Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Review Article

Ethnopharmacology, Phytochemistry, and Pharmacology of Pyrethrum tatsienense (Bureau & Franch.) Ling ex C. Shih: A Comprehensive Review

Author(s): Guang Wu, Yang Guan, Jie Chen, Mei-Ning Zhu, Yong-Wei Qiu, Cai-Qing Zhu, Yong-Zhong Wu, Guo-Yue Zhong*, Qin-Ge Ma* and Rong-Rui Wei*

Volume 26, Issue 10, 2023

Published on: 27 December, 2022

Page: [1822 - 1835] Pages: 14

DOI: 10.2174/1386207326666221108105221

Price: $65

Abstract

Background: Pyrethrum tatsienense (Bureau & Franch.) Ling ex C. Shih (PTLCS) belongs to the family Compositae, which is a perennial medicinal plant mainly distributed in the Qinghai-Tibet Plateau of China. This review provides a comprehensive summary of the ethnopharmacology, phytochemistry, and pharmacology of PTLCS. This review offers valuable references and guidance for researching PTLCS in depth.

Methods: The related references of PTLCS were retrieved from an online database, such as Web of Science, Google Scholar, SciFinder, PubMed, SpringLink, Elsevier, Willy, CNKI, and so on.

Results: PTLCS is widely reported for treating headaches, head injuries, traumatic injuries, anabrosis, impetigo, hepatitis, and other diseases in the medical field. Phytochemical research revealed that this plant contained flavonoid aglycones, flavonoid glycosides, xanthones, triterpenoids, coumarins, polyacetylenes, volatile oils, and other compounds. Meanwhile, PTLCS exhibited extensive pharmacological activities including anti-cardiac ischemia, anti-hypoxia, hepatoprotective, anti- inflammatory and analgesic, and antioxidant activities.

Conclusions: PTLCS is widely used as a Tibetan medicine, which has a variety of chemicals with diverse bioactivities. Therefore, further studies are necessary to perform on the PTLCS to assay biological activities, discover their bioactive constituents, and reveal pharmacological mechanisms. This review may supply an important theoretical basis and valuable reference for in-depth research and exploitations of PTLCS.

Graphical Abstract

[1]
Lin, C.Z.; Zhu, C.C.; Beiri, Z.R.D.W.; Hu, M.; Kangsa, S.L.Q.M. Study on chemical constituents from Tibetan herb Pyrethrumta tsienense. Trad. Chin. Drug Res. Clin. Pharm., 2014, 25, 192-196.
[2]
Xia, Y.Y.; Zhu, C.C.; Lin, C.Z.; He, Y.Y.; Kangsa, S.L.Q.M.; Beiri, Z.R.D.W. Identification of major constituents by UPLC-Triple TOF MS/MS and the network pharmacology study of the total flavonoids from Tibetan herbal medicine Pyrethrum tatsienense. Zhong Yao Cai, 2018, 41, 1609-1614.
[3]
Zhang, D.Y.; Zhang, L.; Xu, H.Y. Study on extraction of total flavonoids of Pyrethrum tatsienense (Bur. et Franch.). Ling. Lishizhen Med. Mater. Med. Res., 2007, 18, 440-441.
[4]
Zhang, Y.M.; Du, X.L.; Zhong, G.Y. Research progress of Tibetan medicine of Pyrethrum tatsienense (Bur. et Franch.) ling. Chin. J. Exp. Trad. Med. Formulae, 2015, 21, 222-225.
[5]
Zhou, L.S.; Zhou, L.; Yue, Q.H.; Chen, Y.L.; Ye, F.; Zhang, Y.; Fan, G. Quality standard of Pyrethrum tatsienense (Bur. et Franch.) ling. World Sci. Technol. Mod. Trad. Chin. Med. Mater. Med., 2014, 16, 136-140.
[6]
Lu, Q.X. Studies on the chemical constituents from the stem of Pyrethrum tatsienense and their bioactivities. Master’s Thesis South Central Univ. Natl.=, 2020, 1-10.
[7]
Lin, C.Z.; Chen, D.J.; Beiri, Z.R.D.W.; Hu, M.; Li, X.H.; Zhu, C.C.; Kangsa, S.L.Q.M. Protective effect of Pyrethrum tatsienense (Bur. et Franch.) Ling on acute hepatic injury induced by D-galactosamine in rats. Pharmacol. Clin. Chin. Mater. Med., 2011, 27, 79-81.
[8]
Zhang, L.; Zhang, D.Y.; Liu, Y.L. Determination of total flavonoids and luteolin in traditional Tibetan drug Pyrethrum tatsienense (Bur. et Franch.). Ling. Yaowu Fenxi Zazhi, 2008, 28, 855-858.
[9]
Shao, L.; Huang, W.H.; Zhang, C.F.; Wang, L.; Zhang, M.; Wang, Z.T. Study on chemical constituents from stem of Dendrobium aphyl-lum. Zhongguo Zhongyao Zazhi, 2008, 33(14), 1693-1695.
[PMID: 18841768]
[10]
Tao, L.; Huang, J.; Zhao, Y.; Li, C. Chemical constituents in Buddleja albiflora. Zhongguo Zhongyao Zazhi, 2009, 34(23), 3043-3046.
[PMID: 20222420]
[11]
Chen, L. Du Li-jun; Ding, Y.; Xing, D.M.; Wang, W. Studies on chemical constituents from flowers of Apocynum venetum. Zhongguo Zhongyao Zazhi, 2005, 30(17), 1340-1342.
[PMID: 16323543]
[12]
Lin, J.B.; Zhao, L.C.; Guo, J.Z.; Liu, L.; Kuang, Y.; Yang, S.X. Chemical constituents from aerial parts of Fagopyrum dibotrys. Chin. Tradit. Herbal Drugs, 2016, 47, 1841-1844.
[13]
Xu, K.J.; Bai, Y.A.P.; Dawa, Z.M.; Wang, M.K.; Ding, L.S. Study on chemical constituents of Tibetan herb Pyrethrumta tsienense. Lishizhen Med. Mater. Med. Res, 2010, 21, 3018-3019.
[14]
Zhang, G.Y.; Zeng, T. Study on chemical constituents of Polygonum hydropiper Linn. Linchan Huaxue Yu Gongye, 2005, 25, 21-25.
[15]
Xie, T.; Liu, J.; Liang, J.Y.; Zhang, Z.M.; Wei, X.L. Acetylenes and flavonoids from Artemisia scoparia II. Chin. J. Nat. Med., 2006, 3, 86-89.
[16]
Lyu, Y.L.; Zhou, H.F.; Yang, J.; Wang, F.X.; Sun, F.; Li, J.Y. Biological activities underlying the therapeutic effect of quercetin on inflam-matory bowel disease. Mediators Inflamm., 2022, 2022, 1-8.
[http://dx.doi.org/10.1155/2022/5665778] [PMID: 35915741]
[17]
Yang, F.; Liu, W. Tricin attenuates the progression of LPS-induced severe pneumonia in bronchial epithelial cells by regulating AKT and MAPK signaling pathways. Allergol. Immunopathol. (Madr.), 2022, 50(3), 113-118.
[http://dx.doi.org/10.15586/aei.v50i3.587] [PMID: 35527664]
[18]
Colombo, R.; Yariwake, J.H.; Queiroz, E.F.; Ndjoko, K.; Hostettmann, K. On-line identification of minor flavones from sugarcane juice by LC/UV/MS and post-column derivatization. J. Braz. Chem. Soc., 2009, 20(9), 1574-1579.
[http://dx.doi.org/10.1590/S0103-50532009000900003]
[19]
Stochmal, A.; Simonet, A.M.; Macias, F.A.; Oleszek, W. Alfalfa (Medicago sativa L.) flavonoids. 2. Tricin and chrysoeriol glycosides from aerial parts. J. Agric. Food Chem., 2001, 49(11), 5310-5314.
[http://dx.doi.org/10.1021/jf010600x] [PMID: 11714321]
[20]
Liu, Y.Y.; Yang, X.H.; Chen, D.; Yang, J.Z. Isolation and structure identification of flavonoids from leaves of Zea mays L. J. Jilin Univ. Med. Edit., 2012, 38, 67-69.
[21]
Huang, Y.P.; Liu, H.X.; Song, J.L.; Wu, J.P.; Yuan, P.; Qiu, S.X. Chemical constituents from Mitrasacme pygmaea. Zhong Yao Cai, 2016, 39(2), 315-317.
[PMID: 30080365]
[22]
Zhou, W.; Wang, X.; Fu, S.H.; Sun, X.; Chen, S.Y.; Lan, Y.N.; Han, Y.; Li, Y.J. Chemical constituents of Inula cappa. J. Chin. Pharm. Sci., 2017, 52, 25-30.
[23]
Yang, A.M.; Liu, X.; Lu, R.H.; Shi, Y.P. Isolation and structural elucidation of flavonoid from Pyrethrum tatsienense. Chin. Tradit. Herbal Drugs, 2006, 37, 25-27.
[24]
Yan, J.; Yan, Y.M.; Wei, Y.F.; Sun, J.; Long, F. Chemical constituents of aerial part of Bupleunum malconense. Chin. Tradit. Herbal Drugs, 2017, 48, 1282-1285.
[25]
Shi, S.; Zhou, H.; Zhang, Y.; Huang, K.; Liu, S. Chemical constituents from Neo-Taraxacum siphonathum. Zhongguo Zhongyao Zazhi, 2009, 34(8), 1002-1004.
[PMID: 19639786]
[26]
Yang, M.X.; Liang, Y.G.; Chen, H.R.; Huang, Y.F.; Gong, H.G. Isolation and identification of the chemical constituents in ethyl acetate extracts of wild Aquilaria sinensis leaves. Mod. Food Sci. Tech, 2015, 31, 128-132.
[27]
Zhang, G.J.; Li, N.; Xiang, Y.J.; Bolati, M.K.B.L.; Wang, J.H.; Li, X.; Jia, X.G. Isolation and identification of chemical constituents from aerial part of Alhagi pseudalhagi (M.B.). Zhongguo Xiandai Zhongyao, 2010, 12, 16-19.
[28]
Lee, S.S.; Baek, N.I.; Baek, Y.S.; Chung, D.K.; Song, M.C.; Bang, M.H. New flavonolignan glycosides from the aerial parts of Zizania latifolia. Molecules, 2015, 20(4), 5616-5624.
[http://dx.doi.org/10.3390/molecules20045616] [PMID: 25830790]
[29]
Huo, C.H.; Zhao, Y.Y.; Liang, H.; Lin, W.H. Studies on chemical constituents in herbs of Acanthus ilicifolius. Zhongguo Zhongyao Zazhi, 2005, 30(10), 763-765.
[PMID: 16075716]
[30]
de Beer, D.; Joubert, E.; Malherbe, C.J.; Jacobus Brand, D. Use of countercurrent chromatography during isolation of 6-hydroxyluteolin-7-O-β-glucoside, a major antioxidant of Athrixia phylicoides. J. Chromatogr. A, 2011, 1218(36), 6179-6186.
[http://dx.doi.org/10.1016/j.chroma.2010.12.096] [PMID: 21236437]
[31]
Nan, X.; Jia, W.; Zhang, Y.; Wang, H.; Lin, Z.; Chen, S. An on-line detection system for screening small molecule inhibitors of α-amylase and α-glucosidase in Prunus mume. J. Chromatogr. A, 2022, 1663, 462754.
[http://dx.doi.org/10.1016/j.chroma.2021.462754] [PMID: 34954531]
[32]
Oda, Y.; Nakashima, S.; Kondo, E.; Nakamura, S.; Yano, M.; Kubota, C.; Masumoto, Y.; Hirao, M.; Ogawa, Y.; Matsuda, H. Comparison of lawsone contents among Lawsonia inermis plant parts and neurite outgrowth accelerators from branches. J. Nat. Med., 2018, 72(4), 890-896.
[http://dx.doi.org/10.1007/s11418-018-1221-y] [PMID: 29777444]
[33]
Wei, R.; Ma, Q.; Zhong, G.; Sang, Z. Hepatoprotective xanthones from the aerial parts of Pyrethrum tatsienense. Chem. Nat. Compd., 2020, 56(2), 224-227.
[http://dx.doi.org/10.1007/s10600-020-02993-5]
[34]
Ibrahim, S.R.M.; Abdallah, H.M.; El-Halawany, A.M.; Radwan, M.F.; Shehata, I.A.; Al-Harshany, E.M.; Zayed, M.F.; Mohamed, G.A. Garcixanthones B and C, new xanthones from the pericarps of Garcinia mangostana and their cytotoxic activity. Phytochem. Lett., 2018, 25, 12-16.
[http://dx.doi.org/10.1016/j.phytol.2018.03.009]
[35]
Chukaew, A.; Saithong, S.; Chusri, S.; Limsuwan, S.; Watanapokasin, R.; Voravuthikunchai, S.P.; Chakthong, S. Cytotoxic xanthones from the roots of Mesua ferrea L. Phytochemistry, 2019, 157, 64-70.
[http://dx.doi.org/10.1016/j.phytochem.2018.10.008] [PMID: 30368220]
[36]
Laopian, F.; Kaennakam, S.; Rassamee, K.; Siripong, P.; Tip-pyang, S. Calaxanthones A-C, three new xanthones from the roots of Calophyllum calaba and the cytotoxicity. Nat. Prod. Res., 2019, 33(11), 1584-1590.
[http://dx.doi.org/10.1080/14786419.2018.1425849] [PMID: 29334257]
[37]
Yang, A.M.; Liu, X.; Lu, R.H.; Shi, Y.P. Triterpenoids from Pyrethrum tatsienense. Pharmazie, 2006, 61(1), 70-73.
[PMID: 16454211]
[38]
Ukiya, M.; Akihisa, T.; Yasukawa, K.; Kasahara, Y.; Kimura, Y.; Koike, K.; Nikaido, T.; Takido, M. Constituents of compositae plants. 2. Triterpene diols, triols, and their 3-o-fatty acid esters from edible chrysanthemum flower extract and their anti-inflammatory effects. J. Agric. Food Chem., 2001, 49(7), 3187-3197.
[http://dx.doi.org/10.1021/jf010164e] [PMID: 11453750]
[39]
Mahato, S.B.; Kundu, A.P. 13C NMR Spectra of pentacyclic triterpenoids-A compilation and some salient features. Phytochemistry, 1994, 37(6), 1517-1575.
[http://dx.doi.org/10.1016/S0031-9422(00)89569-2]
[40]
Seo, S.; Tomita, Y.; Tori, K. Biosynthesis of oleanene- and ursene-type triterpenes from [4-13C]mevalonolactone and sodium [1,2-13C2]acetate in tissue cultures of Isodon japonicus Hara. J. Am. Chem. Soc., 1981, 103(8), 2075-2080.
[http://dx.doi.org/10.1021/ja00398a034]
[41]
Reynolds, W.F.; McLean, S.; Poplawski, J.; Enriquez, R.G.; Escobar, L.I.; Leon, I. Total assignment of 13C and 1H spectra of three isomer-ic triterpenol derivatives by 2D NMR: An investigation of the potential utility of 1H chemical shifts in structural investigations of complex natural products. Tetrahedron, 1986, 42(13), 3419-3428.
[http://dx.doi.org/10.1016/S0040-4020(01)87309-9]
[42]
Guo, X.M.; Zhang, L.; Quan, S.C. Studies on the chemical constituents of Sambucus williamsii. Chin. Tradit. Herbal Drugs, 1998, 29, 727-729.
[43]
Kim, K.H.; Choi, S.U.; Kim, C.S.; Lee, K.R. Cytotoxic steroids from the trunk of Berberis koreana. Biosci. Biotechnol. Biochem., 2012, 76(4), 825-827.
[http://dx.doi.org/10.1271/bbb.110751] [PMID: 22484929]
[44]
Chen, Y.; Du, Y.; Teng, H.D.; Nian, H.F.; Lu, Q.X.; Yang, G.Z. Study on the chemical constituents from Pyrethrum tatsienense. J. South-Central Univ. Natl., 2020, 39, 483-487.
[45]
Duan, C.H.; Shi, B.J.; Wu, L.H.; Chou, G.X.; Wang, Z.T. Chemical constituents of Gentiana waltonii. Chin. J. Nat. Med., 2007, 5, 417-420.
[46]
Qian, Z.M.; Li, H.J.; Qi, F.F.; He, Q.H.; Li, P. Studies on chemical constituents of Lonicera syringantha Maxim. Chung Kuo Yao Hsueh Tsa Chih, 2007, 15, 1132-1134.
[47]
Yoo, A.; Narayan, V.P.; Hong, E.Y.; Whang, W.K.; Park, T. Scopolin ameliorates high-fat diet induced hepatic steatosis in mice: Potential involvement of SIRT1-mediated signaling cascades in the liver. Sci. Rep., 2017, 7(1), 2251.
[http://dx.doi.org/10.1038/s41598-017-02416-6] [PMID: 28533555]
[48]
Ivarsen, E.; Fretté, X.C.; Christensen, K.B.; Christensen, L.P.; Engberg, R.M.; Grevsen, K.; Kjaer, A. Bioassay-guided chromatographic isolation and identification of antibacterial compounds from Artemisia annua L. that inhibit clostridium perfringens growth. J. AOAC Int., 2014, 97(5), 1282-1290.
[http://dx.doi.org/10.5740/jaoacint.SGEIvarsen] [PMID: 25902977]
[49]
Ragasa, C.Y.; Co, A.L.K.C.; Rideout, J.A. Antifungal metabolites from Blumea balsamifera. Nat. Prod. Res., 2005, 19(3), 231-237.
[http://dx.doi.org/10.1080/14786410410001709773] [PMID: 15702636]
[50]
Mukai, C.; Miyakoshi, N.; Hanaoka, M. First total synthesis of (-)-ichthyothereol and its acetate. J. Org. Chem., 2001, 66(17), 5875-5880.
[http://dx.doi.org/10.1021/jo0104532] [PMID: 11511265]
[51]
Drake, D.; Lam, J. Polyacetylenes of Artemisia vulgaris. Phytochemistry, 1974, 13(2), 455-457.
[http://dx.doi.org/10.1016/S0031-9422(00)91232-9]
[52]
Xie, B.; Gu, J.; Tan, R.; Cao, Y.H. Analysis of volatile oils of Tibetan medicine Pyrethrum tatsienense by GC-MS. China Pharm., 2014, 25, 260-261.
[53]
Yang, A.M.; Lu, R.H.; Shi, Y.P. Chemical constituents from Pyrethrum tatsienense. Zhong Yao Cai, 2007, 30(5), 546-548.
[PMID: 17727058]
[54]
Zhang, J.M.; Fu, S.W.; Zhao, J.; Zhang, J.H.; Shi, X.F.; Guo, Y.L. Research progress of chemical constituents, pharmacological activities and quality control of Tibetan medicine Pyrethrum tatsienense. Yaowu Fenxi Zazhi, 2012, 32, 2089-2093.
[55]
Yan, H.Y.; Li, Y.F.; Qian, W. Effects of alcohol-extract of Pyrethrum tatsienense on hemodynamics of rats with myocardial ischemia inju-ry. Huaxi Yaoxue Zazhi, 2011, 26, 354-355.
[56]
Yan, H.Y.; Li, Y.F.; Qian, W. Study on the anti-hypoxia effect of Tibetan medicine Pyrethrum tatsienense. Anhui Nongye Kexue, 2011, 39, 12151-12153.
[57]
Han, S.; Wang, X.; Cui, B.; Sun, H.; Chen, H.; Ferreira, D.; Li, S.; Hamann, M.T. Hepatoprotective glucosyloxybenzyl 2-hydroxy-2-isobutylsuccinates from Pleione yunnanensis. J. Nat. Prod., 2021, 84(3), 738-749.
[http://dx.doi.org/10.1021/acs.jnatprod.0c01117] [PMID: 33606538]
[58]
Zhou, H.J. Chinese National Medicine; People's Medical Publishing House: Bejing, 1990, Vol. 1, p. 175.
[59]
Chen, Q. Methodology of pharmacology of traditional Chinese medicine; People's Medical Publishing House, 1993, pp. 377-378.
[60]
Zhang, L.; Zhang, D.Y.; Dun, Z.; Liu, Y.L. Primary exploration to anti-inflammatory and analgesic effects of Pyrethrum tatsienense. J. Jiangxi Univ. Trad. Chin. Med, 2009, 21, 61-62.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy