; Bennett, L.E. Physicochemical properties of dietary phytochemicals can predict their passive absorption in the human small intestine. Sci. Reports, 2017, 7, 1-15.
[http://dx.doi.org/10.1038/s41598-017-01888-w] [PMID: 28512322]
[83]
Liu, J.; Wang, H.; Wang, J.; Chang, Q.; Hu, Z.; Shen, X.; Feng, J.; Zhang, Z.; Wu, X. Total flavonoid aglycones extract in Radix scutellariae induces cross-regulation between autophagy and apoptosis in pancreatic cancer cells. J. Ethnopharmacol., 2019, 235, 133-140.
[http://dx.doi.org/10.1016/j.jep.2019.02.005] [PMID: 30738116]
[84]
rora, S.; Bhardwaj, A.; Srivastava, S.K.; Singh, S.; McClellan, S.; Wang, B.; Singh, A.P. Honokiol arrests cell cycle, induces apoptosis, and potentiates the cytotoxic effect of gemcitabine in human pancreatic cancer cells. PLoS One, 2011, 6(6), e21573.
[http://dx.doi.org/10.1371/journal.pone.0021573] [PMID: 21720559]
[85]
Shin, H.J.; Hwang, K.A.; Choi, K.C. Antitumor effect of various phytochemicals on diverse types of thyroid cancers. Nutrients, 2019, 11(1), 125.
[http://dx.doi.org/10.3390/nu11010125] [PMID: 30634497]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy