Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Drug and Gene Therapy for Treating Variant Transthyretin Amyloidosis (ATTRv) Neuropathy

Author(s): Efthimios Dardiotis and Theodoros Kyriakides*

Volume 21, Issue 3, 2023

Published on: 17 January, 2023

Page: [471 - 481] Pages: 11

DOI: 10.2174/1570159X21666221108094736

Price: $65

Abstract

Variant Transthyretin Amyloidosis (ATTRv) neuropathy is an adult-onset, autosomal dominant, lethal, multisystemic disease due to the deposition of mutated transthyretin (TTR) in various organs, commonly involving the peripheral nerves and the heart. Circulating TTR tetramers are unstable due to the presence of mutated TTR and dissociate into monomers, which misfold and form amyloid fibrils. Although there are more than 140 mutations in the TTR gene, the p.Val50Met mutation is by far the commonest. In the typical, early-onset cases, it presents with a small sensory fibre and autonomic, length-dependent, axonal neuropathy, while in late-onset cases, it presents with a lengthdependent sensorimotor axonal neuropathy involving all fibre sizes. Treatment is now available and includes TTR stabilizers, TTR amyloid removal as well as gene silencing, while gene editing therapies are on the way. Its timely diagnosis is of paramount importance for a better prognosis.

Graphical Abstract

[1]
Planté-Bordeneuve, V.; Said, G. Familial amyloid polyneuropathy. Lancet Neurol., 2011, 10(12), 1086-1097.
[http://dx.doi.org/10.1016/S1474-4422(11)70246-0] [PMID: 22094129]
[2]
Tsuzuki, T.; Mita, S.; Maeda, S.; Araki, S.; Shimada, K. Structure of the human prealbumin gene. J. Biol. Chem., 1985, 260(22), 12224-12227.
[http://dx.doi.org/10.1016/S0021-9258(17)39013-0] [PMID: 2995367]
[3]
Liz, M.A.; Coelho, T.; Bellotti, V.; Fernandez-Arias, M.I.; Mallaina, P.; Obici, L. a narrative review of the role of transthyretin in health and disease. Neurol. Ther., 2020, 9(2), 395-402.
[http://dx.doi.org/10.1007/s40120-020-00217-0] [PMID: 33001386]
[4]
Magalhães, J.; Eira, J.; Liz, M.A. The role of transthyretin in cell biology: impact on human pathophysiology. Cell. Mol. Life Sci., 2021, 78(17-18), 6105-6117.
[http://dx.doi.org/10.1007/s00018-021-03899-3] [PMID: 34297165]
[5]
Saraiva, M.J.M.; Birken, S.; Costa, P.P.; Goodman, D.S. Family studies of the genetic abnormality in transthyretin (prealbumin) in Portuguese patients with familial amyloidotic polyneuropathy. Ann. N. Y. Acad. Sci., 1984, 435, 86-100.
[http://dx.doi.org/10.1111/j.1749-6632.1984.tb13742.x] [PMID: 6099706]
[6]
Andreou, S.; Panayiotou, E.; Michailidou, K.; Pirpa, P.; Hadjisavvas, A.; El Salloukh, A.; Barnes, D.; Antoniou, A.; Agathangelou, P.; Papastavrou, K.; Christodoulou, K.; Tanteles, G.A.; Kyriakides, T. Epidemiology of ATTRV30M neuropathy in Cyprus and the modifier effect of complement C1q on the age of disease onset. Amyloid, 2018, 25(4), 220-226.
[http://dx.doi.org/10.1080/13506129.2018.1534731] [PMID: 30572722]
[7]
Schmidt, H.H.; Waddington-Cruz, M.; Botteman, M.F.; Carter, J.A.; Chopra, A.S.; Hopps, M.; Stewart, M.; Fallet, S.; Amass, L. Estimating the global prevalence of transthyretin familial amyloid polyneuropathy. Muscle Nerve, 2018, 57(5), 829-837.
[http://dx.doi.org/10.1002/mus.26034] [PMID: 29211930]
[8]
Dardiotis, E.; Koutsou, P.; Papanicolaou, E.Z.; Vonta, I.; Kladi, A.; Vassilopoulos, D.; Hadjigeorgiou, G.; Christodoulou, K.; Kyriakides, T. Epidemiological, clinical and genetic study of familial amyloidotic polyneuropathy in Cyprus. Amyloid, 2009, 16(1), 32-37.
[http://dx.doi.org/10.1080/13506120802676948] [PMID: 19291512]
[9]
Kavousanaki, M. Tzagournissakis, Μ.; Zaganas, I.; Stylianou, K.G.; Patrianakos, A.P.; Tsilimbaris, M.K.; Mantaka, A.; Samonakis, D.N. Liver transplantation for familial amyloid polyneuropathy (Val30Met): Long-term follow-up prospective study in a nontransplant center. Transplant. Proc., 2019, 51(2), 429-432.
[http://dx.doi.org/10.1016/j.transproceed.2019.01.071] [PMID: 30879558]
[10]
Reinés, J.; Vera, T.; Martín, M.; Serra, H.; Campins, M.M.; Millán, J.M.; Lezaun, C.; Cruz, M. Epidemiology of transthyretin-associated familial amyloid polyneuropathy in the Majorcan area: Son Llàtzer Hospital descriptive study. Orphanet J. Rare Dis., 2014, 9(1), 29.
[http://dx.doi.org/10.1186/1750-1172-9-29] [PMID: 24572009]
[11]
Koike, H.; Misu, K.; Ikeda, S.; Ando, Y.; Nakazato, M.; Ando, E.; Yamamoto, M.; Hattori, N.; Sobue, G. Type I (transthyretin Met30) familial amyloid polyneuropathy in Japan: early- vs. late-onset form. Arch. Neurol., 2002, 59(11), 1771-1776.
[http://dx.doi.org/10.1001/archneur.59.11.1771] [PMID: 12433265]
[12]
Kristen, A.V.; Ajroud-Driss, S.; Conceição, I.; Gorevic, P.; Kyriakides, T.; Obici, L. Patisiran, an RNAi therapeutic for the treatment of hereditary transthyretin-mediated amyloidosis. Neurodegener. Dis. Manag., 2019, 9(1), 5-23.
[http://dx.doi.org/10.2217/nmt-2018-0033] [PMID: 30480471]
[13]
Bistola, V.; Parissis, J.; Foukarakis, E.; Valsamaki, P.N.; Anastasakis, A.; Koutsis, G.; Efthimiadis, G.; Kastritis, E. Practical recommendations for the diagnosis and management of transthyretin cardiac amyloidosis. Heart Fail. Rev., 2021, 26(4), 861-879.
[http://dx.doi.org/10.1007/s10741-020-10062-w] [PMID: 33452596]
[14]
Buxbaum, J.N.; Tagoe, C.; Gallo, G.; Walker, J.R.; Kurian, S.; Salomon, D.R. Why are some amyloidoses systemic? Does hepatic “chaperoning at a distance” prevent cardiac deposition in a transgenic model of human senile systemic (transthyretin) amyloidosis? FASEB J., 2012, 26(6), 2283-2293.
[http://dx.doi.org/10.1096/fj.11-189571] [PMID: 22362898]
[15]
Sekijima, Y.; Wiseman, R.L.; Matteson, J.; Hammarström, P.; Miller, S.R.; Sawkar, A.R.; Balch, W.E.; Kelly, J.W. The biological and chemical basis for tissue-selective amyloid disease. Cell, 2005, 121(1), 73-85.
[http://dx.doi.org/10.1016/j.cell.2005.01.018] [PMID: 15820680]
[16]
Dardiotis, E.; Koutsou, P.; Zamba-Papanicolaou, E.; Vonta, I.; Hadjivassiliou, M.; Hadjigeorgiou, G.; Cariolou, M.; Christodoulou, K.; Kyriakides, T. Complement C1Q polymorphisms modulate onset in familial amyloidotic polyneuropathy TTR Val30Met. J. Neurol. Sci., 2009, 284(1-2), 158-162.
[http://dx.doi.org/10.1016/j.jns.2009.05.018] [PMID: 19493541]
[17]
Dias, A.; Santos, D.; Coelho, T.; Alves-Ferreira, M.; Sequeiros, J.; Alonso, I.; Sousa, A.; Lemos, C. C1 QA and C1 QC modify age‐at onset in familial amyloid polyneuropathy patients. Ann. Clin. Transl. Neurol., 2019, 6(4), 748-754.
[http://dx.doi.org/10.1002/acn3.748] [PMID: 31019999]
[18]
Panayiotou, E.; Fella, E.; Papacharalambous, R.; Malas, S.; Saraiva, M.J.; Kyriakides, T. C1q ablation exacerbates amyloid deposition: A study in a transgenic mouse model of ATTRV30M amyloid neuropathy. PLoS One, 2017, 12(4)e0175767
[http://dx.doi.org/10.1371/journal.pone.0175767] [PMID: 28407005]
[19]
Andrade, C. A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain, 1952, 75(3), 408-427.
[http://dx.doi.org/10.1093/brain/75.3.408] [PMID: 12978172]
[20]
Koike, H.; Misu, K.; Sugiura, M.; Iijima, M.; Mori, K.; Yamamoto, M.; Hattori, N.; Mukai, E.; Ando, Y.; Ikeda, S.; Sobue, G. Pathology of early- vs. late-onset TTR Met30 familial amyloid polyneuropathy. Neurology, 2004, 63(1), 129-138.
[http://dx.doi.org/10.1212/01.WNL.0000132966.36437.12] [PMID: 15249622]
[21]
Koike, H.; Hashimoto, R.; Tomita, M.; Kawagashira, Y.; Iijima, M.; Tanaka, F.; Sobue, G. Diagnosis of sporadic transthyretin Val30Met familial amyloid polyneuropathy: a practical analysis. Amyloid, 2011, 18(2), 53-62.
[http://dx.doi.org/10.3109/13506129.2011.565524] [PMID: 21463231]
[22]
Castro, J.; Miranda, B.; Castro, I.; de Carvalho, M.; Conceição, I. The diagnostic accuracy of Sudoscan in transthyretin familial amyloid polyneuropathy. Clin. Neurophysiol., 2016, 127(5), 2222-2227.
[http://dx.doi.org/10.1016/j.clinph.2016.02.013] [PMID: 27072093]
[23]
Dardiotis, E.; Andreou, S.; Aloizou, A.M.; Panayiotou, E.; Siokas, V.; Ioannou, M.N.; Vounou, E.; Christodoulou, K.; Tanteles, G.A.; Michaelides, D.; Kyriakides, T. The frequency of central nervous system complications in the Cypriot cohort of ATTRV30M neuropathy transplanted patients. Neurol. Sci., 2020, 41(5), 1163-1170.
[http://dx.doi.org/10.1007/s10072-019-04176-9] [PMID: 31897943]
[24]
Buxbaum, J.N.; Brannagan, T., III; Buades-Reinés, J.; Cisneros, E.; Conceicao, I.; Kyriakides, T.; Merlini, G.; Obici, L.; Plante-Bordeneuve, V.; Rousseau, A.; Sekijima, Y.; Imai, A.; Waddington Cruz, M.; Yamada, M. Transthyretin deposition in the eye in the era of effective therapy for hereditary ATTRV30M amyloidosis. Amyloid, 2019, 26(1), 10-14.
[http://dx.doi.org/10.1080/13506129.2018.1554563] [PMID: 30675806]
[25]
Sekijima, Y.; Yazaki, M.; Oguchi, K.; Ezawa, N.; Yoshinaga, T.; Yamada, M.; Yahikozawa, H.; Watanabe, M.; Kametani, F.; Ikeda, S. Cerebral amyloid angiopathy in posttransplant patients with hereditary ATTR amyloidosis. Neurology, 2016, 87(8), 773-781.
[http://dx.doi.org/10.1212/WNL.0000000000003001] [PMID: 27466465]
[26]
Maia, L.F.; Magalhães, R.; Freitas, J.; Taipa, R.; Pires, M.M.; Osório, H.; Dias, D.; Pessegueiro, H.; Correia, M.; Coelho, T. CNS involvement in V30M transthyretin amyloidosis: clinical, neuropathological and biochemical findings. J. Neurol. Neurosurg. Psychiatry, 2015, 86(2), 159-167.
[http://dx.doi.org/10.1136/jnnp-2014-308107] [PMID: 25091367]
[27]
Sousa, L.; Coelho, T.; Taipa, R. CNS Involvement in hereditary transthyretin amyloidosis. Neurology, 2021, 97(24), 1111-1119.
[http://dx.doi.org/10.1212/WNL.0000000000012965] [PMID: 34663645]
[28]
Luigetti, M.; Romano, A.; Di Paolantonio, A.; Bisogni, G.; Sabatelli, M. Diagnosis and treatment of hereditary transthyretin amyloidosis (hATTR) polyneuropathy: Current perspectives on improving patient care. Ther. Clin. Risk Manag., 2020, 16, 109-123.
[http://dx.doi.org/10.2147/TCRM.S219979] [PMID: 32110029]
[29]
Lobato, L.; Rocha, A. Transthyretin amyloidosis and the kidney. Clin. J. Am. Soc. Nephrol., 2012, 7(8), 1337-1346.
[http://dx.doi.org/10.2215/CJN.08720811] [PMID: 22537653]
[30]
Adams, D.; Suhr, O.B.; Hund, E.; Obici, L.; Tournev, I.; Campistol, J.M.; Slama, M.S.; Hazenberg, B.P.; Coelho, T. First European consensus for diagnosis, management, and treatment of transthyretin familial amyloid polyneuropathy. Curr. Opin. Neurol., 2016, 29(Suppl. 1), S14-S26.
[http://dx.doi.org/10.1097/WCO.0000000000000289] [PMID: 26734952]
[31]
Pilebro, B.; Suhr, O.B.; Näslund, U.; Westermark, P.; Lindqvist, P.; Sundström, T. 99m Tc-DPD uptake reflects amyloid fibril composition in hereditary transthyretin amyloidosis. Ups. J. Med. Sci., 2016, 121(1), 17-24.
[http://dx.doi.org/10.3109/03009734.2015.1122687] [PMID: 26849806]
[32]
Holmgren, G.; Steen, L.; Ekstedt, J.; Groth, C.G.; Ericzon, B.G.; Eriksson, S.; Andersen, O.; Karlberg, I.; Nordén, G.; Nakazato, M.; Hawkins, P.; Richardson, S.; Pepys, M. Biochemical effect of liver transplantation in two Swedish patients with familial amyloidotic polyneuropathy (FAP-met30). Clin. Genet., 1991, 40(3), 242-246.
[http://dx.doi.org/10.1111/j.1399-0004.1991.tb03085.x] [PMID: 1685359]
[33]
Ericzon, B.G.; Wilczek, H.E.; Larsson, M.; Wijayatunga, P.; Stangou, A.; Pena, J.R.; Furtado, E.; Barroso, E.; Daniel, J.; Samuel, D.; Adam, R.; Karam, V.; Poterucha, J.; Lewis, D.; Ferraz-Neto, B.H.; Cruz, M.W.; Munar-Ques, M.; Fabregat, J.; Ikeda, S.; Ando, Y.; Heaton, N.; Otto, G.; Suhr, O. Liver transplantation for hereditary transthyretin amyloidosis. Transplantation, 2015, 99(9), 1847-1854.
[http://dx.doi.org/10.1097/TP.0000000000000574] [PMID: 26308415]
[34]
Liepnieks, J.J.; Benson, M.D. Progression of cardiac amyloid deposition in hereditary transthyretin amyloidosis patients after liver transplantation. Amyloid, 2007, 14(4), 277-282.
[http://dx.doi.org/10.1080/13506120701614032] [PMID: 17968687]
[35]
Beirão, J.M.; Malheiro, J.; Lemos, C.; Matos, E.; Beirão, I.; Pinho-Costa, P.; Torres, P. Impact of liver transplantation on the natural history of oculopathy in Portuguese patients with transthyretin (V30M) amyloidosis. Amyloid, 2015, 22(1), 31-35.
[http://dx.doi.org/10.3109/13506129.2014.989318] [PMID: 25475560]
[36]
Bulawa, C.E.; Connelly, S.; DeVit, M.; Wang, L.; Weigel, C.; Fleming, J.A.; Packman, J.; Powers, E.T.; Wiseman, R.L.; Foss, T.R.; Wilson, I.A.; Kelly, J.W.; Labaudinière, R. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl. Acad. Sci. USA, 2012, 109(24), 9629-9634.
[http://dx.doi.org/10.1073/pnas.1121005109] [PMID: 22645360]
[37]
Almeida, M.R.; Macedo, B.; Cardoso, I.; Alves, I.; Valencia, G.; Arsequell, G.; Planas, A.; Saraiva, M.J. Selective binding to transthyretin and tetramer stabilization in serum from patients with familial amyloidotic polyneuropathy by an iodinated diflunisal derivative. Biochem. J., 2004, 381(2), 351-356.
[http://dx.doi.org/10.1042/BJ20040011] [PMID: 15080795]
[38]
Tojo, K.; Sekijima, Y.; Kelly, J.W.; Ikeda, S. Diflunisal stabilizes familial amyloid polyneuropathy-associated transthyretin variant tetramers in serum against dissociation required for amyloidogenesis. Neurosci. Res., 2006, 56(4), 441-449.
[http://dx.doi.org/10.1016/j.neures.2006.08.014] [PMID: 17028027]
[39]
Coelho, T.; Maia, L.F.; Martins da Silva, A.; Waddington Cruz, M.; Planté-Bordeneuve, V.; Lozeron, P.; Suhr, O.B.; Campistol, J.M.; Conceição, I.M.; Schmidt, H.H.J.; Trigo, P.; Kelly, J.W.; Labaudinière, R.; Chan, J.; Packman, J.; Wilson, A.; Grogan, D.R. Tafamidis for transthyretin familial amyloid polyneuropathy: A randomized, controlled trial. Neurology, 2012, 79(8), 785-792.
[http://dx.doi.org/10.1212/WNL.0b013e3182661eb1] [PMID: 22843282]
[40]
Berk, J.L.; Suhr, O.B.; Obici, L.; Sekijima, Y.; Zeldenrust, S.R.; Yamashita, T.; Heneghan, M.A.; Gorevic, P.D.; Litchy, W.J.; Wiesman, J.F.; Nordh, E.; Corato, M.; Lozza, A.; Cortese, A.; Robinson-Papp, J.; Colton, T.; Rybin, D.V.; Bisbee, A.B.; Ando, Y.; Ikeda, S.; Seldin, D.C.; Merlini, G.; Skinner, M.; Kelly, J.W.; Dyck, P.J. Repurposing diflunisal for familial amyloid polyneuropathy: a randomized clinical trial. JAMA, 2013, 310(24), 2658-2667.
[http://dx.doi.org/10.1001/jama.2013.283815] [PMID: 24368466]
[41]
Gundapaneni, B.K.; Sultan, M.B.; Keohane, D.J.; Schwartz, J.H. Tafamidis delays neurological progression comparably across Val30Met and non-Val30Met genotypes in transthyretin familial amyloid polyneuropathy. Eur. J. Neurol., 2018, 25(3), 464-468.
[http://dx.doi.org/10.1111/ene.13510] [PMID: 29115008]
[42]
Planté-Bordeneuve, V.; Gorram, F.; Salhi, H.; Nordine, T.; Ayache, S.S.; Le Corvoisier, P.; Azoulay, D.; Feray, C.; Damy, T.; Lefaucheur, J.P. Long-term treatment of transthyretin familial amyloid polyneuropathy with tafamidis: a clinical and neurophysiological study. J. Neurol., 2017, 264(2), 268-276.
[http://dx.doi.org/10.1007/s00415-016-8337-3] [PMID: 27878441]
[43]
Barroso, F.A.; Judge, D.P.; Ebede, B.; Li, H.; Stewart, M.; Amass, L.; Sultan, M.B. Long-term safety and efficacy of tafamidis for the treatment of hereditary transthyretin amyloid polyneuropathy: results up to 6 years. Amyloid, 2017, 24(3), 194-204.
[http://dx.doi.org/10.1080/13506129.2017.1357545] [PMID: 28758793]
[44]
Cruz, M.W. Tafamidis for autonomic neuropathy in hereditary transthyretin (ATTR) amyloidosis: a review. Clin. Auton. Res., 2019, 29(S1)(Suppl. 1), 19-24.
[http://dx.doi.org/10.1007/s10286-019-00625-9] [PMID: 31407119]
[45]
Maurer, M.S.; Schwartz, J.H.; Gundapaneni, B.; Elliott, P.M.; Merlini, G.; Waddington-Cruz, M.; Kristen, A.V.; Grogan, M.; Witteles, R.; Damy, T.; Drachman, B.M.; Shah, S.J.; Hanna, M.; Judge, D.P.; Barsdorf, A.I.; Huber, P.; Patterson, T.A.; Riley, S.; Schumacher, J.; Stewart, M.; Sultan, M.B.; Rapezzi, C. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N. Engl. J. Med., 2018, 379(11), 1007-1016.
[http://dx.doi.org/10.1056/NEJMoa1805689] [PMID: 30145929]
[46]
Damy, T.; Garcia-Pavia, P.; Hanna, M.; Judge, D.P.; Merlini, G.; Gundapaneni, B.; Patterson, T.A.; Riley, S.; Schwartz, J.H.; Sultan, M.B.; Witteles, R. Efficacy and safety of tafamidis doses in the tafamidis in transthyretin cardiomyopathy clinical trial (ATTR‐ACT) and long‐term extension study. Eur. J. Heart Fail., 2021, 23(2), 277-285.
[http://dx.doi.org/10.1002/ejhf.2027] [PMID: 33070419]
[47]
Rocha, A.; Silva, A.; Cardoso, M.; Beirao, I.; Alves, C.; Teles, P.; Coelho, T.; Lobato, L. Transthyretin (ATTR) amyloidosis nephropathy: Lessons from a TTR stabilizer molecule. Amyloid 2017, 24(sup1), 81-82.
[http://dx.doi.org/10.1080/13506129.2016.1277697] [PMID: 28434370]
[48]
Ferrer-Nadal, A.; Ripoll, T.; Uson, M.; Figuerola, A.; Andreu, H.; Losada, I.; Gonzalez, J.; Cisneros-Barroso, E.; Buades, J. Significant reduction in proteinuria after treatment with tafamidis. Amyloid, 2019, 26(sup1), 67-68.
[http://dx.doi.org/10.1080/13506129.2019.1583186] [PMID: 31343359]
[49]
Monteiro, C.; Martins da Silva, A.; Ferreira, N.; Mesgarzadeh, J.; Novais, M.; Coelho, T.; Kelly, J.W. Cerebrospinal fluid and vitreous body exposure to orally administered tafamidis in hereditary ATTRV30M (p.TTRV50M) amyloidosis patients. Amyloid, 2018, 25(2), 120-128.
[http://dx.doi.org/10.1080/13506129.2018.1479249] [PMID: 29993288]
[50]
Sekijima, Y.; Tojo, K.; Morita, H.; Koyama, J.; Ikeda, S. Safety and efficacy of long-term diflunisal administration in hereditary transthyretin (ATTR) amyloidosis. Amyloid, 2015, 22(2), 79-83.
[http://dx.doi.org/10.3109/13506129.2014.997872] [PMID: 26017328]
[51]
Ibrahim, M.; Saint Croix, G.R.; Lacy, S.; Fattouh, M.; Barillas-Lara, M.I.; Behrooz, L.; Mechanic, O. The use of diflunisal for transthyretin cardiac amyloidosis: a review. Heart Fail. Rev., 2022, 27(2), 517-524.
[http://dx.doi.org/10.1007/s10741-021-10143-4] [PMID: 34272629]
[52]
Fox, J.C.; Hellawell, J.L.; Rao, S.; O’Reilly, T.; Lumpkin, R.; Jernelius, J.; Gretler, D.; Sinha, U. First‐in‐human study of AG10, a novel, oral, specific, selective, and potent transthyretin stabilizer for the treatment of transthyretin amyloidosis: A phase 1 safety, tolerability, pharmacokinetic, and pharmacodynamic study in healthy adult volunteers. Clin. Pharmacol. Drug Dev., 2020, 9(1), 115-129.
[http://dx.doi.org/10.1002/cpdd.700] [PMID: 31172685]
[53]
Judge, D.P.; Heitner, S.B.; Falk, R.H.; Maurer, M.S.; Shah, S.J.; Witteles, R.M.; Grogan, M.; Selby, V.N.; Jacoby, D.; Hanna, M.; Nativi-Nicolau, J.; Patel, J.; Rao, S.; Sinha, U.; Turtle, C.W.; Fox, J.C. Transthyretin stabilization by AG10 in symptomatic transthyretin amyloid cardiomyopathy. J. Am. Coll. Cardiol., 2019, 74(3), 285-295.
[http://dx.doi.org/10.1016/j.jacc.2019.03.012] [PMID: 30885685]
[54]
Pinheiro, F.; Varejão, N.; Esperante, S.; Santos, J.; Velázquez-Campoy, A.; Reverter, D.; Pallarès, I.; Ventura, S. Tolcapone, a potent aggregation inhibitor for the treatment of familial leptomeningeal amyloidosis. FEBS J., 2021, 288(1), 310-324.
[http://dx.doi.org/10.1111/febs.15339] [PMID: 32324953]
[55]
Gamez, J.; Salvadó, M.; Reig, N.; Suñé, P.; Casasnovas, C.; Rojas-Garcia, R.; Insa, R. Transthyretin stabilization activity of the catechol- O -methyltransferase inhibitor tolcapone (SOM0226) in hereditary ATTR amyloidosis patients and asymptomatic carriers: proof-of-concept study. Amyloid, 2019, 26(2), 74-84.
[http://dx.doi.org/10.1080/13506129.2019.1597702] [PMID: 31119947]
[56]
Cardoso, I.; Martins, D.; Ribeiro, T.; Merlini, G.; Saraiva, M.J. Synergy of combined Doxycycline/TUDCA treatment in lowering Transthyretin deposition and associated biomarkers: studies in FAP mouse models. J. Transl. Med., 2010, 8(1), 74.
[http://dx.doi.org/10.1186/1479-5876-8-74] [PMID: 20673327]
[57]
Obici, L.; Cortese, A.; Lozza, A.; Lucchetti, J.; Gobbi, M.; Palladini, G.; Perlini, S.; Saraiva, M.J.; Merlini, G. Doxycycline plus tauroursodeoxycholic acid for transthyretin amyloidosis: a phase II study. Amyloid, 2012, 19(sup1Suppl. 1), 34-36.
[http://dx.doi.org/10.3109/13506129.2012.678508] [PMID: 22551192]
[58]
Richards, D.B.; Cookson, L.M.; Berges, A.C.; Barton, S.V.; Lane, T.; Ritter, J.M.; Fontana, M.; Moon, J.C.; Pinzani, M.; Gillmore, J.D.; Hawkins, P.N.; Pepys, M.B. Therapeutic clearance of amyloid by antibodies to serum amyloid P component. N. Engl. J. Med., 2015, 373(12), 1106-1114.
[http://dx.doi.org/10.1056/NEJMoa1504942] [PMID: 26176329]
[59]
Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; Lin, K.P.; Vita, G.; Attarian, S.; Planté-Bordeneuve, V.; Mezei, M.M.; Campistol, J.M.; Buades, J.; Brannagan, T.H., III; Kim, B.J.; Oh, J.; Parman, Y.; Sekijima, Y.; Hawkins, P.N.; Solomon, S.D.; Polydefkis, M.; Dyck, P.J.; Gandhi, P.J.; Goyal, S.; Chen, J.; Strahs, A.L.; Nochur, S.V.; Sweetser, M.T.; Garg, P.P.; Vaishnaw, A.K.; Gollob, J.A.; Suhr, O.B. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med., 2018, 379(1), 11-21.
[http://dx.doi.org/10.1056/NEJMoa1716153] [PMID: 29972753]
[60]
Benson, M.D.; Waddington-Cruz, M.; Berk, J.L.; Polydefkis, M.; Dyck, P.J.; Wang, A.K.; Planté-Bordeneuve, V.; Barroso, F.A.; Merlini, G.; Obici, L.; Scheinberg, M.; Brannagan, T.H., III; Litchy, W.J.; Whelan, C.; Drachman, B.M.; Adams, D.; Heitner, S.B.; Conceição, I.; Schmidt, H.H.; Vita, G.; Campistol, J.M.; Gamez, J.; Gorevic, P.D.; Gane, E.; Shah, A.M.; Solomon, S.D.; Monia, B.P.; Hughes, S.G.; Kwoh, T.J.; McEvoy, B.W.; Jung, S.W.; Baker, B.F.; Ackermann, E.J.; Gertz, M.A.; Coelho, T. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N. Engl. J. Med., 2018, 379(1), 22-31.
[http://dx.doi.org/10.1056/NEJMoa1716793] [PMID: 29972757]
[61]
Coelho, T.; Adams, D.; Silva, A.; Lozeron, P.; Hawkins, P.N.; Mant, T.; Perez, J.; Chiesa, J.; Warrington, S.; Tranter, E.; Munisamy, M.; Falzone, R.; Harrop, J.; Cehelsky, J.; Bettencourt, B.R.; Geissler, M.; Butler, J.S.; Sehgal, A.; Meyers, R.E.; Chen, Q.; Borland, T.; Hutabarat, R.M.; Clausen, V.A.; Alvarez, R.; Fitzgerald, K.; Gamba-Vitalo, C.; Nochur, S.V.; Vaishnaw, A.K.; Sah, D.W.Y.; Gollob, J.A.; Suhr, O.B. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med., 2013, 369(9), 819-829.
[http://dx.doi.org/10.1056/NEJMoa1208760] [PMID: 23984729]
[62]
Suhr, O.B.; Coelho, T.; Buades, J.; Pouget, J.; Conceicao, I.; Berk, J.; Schmidt, H.; Waddington-Cruz, M.; Campistol, J.M.; Bettencourt, B.R.; Vaishnaw, A.; Gollob, J.; Adams, D. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet J. Rare Dis., 2015, 10(1), 109.
[http://dx.doi.org/10.1186/s13023-015-0326-6] [PMID: 26338094]
[63]
Butler, J.S.; Chan, A.; Costelha, S.; Fishman, S.; Willoughby, J.L.S.; Borland, T.D.; Milstein, S.; Foster, D.J.; Gonçalves, P.; Chen, Q.; Qin, J.; Bettencourt, B.R.; Sah, D.W.; Alvarez, R.; Rajeev, K.G.; Manoharan, M.; Fitzgerald, K.; Meyers, R.E.; Nochur, S.V.; Saraiva, M.J.; Zimmermann, T.S. Preclinical evaluation of RNAi as a treatment for transthyretin-mediated amyloidosis. Amyloid, 2016, 23(2), 109-118.
[http://dx.doi.org/10.3109/13506129.2016.1160882] [PMID: 27033334]
[64]
Adams, D.; Polydefkis, M.; González-Duarte, A.; Wixner, J.; Kristen, A.V.; Schmidt, H.H.; Berk, J.L.; Losada López, I.A.; Dispenzieri, A.; Quan, D.; Conceição, I.M.; Slama, M.S.; Gillmore, J.D.; Kyriakides, T.; Ajroud-Driss, S.; Waddington-Cruz, M.; Mezei, M.M.; Planté-Bordeneuve, V.; Attarian, S.; Mauricio, E.; Brannagan, T.H., III; Ueda, M.; Aldinc, E.; Wang, J.J.; White, M.T.; Vest, J.; Berber, E.; Sweetser, M.T.; Coelho, T.; Vita, G.; Rizzo, V.; Russo, M.; Mazzeo, A.; Gentile, L.; Berk, J.L.; Brueckner, C.; Lazzari, V.; Wiesman, J.; DeLong, D.; Victory, J.; Dalton, J.; May, J.; Gilmore, C.; Attarian, S.; Diallo, S.; Delmont, E.; Pouget, J.; Verschueren, A.; Grapperon, A-M.; Campana-Salort, E.; Conceição, I.M.; Lopes, A.; Lamas, F.; Neves, C.; Castro, J.; Pereira, P.; Castro, I.; Franco, A.; Santos, M.O.; de Azevedo Coutinho, C.; Falcao de Campos, C.; Coelho, T.; Hipólito Reis, A.; Correia, N.; Perez, J.M.; Martins da Silva, A.; Alves, C.; Cardoso, M.; Valdrez, K.; Monte, J.R.; Pessoa, B.; Guimaraes, N.; Freitas, M.; Ramalho, J.; Ferreira, N.; Kuzume, D.; Tard, C.; Waucquier, N.; Rougeaux, I.; Brice, S.; Kasprzyk, E.; Elrezzi, E.; Meguig, S.; Hachulla, E.; Gauvain, C.; Migaud-Chervy, M-C.; Deplanque, D.; Jozefowicz, E.; Lebellec, L.; Adams, D.; Balaya-Gouraya, L.; Jehan Lacour, N.; Bournane, H.; Martin, N.; Elabed, M.; Sacko, N.; Boubrit, Y.; Gaouar, A.; Rakotondratafika, F.; Théaudin-Saliou, M.; Cauquil-Michon, C.; Labeyrie, C.; Not, A.; Al-Salameh, A.; Lecoq, A-L.; Stephant, M.; Echaniz-Laguna, A.; Becquemont, L.; Beaudonnet, G.; Algalarrondo, V.; Eliahou, L.; Slama, M.S.; Rousseau, A.; Signate, A.; Berthelot, E.; Inamo, J.; Planté-Bordeneuve, V.; Vervoitte, L.; Focseneanu, C.; Gendre, T.; Arrouasse, R.; Ayache, S.S.; Ernande, L.; Le Corvoisier, P.; Salhi, H.; Choumert, A.; Ehinger, V.; Ruiz, J.; Charlin, C.; Megelin, T.; Brannagan, T.H., III; Fayerman, R.; Kim, A.; Paras, A.; Gonzalez, L.J.; Tsang, S.; Wajnsztajn, F.; Shije, J.; Ulane, C.; Kleyman, I.; Weimer, L.; Cioroiu, C.; Lambrianides, S.; Abu-Manneh, R.; Zamba-Papanicolaou, E.; Agathangelou, P.; Leonidou, E.; Tada, S.; Fujita, A.; Nagai, M.; Ando, R.; Hosokawa, Y.; Yamanishi, Y.; Overcash, J.S.; Giardino, E.; Boyer, L.; Dang, L.; Le, A.; Nguyen, T.; Giang, L.; Sellers, P.; Tran, L.; Truong, N.; Vinas, M.; Hrkman, N.; Miller, S.; Nguyen, D.; Smith, A.; Pu, H.; Li, S.; Vuong, T.; Dioso, H.; Green, S.; Lee, K.; Chu, H.; Waters, M.; Coskun, D.J.; Zepeda, K.A.; O’Riordan, W.; Obici, L.; Cortese, A.; Lozza, A.; Merlini, G.; Rosti, V.; Sabatelli, M.; Bisogni, G.; Bernardo, D.; Luigetti, M.; Di Paolantonio, A.; Guglielmino, V.; Bisogni, G.; Romano, A.; Nienhuis, H.; Bulthuis-Kuiper, J.; Kristen, A.V.; Gerk, O.; Ulbricht, H.; Taylor, L.; Meyle, E.; Kleinschmidt, N.; Meyrath, D.; Noe-Schwenn, S.; Meng, U.; Bauer, R.; aus dem Siepen, F.; Hein, S.; Takahashi, T.; Oshita, T.; Koujin, Y.; Neshige, S.; Nezu, T.; Segawa, A.; Ueno, H.; Morino, H.; Campistol, J.M.; Rodas Marin, L.M.; Blasco, P.J.M.; Dávila, L.G.; Palacios, M.; Pytel Cordoba, V.; Guerrero, S.A.; Horga, A.; García, F.J.; Perez de Isla, L.; Marques Júnior, W.; Moscardini, M.; Litcanov, D.C.; Viera Lima, A.F.; Rodrigues, L.; Marques, C.B.; Moreira, C.L.; Daccach, M.V.; Munoz, B.F.; Gragera Martínez, Á.; Borrachero, C.; Losada, L.I.A.; Cisneros Barroso, E.; Rodríguez, R.A.; Sanz, M.; Rigo Oliver, E.; González Moreno, J.; Gamez Martinez, J.M.; Descals, C.; Uson, M.; Jose Vega, F.; Figuerola, A.; Montala, C.; Waddington-Cruz, M.; Dias da Silva, M.; Gervais de Santa Rosa, R.; Pinto, L.F.; Pinto, M.V.; Cardoso Berensztejn, A.; Barroso, F.; Lautre, A.; Orellana, L.G.; González-Duarte Briseño, M.A.; Cárdenas-Soto, K.; Jiménez López, B.P.; Pérez-Castañeda, S.L.; Cantú, B.C.G.; Rivera de la Parra, D.; Hernandez Reyes, J.P.; del Mar Saniger Alba, M.; Criollo Mora, E.; Parman, Y.; Rezzan, K.J.; Sahin, E.; Serbest, N.G.; Durmus, H.; Cakar, A.; Tugal Tutkun, N.I.; Karamursel, S.; Elitok, A.; Sirin Inan, N.G.; Altinkurt, E.; Polydefkis, M.; Ye, J.; Allen, A.C.; Chaudhry, V.; Jarrett, R.; Bressler, N.; Burks, K.L.; Liu, Q.; Khoshnoodi, M.; Judge, D.P.; Vista, G.; Shah, S.M.; Hamaguchi, H.; Oda, J.; Fukase, E.; Taniguchi, I.; Oda, T.; Endo, H.; Shimomura, M.; Katanazaka, K.; Koto, S.; Nakano, T.; Scheid, C.; Zueiter, A.; Pester, L.; Walter, D.; Özdemir, B.; Frenzel, L.F.; Holtick, U.; Oh, J.; Kim, H.J.; Shin, H.J.; Choi, K.; Yamashita, T.; Ueda, M.; Masuda, T.; Misumi, Y.; Ueda, A.; Nakahara, K.; Yorita, A.; Tsuruhisa, S.; Taniwaki, T.; Harada, M.; Moritaka, T.; Sakurada, N.; Mauricio, E.A.; Baskin, A.; Dimberg, E.; Dispenzieri, A.; Fonder, A.; Hobbs, M.; Russell, S.J.; Dyck, P.; Gonsalves, W.; Leung, N.; Witzig, T.E.; Zeldenrust, S.R.; Hwa, L.; Kapoor, P.; Kumar, S.K.; Lin, Y.; Lust, J.A.; Rajkumar, V.S.; Dingli, D.; Gertz, M.A.; Go, R.; Hayman, S.R.; Dalia, S.; Carrillo, E.; Gorevic, P.; Mason, G.; Chao, C-C.; Lee, M-J.; Su, J-J.; Hsieh, S-T.; Tsai, L-K.; Yeh, S-J.; Yang, C-C.; Ajroud-Driss, S.A-D.; Casey, P.; Joslin, B.C.; Freimer, M.; Sankey, A.; Kenepp, A.; Heintzman, S.; LoRusso, S.; Hokezu, Y.; Kim, B-J.; Kim, J.H.; Lee, G.Y.; Cho, E.B.; Jeon, E-S.; Min, J-H.; Seok, J.M.; Lee, H.L.; Park, J.H.; Sekijima, Y.; Miyazawa, C.; Kato, N.; Kishida, D.; Hineno, A.; Kodaira, M.; Yoshinaga, T.; Miyahara, T.; Imai, A.; Matsumoto, K.; Lin, K-P.; Lee, Y-C.; Wixner, J.; Falk, M.; Pilebro, B.; Suhr, O.; Lindqvist, P.; Soderberg, K.; Pedrosa-Domellöf, F.; Anan, I.; Nordh, E.; Tournev, I.; Zhelyazkova-Glaveeva, S.; Cherneva, Z.; Sarafov, S.; Chamova, T.; Cherninkova-Gopina, S.; Schmidt, H.H.; Friebel, F.; Zibert, A.; Mihailovic, N.; Schubert, F.; Vorona, E.; Lahme, L.; Huesing-Kabar, A.; Schilling, M.; Kabar, I.; Gillmore, J.D.; Martinez-Naharro, A.; Chacko, L.; Cohen, O.; Law, S.; Rezk, T.; Lachmann, H.J.; Quan, D.; Blume, B.; Dixon, S.; Low, S.C.; Chan, S.L.; Lim, H.E.L.; Goh, K.J.; Mezei, M.M.; Kraus, D.; Jack, K.; Wade, N.K.; Lopate, G.; Zwijack, B.; Florence, J.; Sommerville, R.B.; Stewart, G.; Ryder, J.; Mekhael, L.; Taylor, M.; Suan, D.; Wells, K.; Stone, P.; Wells, K.; Itoya, A.; Owusu-Sekyere, M.; Thai, D.; Chahine, I.; Pedrosa, S.; Do, T.H.T. Long-term safety and efficacy of patisiran for hereditary transthyretin-mediated amyloidosis with polyneuropathy: 12-month results of an open-label extension study. Lancet Neurol., 2021, 20(1), 49-59.
[http://dx.doi.org/10.1016/S1474-4422(20)30368-9] [PMID: 33212063]
[65]
Solomon, S.D.; Adams, D.; Kristen, A.; Grogan, M.; González-Duarte, A.; Maurer, M.S.; Merlini, G.; Damy, T.; Slama, M.S.; Brannagan, T.H., III; Dispenzieri, A.; Berk, J.L.; Shah, A.M.; Garg, P.; Vaishnaw, A.; Karsten, V.; Chen, J.; Gollob, J.; Vest, J.; Suhr, O. Effects of patisiran, an RNA interference therapeutic, on cardiac parameters in patients with hereditary transthyretin-mediated amyloidosis. Circulation, 2019, 139(4), 431-443.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035831] [PMID: 30586695]
[66]
Bulinski, C.; Discher, T.; Rutsatz, W.; Assmus, B.; Krämer, H.H. Clinical improvement after change of therapy from tafamidis to patisiran in progressive TTR amyloidosis post-liver transplantation. J. Neurol., 2022, 269(7), 3912-3914.
[http://dx.doi.org/10.1007/s00415-022-10978-3] [PMID: 35124750]
[67]
Schmidt, H.H.; Wixner, J.; Planté-Bordeneuve, V.; Muñoz-Beamud, F.; Lladó, L.; Gillmore, J.D.; Mazzeo, A.; Li, X.; Arum, S.; Jay, P.Y.; Adams, D.; Langestroer, C.; Huesing-Kabar, A.; Schilling, M.; Kabar, I.; Backlund, R.; Anan, I.; Nordh, E.; Uneus, E.; Pilebro, B.; Englund, U.; Coelho, T.; Novais, M.; Perez, J.; Martins da Silva, A.; Pesseguerio, M.H.; Ramalho, J.; Monte, R.; Alves, C.; Cardaso, I.; Guimaraes, N.; Gentile, L.; Russo, M.; Di Bella, G.; Gaouar, A.; Cauquil-Michon, C.; Kounis, I.; Echaniz-Laguna, A.; Stéphant, M.; Rakotondratafika, F.; Boubrit, Y.; Labeyrie, C.; Focsenaunu, C.; Le Corvoisier, P.; Ayache, S.S.; Gendre, T.; Vervoitte, L.; Arrouasse, R.; Gragera, M.A.; Borrachero, C.; Manovel, A.; Diaz Rodriguez, E.; Gutiérrez, G.M.; Fabra, J.E.; Valentina Vélez Santamaría, P.; Martínez Vilar, Y.; Cachero, A.; Rannigan, L.; Fontana, M.; Orrell, R.; Louth, S.; Chacko, L.; Varughese, S.; Throburn, D.; Cohen, O.; Law, S.; Smit, A.; Strehina, S. Patisiran treatment in patients with hereditary transthyretin‐mediated amyloidosis with polyneuropathy after liver transplantation. Am. J. Transplant., 2022, 22(6), 1646-1657.
[http://dx.doi.org/10.1111/ajt.17009] [PMID: 35213769]
[68]
Planté-Bordeneuve, V.; Lin, H.; Gollob, J.; Agarwal, S.; Betts, M.; Fahrbach, K.; Chitnis, M.; Polydefkis, M. An indirect treatment comparison of the efficacy of patisiran and tafamidis for the treatment of hereditary transthyretin-mediated amyloidosis with polyneuropathy. Expert Opin. Pharmacother., 2019, 20(4), 473-481.
[http://dx.doi.org/10.1080/14656566.2018.1554648] [PMID: 30489166]
[69]
Gonçalves, P.; Martins, H.; Costelha, S.; Maia, L.F.; Saraiva, M.J. Efficiency of silencing RNA for removal of transthyretin V30M in a TTR leptomeningeal animal model. Amyloid, 2016, 23(4), 249-253.
[http://dx.doi.org/10.1080/13506129.2016.1256282] [PMID: 27884058]
[70]
Habtemariam, B.A.; Karsten, V.; Attarwala, H.; Goel, V.; Melch, M.; Clausen, V.A.; Garg, P.; Vaishnaw, A.K.; Sweetser, M.T.; Robbie, G.J.; Vest, J. Single‐dose pharmacokinetics and pharmacodynamics of transthyretin targeting N‐acetylgalactosamine-small interfering ribonucleic acid conjugate, vutrisiran, in healthy subjects. Clin. Pharmacol. Ther., 2021, 109(2), 372-382.
[http://dx.doi.org/10.1002/cpt.1974] [PMID: 32599652]
[71]
Brannagan, T.H.; Wang, A.K.; Coelho, T.; Waddington Cruz, M.; Polydefkis, M.J.; Dyck, P.J.; Plante-Bordeneuve, V.; Berk, J.L.; Barroso, F.; Merlini, G.; Conceição, I.; Hughes, S.G.; Kwoh, J.; Jung, S.W.; Guthrie, S.; Pollock, M.; Benson, M.D.; Gertz, M.; Drachman, B.; Gorevic, P.; Heitner, S.; Scheinberg, M.; Schmidt, H.; Whelan, C.; Adams, D.; Campistol, P.J.M.; Gamez, J.; Gane, E.; Kristen, A.; Obici, L.; Salvi, F.; Souza Bulle Oliveira, A.; Vita, G. Early data on long‐term efficacy and safety of inotersen in patients with hereditary transthyretin amyloidosis: a 2‐year update from the open‐label extension of the NEURO‐TTR trial. Eur. J. Neurol., 2020, 27(8), 1374-1381.
[http://dx.doi.org/10.1111/ene.14285] [PMID: 32343462]
[72]
Benson, M.D.; Dasgupta, N.R.; Monia, B.P. Inotersen (transthyretin-specific antisense oligonucleotide) for treatment of transthyretin amyloidosis. Neurodegener. Dis. Manag., 2019, 9(1), 25-30.
[http://dx.doi.org/10.2217/nmt-2018-0037] [PMID: 30561247]
[73]
Benson, M.D.; Kluve-Beckerman, B.; Zeldenrust, S.R.; Siesky, A.M.; Bodenmiller, D.M.; Showalter, A.D.; Sloop, K.W. Targeted suppression of an amyloidogenic transthyretin with antisense oligonucleotides. Muscle Nerve, 2006, 33(5), 609-618.
[http://dx.doi.org/10.1002/mus.20503] [PMID: 16421881]
[74]
Coelho, T.; Ando, Y.; Benson, M.D.; Berk, J.L.; Waddington-Cruz, M.; Dyck, P.J.; Gillmore, J.D.; Khella, S.L.; Litchy, W.J.; Obici, L.; Monteiro, C.; Tai, L.J.; Viney, N.J.; Buchele, G.; Brambatti, M.; Jung, S.W.; St, L. O’Dea, L.; Tsimikas, S.; Schneider, E.; Geary, R.S.; Monia, B.P.; Gertz, M. Design and rationale of the global phase 3 NEURO-Ttransform study of antisense oligonucleotide AKCEA-TTR-LRx (ION-682884-CS3) in hereditary transthyretin-mediated amyloid polyneuropathy. Neurol. Ther., 2021, 10(1), 375-389.
[http://dx.doi.org/10.1007/s40120-021-00235-6] [PMID: 33638113]
[75]
Dasgupta, N.R.; Rissing, S.M.; Smith, J.; Jung, J.; Benson, M.D. Inotersen therapy of transthyretin amyloid cardiomyopathy. Amyloid, 2020, 27(1), 52-58.
[http://dx.doi.org/10.1080/13506129.2019.1685487] [PMID: 31713445]
[76]
Benson, M.D.; Smith, R.A.; Hung, G.; Kluve-Beckerman, B.; Showalter, A.D.; Sloop, K.W.; Monia, B.P. Suppression of choroid plexus transthyretin levels by antisense oligonucleotide treatment. Amyloid, 2010, 17(2), 43-49.
[http://dx.doi.org/10.3109/13506129.2010.483121] [PMID: 20462362]
[77]
Marques, J.H.; Coelho, J.; Menéres, M.J.; Beirão, J.M. Progressive vitreous deposits during treatment with inotersen for hereditary ATTR amyloidosis. Amyloid, 2021, 28(4), 275-276.
[http://dx.doi.org/10.1080/13506129.2021.1975673] [PMID: 34498503]
[78]
Moshe-Lilie, O.; Dimitrova, D.; Heitner, S.B.; Brannagan, T.H., III; Zivkovic, S.; Hanna, M.; Masri, A.; Polydefkis, M.; Berk, J.L.; Gertz, M.A.; Karam, C. TTR gene silencing therapy in post liver transplant hereditary ATTR amyloidosis patients. Amyloid, 2020, 27(4), 250-253.
[http://dx.doi.org/10.1080/13506129.2020.1784134] [PMID: 32578459]
[79]
Finn, J.D.; Smith, A.R.; Patel, M.C.; Shaw, L.; Youniss, M.R.; van Heteren, J.; Dirstine, T.; Ciullo, C.; Lescarbeau, R.; Seitzer, J.; Shah, R.R.; Shah, A.; Ling, D.; Growe, J.; Pink, M.; Rohde, E.; Wood, K.M.; Salomon, W.E.; Harrington, W.F.; Dombrowski, C.; Strapps, W.R.; Chang, Y.; Morrissey, D.V. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep., 2018, 22(9), 2227-2235.
[http://dx.doi.org/10.1016/j.celrep.2018.02.014] [PMID: 29490262]
[80]
Gillmore, J.D.; Gane, E.; Taubel, J.; Kao, J.; Fontana, M.; Maitland, M.L.; Seitzer, J.; O’Connell, D.; Walsh, K.R.; Wood, K.; Phillips, J.; Xu, Y.; Amaral, A.; Boyd, A.P.; Cehelsky, J.E.; McKee, M.D.; Schiermeier, A.; Harari, O.; Murphy, A.; Kyratsous, C.A.; Zambrowicz, B.; Soltys, R.; Gutstein, D.E.; Leonard, J.; Sepp-Lorenzino, L.; Lebwohl, D. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med., 2021, 385(6), 493-502.
[http://dx.doi.org/10.1056/NEJMoa2107454] [PMID: 34215024]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy