Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Review Article

A Comprehensive Insight on Pharmaceutical Co-crystals for Improvement of Aqueous Solubility

Author(s): Jyoti Malik, Anurag Khatkar and Arun Nanda*

Volume 24, Issue 2, 2023

Published on: 25 November, 2022

Page: [157 - 170] Pages: 14

DOI: 10.2174/1389450124666221114095400

Price: $65

Abstract

Various drugs are not able to reach the market due to their poor bioavailability and poor solubility in aqueous media. Hence, several approaches are used to enhance the solubility of poorly water-soluble drugs. Co-crystallization is one of the approaches used to enhance the solubility of poorly water-soluble drugs. Co-crystals are solid crystalline substances consisting of two or more ingredients in a stoichiometric ratio in which one of the ingredients is an active pharmaceutical ingredient (API) and the other is a co-former. API and co-former mix with one another in a co-crystal through intermolecular interactions. This review represents an overview of co-crystals, a comparison of co-crystals and other solid forms, mechanisms of solubility enhancement by co-crystals in brief, techniques of co-former selection, a list of co-formers used during various co-crystals formation and a list of marketed co-crystals formulation, method of co-crystals preparation and characterization techniques of co-crystals.

Graphical Abstract

[1]
Mohammad MA, Alhalaweh A, Velaga SP. Hansen solubility parameter as a tool to predict cocrystal formation. Int J Pharm 2011; 407(1-2): 63-71.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.030] [PMID: 21256944]
[2]
Schultheiss N, Newman A. Pharmaceutical co-crystals and their physicochemical properties. Cryst Growth Des 2009; 9(6): 2950-67.
[http://dx.doi.org/10.1021/cg900129f] [PMID: 19503732]
[3]
Qiao N, Li M, Schlindwein W, Malek N, Davies A, Trappitt G. Pharmaceutical cocrystals: An overview. Int J Pharm 2011; 419(1-2): 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2011.07.037] [PMID: 21827842]
[4]
Aakeröy CB, Salmon DJ. Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm 2005; 7(72): 439-48.
[http://dx.doi.org/10.1039/b505883j]
[5]
Fukte SR, Wagh MP, Rawat S. Co-former selection: an important tool in co-crystal formation. Int J Pharm Pharm Sci 2014; 6(7): 9-14.
[6]
Patel R, Baria A, Patel N. An overview of size reduction technologies in the field of pharmaceutical manu-facturing. Asian J Pharm 2008; 2(4): 216-20.
[http://dx.doi.org/10.4103/0973-8398.45033]
[7]
Leuner C, Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm 2000; 50(1): 47-60.
[http://dx.doi.org/10.1016/S0939-6411(00)00076-X] [PMID: 10840192]
[8]
Loh GOK, Tan YTF, Peh KK. Enhancement of norfloxacin solubility via inclusion complexation with β-cyclodextrin and its derivative hydroxypropyl-β-cyclodextrin. Asian J Pharm Sci 2016; 11(4): 536-46.
[http://dx.doi.org/10.1016/j.ajps.2016.02.009]
[9]
Elder DP, Holm R, Diego HL. Use of pharmaceutical salts and cocrystals to address the issue of poor solubility. Int J Pharm 2013; 453(1): 88-100.
[http://dx.doi.org/10.1016/j.ijpharm.2012.11.028] [PMID: 23182973]
[10]
Kalepu S, Nekkanti V. Improved delivery of poorly soluble compounds using nanoparticle technology: a review. Drug Deliv Transl Res 2016; 6(3): 319-32.
[http://dx.doi.org/10.1007/s13346-016-0283-1] [PMID: 26891912]
[11]
Agrawal AG, Kumar A, Gide PS. Self emulsifying drug delivery system for enhanced solubility and dissolu-tion of glipizide. Colloids Surf B Biointerfaces 2015; 126: 553-60.
[http://dx.doi.org/10.1016/j.colsurfb.2014.11.022] [PMID: 25576032]
[12]
Kumar G, Singh SK. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm Sci 2018; 80(5): 781-9.
[13]
Patole T, Deshpande A. Co-Crystallization- A Technique for Solubility Enhancement. Int J Pharm Sci Res 2014; 5(9): 3566-76.
[14]
Miroshnyk I, Mirza S, Sandler N. Pharmaceutical co-crystals-an opportunity for drug product enhancement. Expert Opin Drug Deliv 2009; 6(4): 333-41.
[http://dx.doi.org/10.1517/17425240902828304] [PMID: 19348603]
[15]
Zhong H, Mashinson V, Woolman T, Zha M. Understanding the molecular properties and metabolism of top prescribed drugs. Curr Top Med Chem 2013; 13(11): 1290-307.
[http://dx.doi.org/10.2174/15680266113139990034] [PMID: 23675936]
[16]
Kumar S, Nanda A. Pharmaceutical cocrystals: an overview. Indian J Pharm Sci 2017; 79(6): 858-71.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000302]
[17]
Bolla G, Sarma B, Nangia AK. Crystal engineering of pharmaceutical cocrystals in the discovery and development of improved drugs. Chem Rev 2022; 122(13): 11514-603.
[http://dx.doi.org/10.1021/acs.chemrev.1c00987] [PMID: 35642550]
[18]
Scott LC, Leonard JC, Jeanette TD, Valeriya NS. Crystal engineering approach to forming co-crystals of amine hydrochlorides with organic acids: molecular complexes of fluoxetine hydrochloride with benzoic, succinic, and fumaric acids. J Am Chem Soc 2014; 126: 13335-42.
[19]
Emami S, Siahi-Shadbad M, Adibkia K, Barzegar-Jalali M. Recent advances in improving oral drug bioavailability by cocrystals. Bioimpacts 2018; 8(4): 305-20.
[http://dx.doi.org/10.15171/bi.2018.33] [PMID: 30397585]
[20]
Aitipamula S, Banerjee R, Bansal AK, et al. Polymorphs, salts, and co-crystals: What’s in a name? Cryst Growth Des 2012; 12(5): 2147-52.
[http://dx.doi.org/10.1021/cg3002948]
[21]
Aher NS, Shinkar DM, Saudagar RB. Pharmaceutical co-crystallization: a review. J Adv Pharm Educ Res 2014; 4(4): 388-96.
[22]
Etter MC. Hydrogen bonds as design elements in organic chemistry. J Phys Chem 1991; 95(12): 4601-10.
[http://dx.doi.org/10.1021/j100165a007]
[23]
Jayasankar A, Somwangthanaroj A, Shao ZJ, Rodríguez-Hornedo N. Cocrystal formation during cogrinding and storage is mediated by amorphous phase. Pharm Res 2006; 23(10): 2381-92.
[http://dx.doi.org/10.1007/s11095-006-9110-6] [PMID: 16988890]
[24]
Etter MC, Urbanczyk-Lipkowska Z, Zia-Ebrahimi M, Panunto TW. Hydrogen bond-directed cocrystalliza-tion and molecular recognition properties of diarylureas. J Am Chem Soc 1990; 112(23): 8415-26.
[http://dx.doi.org/10.1021/ja00179a028]
[25]
Desiraju GR, Parshall GW. Crystal engineering: the design of organic solids. Mater Sci Monogr 1989; p. 54.
[26]
Sekhon BS. Pharmaceutical co-crystals-a review. ARS Pharm 2009; 50(3): 99-117.
[27]
Stahl PH, Wermuth CG. Handbook of Pharmaceutical Salts: Properties, Selection and Use. New York: Wiley VCH 2002; p. 374.
[28]
Yadav AV, Shete AS, Dabke AP, Kulkarni PV, Sakhare SS. Co-crystals: A novel approach to modify physi-cochemical properties of active pharmaceutical ingredients. Indian J Pharm Sci 2009; 71(4): 359-70.
[http://dx.doi.org/10.4103/0250-474X.57283] [PMID: 20502540]
[29]
Kumar S, Nanda A. Approaches to design of pharmaceutical cocrystals: a review. Mol Cryst Liq Cryst 2018; 667(1): 54-77.
[http://dx.doi.org/10.1080/15421406.2019.1577462]
[30]
Galek PTA, Fábián L, Motherwell WDS, Allen FH, Feeder N. Knowledge-based model of hydrogen-bonding propensity in organic crystals. Acta Crystallogr B 2007; 63(5): 768-82.
[http://dx.doi.org/10.1107/S0108768107030996] [PMID: 17873446]
[31]
Basavoju S, Boström D, Velaga SP. Indomethacin-saccharin cocrystal: design, synthesis and preliminary pharmaceutical characterization. Pharm Res 2008; 25(3): 530-41.
[http://dx.doi.org/10.1007/s11095-007-9394-1] [PMID: 17703346]
[32]
Tothadi S, Sanphui P, Desiraju GR. Obtaining synthon modularity in ternary cocrystals with hydigen bonds abd halogen bonds. Cryst Growth Des 2014; 14(10): 5293-302.
[http://dx.doi.org/10.1021/cg501115k]
[33]
Aitipamula S, Wong ABH, Chow PS, Tan RBH. Novel solid forms of the anti-tuberculosis drug, Isoniazid: ternary and polymorphic cocrystals. CrystEngComm 2013; 15(29): 5877-87.
[http://dx.doi.org/10.1039/c3ce40729b]
[34]
Bhogala BR, Basavoju S, Nangia A. Tape and layer structures in cocrystals of some di- and tricarboxylic acids with 4,4′-bipyridines and isonicotinamide. From binary to ternary cocrystals. CrystEngComm 2005; 7(90): 551-62.
[http://dx.doi.org/10.1039/b509162d]
[35]
Bhogala BR, Nangia A. Ternary and quaternary co-crystals of 1,3-cis,5-cis-cyclohexanetricarboxylic acid and 4,4′-bipyridines. New J Chem 2008; 32(5): 800-7.
[http://dx.doi.org/10.1039/b800293b]
[36]
Braga D, Grepioni F, Maini L, Prosperi S, Gobetto R, Chierotti MR. From unexpected reactions to a new family of ionic co-crystals: the case of barbituric acid with alkali bromides and caesium iodide. Chem Commun 2010; 46(41): 7715-7.
[http://dx.doi.org/10.1039/c0cc02701d] [PMID: 20852785]
[37]
Smith AJ, Kim SH, Duggirala NK, et al. Improving lithium therapeutics by crystal engineering of novel ionic cocrystals. Mol Pharm 2013; 10(12): 4728-38.
[http://dx.doi.org/10.1021/mp400571a] [PMID: 24191685]
[38]
Dunitz JD, Bernstein J. Disappearing polymorphs. Acc Chem Res 1995; 28(4): 193-200.
[http://dx.doi.org/10.1021/ar00052a005]
[39]
Bavishi DD, Borkhataria CH. Spring and parachute: How cocrystals enhance solubility. Prog Cryst Growth Charact Mater 2016; 62(3): 1-8.
[http://dx.doi.org/10.1016/j.pcrysgrow.2016.07.001]
[40]
Brouwers J, Brewster ME, Augustijns P. Supersaturating drug delivery systems: the answer to solubility-limited oral bioavailability? J Pharm Sci 2009; 98(8): 2549-72.
[http://dx.doi.org/10.1002/jps.21650] [PMID: 19373886]
[41]
Guzmán HR, Tawa M, Zhang Z, et al. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J Pharm Sci 2007; 96(10): 2686-702.
[http://dx.doi.org/10.1002/jps.20906] [PMID: 17518357]
[42]
Fahr A, Liu X. Drug delivery strategies for poorly water-soluble drugs. Expert Opin Drug Deliv 2007; 4(4): 403-16.
[http://dx.doi.org/10.1517/17425247.4.4.403] [PMID: 17683253]
[43]
Serajuddin ATM. Salt formation to improve drug solubility. Adv Drug Deliv Rev 2007; 59(7): 603-16.
[http://dx.doi.org/10.1016/j.addr.2007.05.010] [PMID: 17619064]
[44]
Chen J, Sarma B, Evans JMB, Myerson AS. Pharmaceutical Crystallization. Cryst Growth Des 2011; 11(4): 887-95.
[http://dx.doi.org/10.1021/cg101556s]
[45]
Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. As J Pharma Sci 2014; 9(6): 304-16.
[http://dx.doi.org/10.1016/j.ajps.2014.05.005]
[46]
Friščić T, Jones W. Benefits of cocrystallisation in pharmaceutical materials science: an up-date. J Pharm Pharmacol 2010; 62(11): 1547-59.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01133.x]
[47]
Babu NJ, Nangia A. Solubility advantage of amorphous drugs and pharmaceutical co-crystals published as part of the crystal growth and design 10th anniversary perspective. Cryst Growth Des 2011; 11: 2662-79.
[http://dx.doi.org/10.1021/cg200492w]
[48]
Najar AA, Azim Y. Pharmaceutical co-crystals - A new paradigm of crystal engineering. J Indian Inst Sci 2014; 94(1): 45-67.
[49]
Duggirala NK, Perry ML, Almarsson Ö, Zaworotko MJ. Pharmaceutical cocrystals: along the path to improved medicines. Chem Commun 2016; 52(4): 640-55.
[http://dx.doi.org/10.1039/C5CC08216A] [PMID: 26565650]
[50]
Thipparaboina R, Kumar D, Chavan RB, Shastri NR. Multidrug co-crystals: towards the development of effective therapeutic hybrids. Drug Discov Today 2016; 21(3): 481-90.
[http://dx.doi.org/10.1016/j.drudis.2016.02.001] [PMID: 26869329]
[51]
Etter MC. Encoding and decoding hydrogen-bond patterns of organic compounds. Acc Chem Res 1990; 23(4): 120-6.
[http://dx.doi.org/10.1021/ar00172a005]
[52]
Childs SL, Stahly GP, Park A. The salt-cocrystal continuum: the influence of crystal structure on ionization state. Mol Pharm 2007; 4(3): 323-38.
[http://dx.doi.org/10.1021/mp0601345] [PMID: 17461597]
[53]
Cruz-Cabeza AJ. Acid-base crystalline complexes and the pKa rule. CrystEngComm 2012; 14(20): 6362-5.
[http://dx.doi.org/10.1039/c2ce26055g]
[54]
Vishweshwar P, McMahon JA, Bis JA, Zaworotko MJ. Pharmaceutical Co-Crystals. J Pharm Sci 2006; 95(3): 499-516.
[http://dx.doi.org/10.1002/jps.20578] [PMID: 16444755]
[55]
Cherukuvada S, Nangia A. Eutectics as improved pharmaceutical materials: design, properties and characterization. Chem Commun 2014; 50(8): 906-23.
[http://dx.doi.org/10.1039/C3CC47521B] [PMID: 24322207]
[56]
McNamara DP, Childs SL, Giordano J, et al. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm Res 2006; 23(8): 1888-97.
[http://dx.doi.org/10.1007/s11095-006-9032-3] [PMID: 16832611]
[57]
Lu E, Rodríguez-Hornedo N, Suryanarayanan R. A rapid thermal method for cocrystal screening. CrystEngComm 2008; 10(6): 665-8.
[http://dx.doi.org/10.1039/b801713c]
[58]
Zhou Z, Chan HM, Sung HHY, Tong HHY, Zheng Y. Identification of new co-crystal systems with stoichiometric diversity of salicylic acid using thermal method. Pharm Res 2016; 33(4): 1030-9.
[http://dx.doi.org/10.1007/s11095-015-1849-1] [PMID: 26744333]
[59]
Yamashita H, Hirakura Y, Yuda M, Terada K. Coformer screening using thermal analysis based on binary phase diagrams. Pharm Res 2014; 31(8): 1946-57.
[http://dx.doi.org/10.1007/s11095-014-1296-4] [PMID: 24522816]
[60]
Yamamoto K, Tsutsumi S, Ikeda Y. Establishment of cocrystal cocktail grinding method for rational screening of pharmaceutical cocrystals. Int J Pharm 2012; 437(1-2): 162-71.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.038] [PMID: 22871562]
[61]
Shete A, Murthy S, Korpale S, et al. Cocrystals of itraconazole with amino acids: Screening, synthesis, sol-id state characterization, in vitro drug release and antifungal activity. J Drug Deliv Sci Technol 2015; 28: 46-55.
[http://dx.doi.org/10.1016/j.jddst.2015.05.006]
[62]
Fábián L. Cambridge structural database analysis of molecular complementarity in co-crystals. Cryst Growth Des 2009; 9(3): 1436-43.
[http://dx.doi.org/10.1021/cg800861m]
[63]
Ross SA, Lamprou DA, Douroumis D. Engineering and manufacturing of pharmaceutical co-crystals: a re-view of solvent-free manufacturing technologies. Chem Commun 2016; 52(57): 8772-86.
[http://dx.doi.org/10.1039/C6CC01289B] [PMID: 27302311]
[64]
Abramov YA, Loschen C, Klamt A. Rational coformer or solvent selection for pharmaceutical cocrystalliza-tion or desolvation. J Pharm Sci 2012; 101(10): 3687-97.
[http://dx.doi.org/10.1002/jps.23227] [PMID: 22821740]
[65]
Greenhalgh DJ, Williams AC, Timmins P, York P. Solubility parameters as predictors of miscibility in solid dispersions. J Pharm Sci 1999; 88(11): 1182-90.
[http://dx.doi.org/10.1021/js9900856] [PMID: 10564068]
[66]
Van KDW, Hoftyzer P. Properties of Polymers, their Estimation and Correlation with Chemical Structure. (2nd ed.), Amsterdam: Elsevier Science 1976.
[67]
Liu M, Hong C, Yao Y, et al. Development of a pharmaceutical cocrystal with solution crystallization tech-nology: Preparation, characterization, and evaluation of myricetin-proline cocrystals. Eur J Pharm Biopharm 2016; 107: 151-9.
[http://dx.doi.org/10.1016/j.ejpb.2016.07.008] [PMID: 27395394]
[68]
Zhou Z, Li W, Sun WJ, et al. Resveratrol cocrystals with enhanced solubility and tabletability. Int J Pharm 2016; 509(1-2): 391-9.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.006] [PMID: 27282539]
[69]
Gaikwad ER, Khabade SS, Sutar TB, Payghan SA. Preparation and characterization of molecula complexes of fenofibrate cocrytsal. Asian J Pharm 2017; 11(4): 745-59.
[70]
Lee MJ, Chun NH, Kim HC, et al. Agomelatine co-crystals with resorcinol and hydroquinone: Preparation and characterization. Korean J Chem Eng 2018; 35(4): 984-93.
[http://dx.doi.org/10.1007/s11814-017-0347-z]
[71]
Fuliaş A, Vlase G, Vlase T, Şuta LM, Şoica C, Ledeţi I. Screening and characteriza-tion of cocrystal formation between carbamazepine and succinic acid. J Therm Anal Calorim 2015; 121(3): 1081-6.
[http://dx.doi.org/10.1007/s10973-015-4473-8]
[72]
Lin Y, Yang H, Yang C, Wang J. Preparation, characterization, and evaluation of dipfluzine-benzoic acid co-crystals with improved physicochemical properties. Pharm Res 2014; 31(3): 566-78.
[http://dx.doi.org/10.1007/s11095-013-1181-6] [PMID: 24065588]
[73]
Chadha R, Saini A, Arora P, Jain DS, Dasgupta A, Guru Row TN. Multicomponent solids of lamotrigine with some selected coformers and their characterization by thermoanalytical, spectroscopic and X-ray diffraction methods. CrystEngComm 2011; 13(20): 6271-84.
[http://dx.doi.org/10.1039/c1ce05458a]
[74]
Sanphui P, Devi VK, Clara D, Malviya N, Ganguly S, Desiraju GR. Cocrystals of hydrochlorothiazide: solubil-ity and diffusion/permeability enhancements through drug-coformer interactions. Mol Pharm 2015; 12(5): 1615-22.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00020] [PMID: 25800383]
[75]
Scoutaris N, Nion A, Hurt A, Douroumis D. Jet dispensing as a high throughput method for rapid screen-ing and manufacturing of cocrystals. CrystEngComm 2016; 18(27): 5079-82.
[http://dx.doi.org/10.1039/C6CE00664G]
[76]
Yan Y, Chen JM, Lu TB. Thermodynamics and preliminary pharmaceutical characterization of a melatonin-pimelic acid cocrystal prepared by a melt crystallization method. CrystEngComm 2015; 17(3): 612-20.
[http://dx.doi.org/10.1039/C4CE01921K]
[77]
Cheney ML, Weyna DR, Shan N, Hanna M, Wojtas L, Zaworotko MJ. Coformer selection in pharmaceuti-cal cocrystal development: a case study of a meloxicam aspirin cocrystal that exhibits enhanced solubility and pharmacokinetics. J Pharm Sci 2011; 100(6): 2172-81.
[http://dx.doi.org/10.1002/jps.22434] [PMID: 21491441]
[78]
Santiago de Oliveira Y, Saraiva Costa W, Ferreira Borges P, Silmara Alves de Santana M, Ayala AP. The de-sign of novel metronidazole benzoate structures: exploring stoichiometric diversity. Acta Crystallogr C Struct Chem 2019; 75(5): 483-95.
[http://dx.doi.org/10.1107/S2053229619003838] [PMID: 31062703]
[79]
Sowa M. Ślepokura K, Matczak-Jon E. A 1:2 cocrystal of genistein with isonicotinamide: crystal structure and Hirshfeld surface analysis Acta Crystallogr C 2013; 69(11): 1267-72.
[http://dx.doi.org/10.1107/S0108270113029545] [PMID: 24192170]
[80]
Lee K, Kim KJ, Ulrich J N-H. ⋅⋅⋅O, O-H⋅⋅⋅O hydrogen bonded supramolecular formation in the cocrystal of salicylic acid with Ncontaining bases Cryst Res Technol 2016; 51(3): 197-206.
[http://dx.doi.org/10.1002/crat.201500072]
[81]
Bagde SA, Upadhye KP, Dixit GR, Bakhle SS. Formulation and evaluation of co-crystals of poorly water soluble drug. Int J Pharm Res 2016; 7(12): 4988-97.
[82]
Lin HL, Zhang GC, Huang YT, Lin SY. An investigation of indomethacin-nicotinamide cocrystal formation induced by thermal stress in the solid or liquid state. J Pharm Sci 2014; 103(8): 2386-95.
[http://dx.doi.org/10.1002/jps.24056] [PMID: 24942554]
[83]
Rajbhar P, Sahu AK, Gautam SS, Prasad RK, Singh V, Nair SK. Formulation and evaluation of clarithromycin co- crystals tablets dosage forms to enhance the bioavailability. Pharma Innov 2016; 5(6): 5-13.
[84]
Fernandes GJ, Rathnanand M, Kulkarni V. Mechanochemical synthesis of carvedilol cocrystals utilizing hot melt extrusion technology. J Pharm Innov 2019; 14(4): 373-81.
[http://dx.doi.org/10.1007/s12247-018-9360-y]
[85]
Sevukarajan M, Thanuja B, Sodanapalli R, Nair R. Synthesis and characterization of a pharmaceutical co-crystal: (aceclofenac: nicotinamide). J Pharm Sci Res 2011; 3(6): 1288-93.
[86]
Luedeker D, Gossmann R, Langer K, Brunklaus G. Crystal engineering of pharmaceutical co-crystals: “NMR crystallography” of Niclosamide Co-crystals. Cryst Growth Des 2016; 16(6): 3087-100.
[http://dx.doi.org/10.1021/acs.cgd.5b01619]
[87]
Pi J, Wang S, Li W, et al. A nano-cocrystal strategy to improve the dissolution rate and oral bioavailability of baicalein As J Pharma Sci 2019; 14(2): 154-64.
[http://dx.doi.org/10.1016/j.ajps.2018.04.009] [PMID: 32104447]
[88]
Pagire SK, Jadav N, Vangala VR, Whiteside B, Paradkar A. Thermodynamic investigation of carbamaze-pine-saccharin co-crystal polymorphs. J Pharm Sci 2017; 106(8): 2009-14.
[http://dx.doi.org/10.1016/j.xphs.2017.04.017] [PMID: 28435141]
[89]
Hong C, Xie Y, Yao Y, Li G, Yuan X, Shen H. A novel strategy for pharmaceutical cocrystal generation with-out knowledge of stoichiometric ratio: myricetin cocrystals and a ternary phase diagram. Pharm Res 2015; 32(1): 47-60.
[http://dx.doi.org/10.1007/s11095-014-1443-y] [PMID: 24939640]
[90]
Chadha R, Rani D, Goyal P. Supramolecular cocrystals of gliclazide: synthesis, characterization and evalua-tion. Pharm Res 2017; 34(3): 552-63.
[http://dx.doi.org/10.1007/s11095-016-2075-1] [PMID: 28035627]
[91]
Budiman A, Husni P. Shafira, Alfauziah TQ. Shafira, Alfauziah TQ. The development of glibenclamide-saccharin cocrystal tablet formulations to increase the dissolution rate of the drug. Int J Appl Pharm 2019; 11(4): 359-64.
[http://dx.doi.org/10.22159/ijap.2019v11i4.33802]
[92]
Li S, Yu T, Tian Y, McCoy CP, Jones DS, Andrews GP. Mechanochemical synthesis of pharmaceutical co-crystal suspensions via hot melt extrusion: feasibility studies and physicochemical characterization. Mol Pharm 2016; 13(9): 3054-68.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00134] [PMID: 27314248]
[93]
Kerr HE, Softley LK, Suresh K, Hodgkinson P, Evans IR. Structure and physicochemical characterization of a naproxen-picolinamide cocrystal. Acta Crystallogr C Struct Chem 2017; 73(3): 168-75.
[http://dx.doi.org/10.1107/S2053229616011980] [PMID: 28257010]
[94]
Tamkhane VV. Design and development of prulifloxacin formulations by co-crystallization technique. Int J Pharm Sci Res 2015; 6(8): 1146-55.
[95]
Patel DM, Shah HR, Patel RJ, Patel C. Preparation and characterization of lornoxicam co-crystals. World J Pharm Pharm Sci 2014; 3(6): 713-32.
[96]
Kharisma RM, Sopyan I. dissolution rate repairing of simvastatin as a new approach in co-crystallization. pharm lett 2017; 9(6): 18- 27.
[97]
Mamatha T, Sama M, Queshi HK. Development and evaluation of mesalamine- glutamine co-crystal tablets for colon specific delivery. Int. J Pharm Sci Nanotech 2017; 10(5): 3866-74.
[98]
Sopyan I, Fudholi A, Muchtaridi M, Puspitasari I. A Novel of Co-crystalization to Improve Solubility and Dissolution rate of Simvastatin. Int J Pharm Tech Res 2016; 9(6): 483-91.
[99]
Chadha R, Rani D, Goyal P. Novel cocrystals of gliclazide: characterization and evaluation. CrystEngComm 2016; 18(13): 2275-83.
[http://dx.doi.org/10.1039/C5CE02402A]
[100]
Gadade DD, Pekamwar SS, Shirsat MD. Crystal engineering of antiviral agent efavirenz for solubility enhancement. J Drug Deliv Ther 2018; 8(1): 86-91.
[http://dx.doi.org/10.22270/jddt.v8i1.1637]
[101]
Sarkar A, Rohani S. Cocrystals of acyclovir with promising physicochemical properties. J Pharm Sci 2015; 104(1): 98-105.
[http://dx.doi.org/10.1002/jps.24248] [PMID: 25407552]
[102]
Thenge RR, Patond VB, Ajmire PV, Barde LN, Mahajan NM, Tekade NP. Preparation and characterization of co-crystals of diacerein. Indones J Pharm 2017; 28(1): 34-41.
[http://dx.doi.org/10.14499/indonesianjpharm28iss1pp34]
[103]
Chadha K, Karan M, Bhalla Y, et al. Cocrystals of hesperetin: structural, pharmacokinetic, and pharmacodynamic evaluation. Cryst Growth Des 2017; 17(5): 2386-405.
[http://dx.doi.org/10.1021/acs.cgd.6b01769]
[104]
Vaghela R, Kulkarni P, Hani U, Varma V, Abhay R. Enhancing aqueous solubility of ketoprofen by fusion technique using suitable co-formers. Curr Drug Ther 2015; 9(3): 199-207.
[http://dx.doi.org/10.2174/1574885510666141209233056]
[105]
Aitipamula S, Wong ABH, Kanaujia P. Evaluating suspension formulations of theophylline cocrystals with artificial sweeteners. J Pharm Sci 2018; 107(2): 604-11.
[http://dx.doi.org/10.1016/j.xphs.2017.09.013] [PMID: 28987500]
[106]
Shete AS, Yadav AV, Murthy MS. Evaluation of performance of co crystals of mefloquine hydrochloride in tablet dosage form. Drug Dev Ind Pharm 2013; 39(5): 716-23.
[http://dx.doi.org/10.3109/03639045.2012.689764] [PMID: 22639963]
[107]
Kumar Bandaru R, Rout SR, Kenguva G, et al. Recent advances in pharmaceutical cocrystals: From bench to market. Front Pharmacol 2021; 12: 780582.
[http://dx.doi.org/10.3389/fphar.2021.780582] [PMID: 34858194]
[108]
Cedrun JL, Videla S, Burgueno M, et al. Co-crystal of tramadol-celecoxib in patients with moderate to severe acute post-surgical oral pain: a dose-finding, randomised, double-blind, placebo- and -controlled, multi-centre. Phase II Trial Clini Trials 2018; 18(2): 137-48.
[PMID: 29799099]
[109]
Kimoto K, Yamamoto M, Karashima M, et al. Pharmaceutical Cocrystal development of TAK-020 with en-hanced oral absorption. Crystals 2020; 10(3): 211.
[http://dx.doi.org/10.3390/cryst10030211]
[110]
He G, Chow PS, Tan RBH. Investigating the intermolecular interactions in concentration dependent solu-tion co-crystallizationof caffeine and p-hydroxybenzoic acid. Cryst Growth Des 2010; 10(8): 3763-9.
[http://dx.doi.org/10.1021/cg1005924]
[111]
Pritam KD. A Novel Method: Co-crystallization. Int J Pharm Innov 2013; 3(1): 19-26.
[112]
Rager T, Hilfiker R. Cocrystal formation from solvent mixtures. Cryst Growth Des 2010; 10(7): 3237-41.
[http://dx.doi.org/10.1021/cg100361y]
[113]
Aakeröy CB, Desper J, Helfrich BA. Heteromeric intermolecular interactions as synthetic tools for the formation of binary co-crystals. CrystEngComm 2004; 6(5): 19-24.
[http://dx.doi.org/10.1039/B315181F]
[114]
Goud BS, Reddy PK, Panneerselvam K, Desiraju GR. 1:1 molecular complex of 2,3,4,5,6‐pentafluoro‐trans‐cinnamic acid and 4‐ (n,n‐dimethylamino)‐trans‐cinnamic acid. Acta Crystallogr 1995; 51: 683.
[115]
Sugahara M. A technique for high-throughput protein crystallization in ionically cross-linked polysaccha-ride gel beads for X-ray diffraction experiments. PLoS One 2014; 9(4): e95017.
[http://dx.doi.org/10.1371/journal.pone.0095017] [PMID: 24740192]
[116]
Maniruzzaman M, Boateng JS, Snowden MJ, Douroumis D. A review of hot-melt extrusion: Process technology to pharmaceutical products. ISRN Pharm 2012; 2012: 1-9.
[http://dx.doi.org/10.5402/2012/436763] [PMID: 23326686]
[117]
Chaudhari PD, Uttekar PS. Melt Sonocrystalllization: A novel particle engineering technique for solubility enhancement. Int J Pharm Tech Res 2009; 1(1): 111-20.
[118]
Patil S, Kulkarni J, Mahadik K. Exploring the potential of electrospray technology in co-crystal synthesis. Ind Eng Chem Res 2016; 55(30): 8409-14.
[http://dx.doi.org/10.1021/acs.iecr.6b01938]
[119]
Radacsi N, Ambrus R, Szunyogh T, et al. Electrospray crystallization for nanosized pharmaceuticals with improved properties. Cryst Growth Des 2012; 12(7): 3514-20.
[http://dx.doi.org/10.1021/cg300285w]
[120]
Wang M, Rutledge GC, Myerson AS, Trout BL. Production and characterization of carbamazepine nano-crystals by electrospraying for continuous pharmaceutical manufacturing. J Pharm Sci 2012; 101(3): 1178-88.
[http://dx.doi.org/10.1002/jps.23024] [PMID: 22189503]
[121]
Pasquali I, Bettini R, Giordano F. Supercritical fluid technologies: An innovative approach for manipulating the solid-state of pharmaceuticals. Adv Drug Deliv Rev 2008; 60(3): 399-410.
[http://dx.doi.org/10.1016/j.addr.2007.08.030] [PMID: 17964684]
[122]
Müllers KC, Paisana M, Wahl MA. Simultaneous formation and micronization of pharmaceutical cocrystals by rapid expansion of supercritical solutions (RESS). Pharm Res 2015; 32(2): 702-13.
[http://dx.doi.org/10.1007/s11095-014-1498-9] [PMID: 25213775]
[123]
Caudra IA, Cabanas A, Cheda JA, Martinez CFJ, Pando C. Pharmaceutical co-crystals of the anti-inflammatory drugdiflunisal and nicotinamide obtained using supercritical CO2 as an antisolvent. J CO2 Utiliz 2016; 13: 29-37.
[124]
Ginty PJ, Whitaker MJ, Shakesheff KM, Howdle SM. Drug delivery goes supercritical. Mater Today 2005; 8(8): 42-8.
[http://dx.doi.org/10.1016/S1369-7021(05)71036-1]
[125]
Steed JW. The role of co-crystals in pharmaceutical design. Trends Pharmacol Sci 2013; 34(3): 185-93.
[http://dx.doi.org/10.1016/j.tips.2012.12.003] [PMID: 23347591]
[126]
Sachit G, Michael RT, Geoff GZ, Yuchuan G, Paul JK. Microfluidic approach to co-crystal screening of pharmaceutical parent compounds. Cryst Growth Des 2012; 1-12.
[127]
Gill P, Moghadam TT, Ranjbar B. Differential scanning calorimetry techniques: Applications in biology and nanoscience. J Biomol Tech 2010; 21(4): 167-93.
[PMID: 21119929]
[128]
Prasad RV, Rakesh MG, Jyotsna RM, Mangesh ST, Sapkale P, Mayur PK. Pharmaceutical co-crystallization: A review. Int J Pharm Chem Sci 2012; 1(3): 725-36.
[129]
Benmore CJ. A review of high-energy X-Ray diffraction from glasses and liquids. Int Sch Res Notices 2012; 2012: 1-19.
[130]
Manjusha ND, Priyanka AP, Sanjay DS, Priyanka SS. Advance applications of Fourier transform infrared spectroscopy. Int J Pharm Sci Rev Res 2011; 7(2): 159-66.
[131]
Pindelska E, Sokal A, Kolodziejski W. Ionized form of acetaminophen with improved compaction properties. CrystEngComm 2017; 14(7): 2389-90.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy