Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Perspective

A Perspective on the Impact of Advanced Glycation End Products in the Progression of Diabetic Nephropathy

Author(s): Afreen Khanam, Saheem Ahmad and Arbab Husain*

Volume 24, Issue 1, 2023

Published on: 24 November, 2022

Page: [2 - 6] Pages: 5

DOI: 10.2174/1389203724666221108120715

Price: $65

Abstract

In 2007, diabetes affected around 244 million people across the globe. The number of diabetics worldwide is projected to reach 370 million by 2030. With diabetes incidence reaching epidemic proportions globally, diabetic nephropathy (DN) has emerged as one of the most difficult health conditions. Although therapeutic approaches such as rigorous blood glucose and blood pressure management are successful in preventing DN, they are far from ideal, and the number of diabetic patients with endstage renal disease continues to grow. As a result, a unique treatment approach for DN should be devised. There is mounting evidence that advanced glycation end products (AGEs), senescent macro protein derivatives generated at an accelerated pace in DN, contribute to DN by generating oxidative stress. The purpose of this article is to discuss the pathophysiological significance of AGEs and their receptor in DN.

Graphical Abstract

[1]
Bikbov, B.; Purcell, C.A.; Levey, A.S.; Smith, M.; Abdoli, A.; Abebe, M.; Adebayo, O.M.; Afarideh, M.; Agarwal, S.K.; Agudelo-Botero, M.; Ahmadian, E.; Al-Aly, Z.; Alipour, V.; Almasi-Hashiani, A.; Al-Raddadi, R.M.; Alvis-Guzman, N.; Amini, S.; Andrei, T.; Andrei, C.L.; Andualem, Z.; Anjomshoa, M.; Arabloo, J.; Ashagre, A.F.; Asmelash, D.; Ataro, Z.; Atout, M.M.W.; Ayanore, M.A.; Badawi, A.; Bakhtiari, A.; Ballew, S.H.; Balouchi, A.; Banach, M.; Barquera, S.; Basu, S.; Bayih, M.T.; Bedi, N.; Bello, A.K.; Bensenor, I.M.; Bijani, A.; Boloor, A.; Borzì, A.M.; Cámera, L.A.; Carrero, J.J.; Carvalho, F.; Castro, F.; Catalá-López, F.; Chang, A.R.; Chin, K.L.; Chung, S-C.; Ci-rillo, M.; Cousin, E.; Dandona, L.; Dandona, R.; Daryani, A.; Das Gupta, R.; Demeke, F.M.; Demoz, G.T.; Desta, D.M.; Do, H.P.; Duncan, B.B.; Eftekhari, A.; Esteghamati, A.; Fatima, S.S.; Fernandes, J.C.; Fernandes, E.; Fischer, F.; Freitas, M.; Gad, M.M.; Gebremeskel, G.G.; Gebresillassie, B.M.; Geta, B.; Ghafourifard, M.; Ghajar, A.; Ghith, N.; Gill, P.S.; Ginawi, I.A.; Gupta, R.; Hafezi-Nejad, N.; Haj-Mirzaian, A.; Haj-Mirzaian, A.; Hariyani, N.; Hasan, M.; Hasankhani, M.; Hasanzadeh, A.; Hassen, H.Y.; Hay, S.I.; Heidari, B.; Herteliu, C.; Hoang, C.L.; Hosseini, M.; Hostiuc, M.; Irvani, S.S.N.; Islam, S.M.S.; Jafari Balalami, N.; James, S.L.; Jassal, S.K.; Jha, V.; Jonas, J.B.; Joukar, F.; Jozwiak, J.J.; Kabir, A.; Kahsay, A.; Kasaeian, A.; Kassa, T.D.; Kassaye, H.G.; Khader, Y.S.; Khalilov, R.; Khan, E.A.; Khan, M.S.; Khang, Y-H.; Kisa, A.; Kovesdy, C.P.; Kuate, Defo B.; Kumar, G.A.; Larsson, A.O.; Lim, L.-L.; Lopez, A.D.; Lotufo, P.A.; Majeed, A.; Malekzadeh, R.; März, W.; Masaka, A.; Meheretu, H.A.A.; Miazgowski, T.; Mirica, A.; Mirrakhimov, E.M.; Mithra, P.; Moazen, B.; Mo-hammad, D.K.; Mohammadpourhodki, R.; Mohammed, S.; Mokdad, A.H.; Morales, L.; Moreno Velasquez, I.; Mousavi, S.M.; Mukho-padhyay, S.; Nachega, J.B.; Nadkarni, G.N.; Nansseu, J.R.; Natarajan, G.; Nazari, J.; Neal, B.; Negoi, R.I.; Nguyen, C.T.; Nikbakhsh, R.; Noubiap, J.J.; Nowak, C.; Olagunju, A.T.; Ortiz, A.; Owolabi, M.O.; Palladino, R.; Pathak, M.; Poustchi, H.; Prakash, S.; Prasad, N.; Rafiei, A.; Raju, S.B.; Ramezanzadeh, K.; Rawaf, S.; Rawaf, D.L.; Rawal, L.; Reiner, R.C. Jr.; Rezapour, A.; Ribeiro, D.C.; Roever, L.; Rothen-bacher, D.; Rwegerera, G.M.; Saadatagah, S.; Safari, S.; Sahle, B.W.; Salem, H.; Sanabria, J.; Santos, I.S.; Sarveazad, A.; Sawhney, M.; Schaeffner, E.; Schmidt, M.I.; Schutte, A.E.; Sepanlou, S.G.; Shaikh, M.A.; Sharafi, Z.; Sharif, M.; Sharifi, A.; Silva, D.A.S.; Singh, J.A.; Singh, N.P.; Sisay, M.M.M.; Soheili, A.; Sutradhar, I.; Teklehaimanot, B.F.; Tesfay, B.; Teshome, G.F.; Thakur, J.S.; Tonelli, M.; Tran, K.B.; Tran, B.X.; Tran Ngoc, C.; Ullah, I.; Valdez, P.R.; Varughese, S.; Vos, T.; Vu, L.G.; Waheed, Y.; Werdecker, A.; Wolde, H.F.; Wondmieneh, A.B.; Wulf Hanson, S.; Yamada, T.; Yeshaw, Y.; Yonemoto, N.; Yusefzadeh, H.; Zaidi, Z.; Zaki, L.; Zaman, S.B.; Zamora, N.; Zarghi, A.; Zewdie, K.A.; Ärnlöv, J.; Coresh, J.; Perico, N.; Remuzzi, G.; Murray, C.J.L.; Vos, T. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet, 2020, 395(10225), 709-733.
[http://dx.doi.org/10.1016/S0140-6736(20)30045-3] [PMID: 32061315]
[2]
Husain, A.; Farooqui, A.; Khanam, A.; Sharma, S.; Mahfooz, S.; Shamim, A.; Akhter, F.; Alatar, A.A.; Faisal, M.; Ahmad, S. Physico-chemical characterization of C-phycocyanin from Plectonema sp. and elucidation of its bioactive potential through in silico approach. Cell. Mol. Biol., 2022, 67(4), 68-82.
[http://dx.doi.org/10.14715/cmb/2021.67.4.8] [PMID: 35809301]
[3]
Gupta, R.; Sahu, M.; Srivastava, D.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Post-translational modifications: Regulators of neurodegenera-tive proteinopathies. Ageing Res. Rev., 2021, 68, 101336.
[http://dx.doi.org/10.1016/j.arr.2021.101336] [PMID: 33775891]
[4]
Niforou, K.; Cheimonidou, C.; Trougakos, I.P. Molecular chaperones and proteostasis regulation during redox imbalance. Redox Biol., 2014, 2, 323-332.
[http://dx.doi.org/10.1016/j.redox.2014.01.017] [PMID: 24563850]
[5]
Kumar Pasupulati, A.; Chitra, P.S.; Reddy, G.B. Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy. Biomol. Concepts, 2016, 7(5-6), 293-309.
[http://dx.doi.org/10.1515/bmc-2016-0021] [PMID: 27816946]
[6]
Briceno Noriega, D.; Zenker, H.E.; Croes, C.A.; Ewaz, A.; Ruinemans-Koerts, J.; Savelkoul, H.F.J.; van Neerven, R.J.J.; Teodorowicz, M. Receptor mediated effects of advanced glycation end products (AGEs) on innate and adaptative immunity: Relevance for food allergy. Nutrients, 2022, 14(2), 371.
[http://dx.doi.org/10.3390/nu14020371] [PMID: 35057553]
[7]
Rowan, S.; Bejarano, E.; Taylor, A. Mechanistic targeting of advanced glycation end-products in age-related diseases. Biochim. Biophys. Acta Mol. Basis Dis., 2018, 1864(12), 3631-3643.
[http://dx.doi.org/10.1016/j.bbadis.2018.08.036] [PMID: 30279139]
[8]
Moldogazieva, N.T.; Mokhosoev, I.M.; Mel’nikova, T.I.; Porozov, Y.B.; Terentiev, A.A. Oxidative stress and advanced lipoxidation and glycation end products (ALEs and AGEs) in aging and age-related diseases. Oxid. Med. Cell. Longev., 2019, 2019, 1-14.
[http://dx.doi.org/10.1155/2019/3085756] [PMID: 31485289]
[9]
Papadopoulou-Marketou, N.; Chrousos, G.P.; Kanaka-Gantenbein, C. Diabetic nephropathy in type 1 diabetes: A review of early natural history, pathogenesis, and diagnosis. Diabetes Metab. Res. Rev., 2017, 33(2), e2841.
[http://dx.doi.org/10.1002/dmrr.2841] [PMID: 27457509]
[10]
Gheith, O.; Farouk, N.; Nampoory, N.; Halim, M.A.; Al-Otaibi, T. Diabetic kidney disease: Worldwide difference of prevalence and risk factors. J. Nephropharmacol., 2015, 5(1), 49-56.
[PMID: 28197499]
[11]
Anders, H.J.; Huber, T.B.; Isermann, B.; Schiffer, M. CKD in diabetes: Diabetic kidney disease versus nondiabetic kidney disease. Nat. Rev. Nephrol., 2018, 14(6), 361-377.
[http://dx.doi.org/10.1038/s41581-018-0001-y] [PMID: 29654297]
[12]
Amann, K.; Benz, K. Structural renal changes in obesity and diabetes. Semin. Nephrol., 2013, 33(1), 23-33.
[http://dx.doi.org/10.1016/j.semnephrol.2012.12.003] [PMID: 23374891]
[13]
Habib, S.L. Kidney atrophy vs. hypertrophy in diabetes: Which cells are involved. Cell Cycle, 2018, 17(14), 1683-1687.
[http://dx.doi.org/10.1080/15384101.2018.1496744] [PMID: 29995580]
[14]
Tan, A.L.Y.; Forbes, J.M.; Cooper, M.E. AGE, RAGE, and ROS in diabetic nephropathy. Semin. Nephrol., 2007, 27(2), 130-143.
[http://dx.doi.org/10.1016/j.semnephrol.2007.01.006] [PMID: 17418682]
[15]
Yamagishi, S.; Nakamura, N.; Suematsu, M.; Kaseda, K.; Matsui, T. Advanced glycation end products: A molecular target for vascular complications in diabetes. Mol. Med., 2015, 21(S1)(Suppl. 1), S32-S40.
[http://dx.doi.org/10.2119/molmed.2015.00067] [PMID: 26605646]
[16]
Ando, R.; Ueda, S.; Yamagishi, S.; Miyazaki, H.; Kaida, Y.; Kaifu, K.; Yokoro, M.; Nakayama, Y.; Obara, N.; Fukami, K.; Takeuchi, M.; Okuda, S. Involvement of advanced glycation end product-induced asymmetric dimethylarginine generation in endothelial dysfunction. Diab. Vasc. Dis. Res., 2013, 10(5), 436-441.
[http://dx.doi.org/10.1177/1479164113486662] [PMID: 23766377]
[17]
Khanam, A.; Ahmad, S.; Husain, A.; Rehman, S.; Farooqui, A.; Yusuf, M.A. Glycation and antioxidants: Hand in the glove of anti-glycation and natural antioxidants. Curr. Protein Pept. Sci., 2020, 21(9), 899-915.
[http://dx.doi.org/10.2174/1389203721666200210103304] [PMID: 32039678]
[18]
Najafian, B.; Alpers, C.E.; Fogo, A.B. Pathology of human diabetic nephropathy. Contrib. Nephrol., 2011, 170, 36-47.
[http://dx.doi.org/10.1159/000324942] [PMID: 21659756]
[19]
Bansode, S.; Bashtanova, U.; Li, R.; Clark, J.; Müller, K.H.; Puszkarska, A.; Goldberga, I.; Chetwood, H.H.; Reid, D.G.; Colwell, L.J.; Skepper, J.N.; Shanahan, C.M.; Schitter, G.; Mesquida, P.; Duer, M.J. Glycation changes molecular organization and charge distribution in type I collagen fibrils. Sci. Rep., 2020, 10(1), 3397.
[http://dx.doi.org/10.1038/s41598-020-60250-9] [PMID: 32099005]
[20]
Khanam, A.; Alouffi, S.; Rehman, S.; Ansari, I.A.; Shahab, U.; Ahmad, S. An in vitro approach to unveil the structural alterations in D -ribose induced glycated fibrinogen. J. Biomol. Struct. Dyn., 2021, 39(14), 5209-5223.
[http://dx.doi.org/10.1080/07391102.2020.1802339] [PMID: 32772827]
[21]
Hudson, D.M.; Archer, M.; King, K.B.; Eyre, D.R. Glycation of type I collagen selectively targets the same helical domain lysine sites as lysyl oxidase–mediated cross-linking. J. Biol. Chem., 2018, 293(40), 15620-15627.
[http://dx.doi.org/10.1074/jbc.RA118.004829] [PMID: 30143533]
[22]
Xu, J.; Shi, G.P. Vascular wall extracellular matrix proteins and vascular diseases. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(11), 2106-2119.
[http://dx.doi.org/10.1016/j.bbadis.2014.07.008] [PMID: 25045854]
[23]
Garcia-Fernandez, N.; Jacobs-Cachá, C.; Mora-Gutiérrez, J.M.; Vergara, A.; Orbe, J.; Soler, M.J. Matrix metalloproteinases in diabetic kidney disease. J. Clin. Med., 2020, 9(2), 472.
[http://dx.doi.org/10.3390/jcm9020472] [PMID: 32046355]
[24]
Marshall, C.B. Rethinking glomerular basement membrane thickening in diabetic nephropathy: Adaptive or pathogenic? Am. J. Physiol. Renal Physiol., 2016, 311(5), F831-F843.
[http://dx.doi.org/10.1152/ajprenal.00313.2016] [PMID: 27582102]
[25]
Coughlan, M.T.; Forbes, J.M.; Cooper, M.E. Role of the AGE crosslink breaker, alagebrium, as a renoprotective agent in diabetes. Kidney Int., 2007, 72(106), S54-S60.
[http://dx.doi.org/10.1038/sj.ki.5002387] [PMID: 17653212]
[26]
Yin, Q.; Liu, H. Connective tissue growth factor and renal fibrosis. Renal Fibrosis: Mech; Therap, 2019, pp. 365-380.
[27]
Husain, A.; Alouffi, S.; Khanam, A.; Akasha, R.; Khan, S.; Khan, M. Non-inhibitory effects of the potent antioxidant from sp. on the gly-cation reaction. Rev. Rom. Med. Lab., 2022, 30(2), 199-213.
[28]
Yan, S.F.; Ramasamy, R.; Schmidt, A.M. The RAGE Axis. Circ. Res., 2010, 106(5), 842-853.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.212217] [PMID: 20299674]
[29]
Sun, L.; Kanwar, Y.S. Relevance of TNF-α in the context of other inflammatory cytokines in the progression of diabetic nephropathy. Kidney Int., 2015, 88(4), 662-665.
[http://dx.doi.org/10.1038/ki.2015.250] [PMID: 26422621]
[30]
Cannizzaro, L.; Rossoni, G.; Savi, F.; Altomare, A.; Marinello, C.; Saethang, T.; Carini, M.; Payne, D.M.; Pisitkun, T.; Aldini, G.; Leelaha-vanichkul, A. Regulatory landscape of AGE-RAGE-oxidative stress axis and its modulation by PPARγ activation in high fructose diet-induced metabolic syndrome. Nutr. Metab. (Lond.), 2017, 14(1), 5.
[http://dx.doi.org/10.1186/s12986-016-0149-z] [PMID: 28101123]
[31]
Tobon-Velasco. C Receptor for AGEs (RAGE) as mediator of NF-kB pathway activation in neuroinflammation and oxidative stress. CNS Neurol. Disord. Drug Targets, 2014, 13(9), 1615-1626.
[32]
Ramasamy, R.; Shekhtman, A.; Schmidt, A.M. The RAGE/DI-] APH1 signaling axis & implications for the pathogenesis of diabetic complications. Int. J. Mol. Sci., 2022, 23(9), 4579.
[http://dx.doi.org/10.3390/ijms23094579] [PMID: 35562970]
[33]
Sanajou, D.; Ghorbani Haghjo, A.; Argani, H.; Aslani, S. AGE-RAGE axis blockade in diabetic nephropathy: Current status and future directions. Eur. J. Pharmacol., 2018, 833, 158-164.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.001] [PMID: 29883668]
[34]
Alouffi, S.; Khanam, A.; Husain, A.; Akasha, R.; Rabbani, G.; Ahmad, S. d-ribose-mediated glycation of fibrinogen: Role in the induction of adaptive immune response. Chem. Biol. Interact., 2022, 367, 110147.
[http://dx.doi.org/10.1016/j.cbi.2022.110147] [PMID: 36108717]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy