Generic placeholder image

Current Enzyme Inhibition

Editor-in-Chief

ISSN (Print): 1573-4080
ISSN (Online): 1875-6662

Research Article

Syringin as TGF-βR1, HER2, EGFR, FGFR4 Kinase, and MMP-2 Inhibitor and Potential Cytotoxic Agent against ER+ Breast Cancer Cells

Author(s): Charlaine A. Aventurado, Agnes L. Castillo and Ross D. Vasquez*

Volume 19, Issue 1, 2023

Published on: 30 December, 2022

Page: [55 - 64] Pages: 10

DOI: 10.2174/1573408019666221107145705

Price: $65

Abstract

Background: Breast cancer is currently the most diagnosed cancer worldwide. Neoplastic cells and components of the tumor microenvironment trigger enzymes and receptors to facilitate cancer advancement. Syringin, a natural phenylpropanoid glycoside, has been reported to possess anti-cancer activity and affinity with numerous druggable targets of breast carcinoma.

Objectives: This work aims to evaluate the effects of syringin on the growth of breast cancer cells (MCF-7) and normal dermal fibroblast cells (HDFn) and its ability to inhibit the protein targets of breast cancer.

Methods: Syringin was investigated on cell lines in vitro via MTT assay. Using non-cell-based activity assay kits, its influence on the activity of transforming growth factor-beta receptor type 1 (TGF-βR1), human epidermal growth factor receptor (HER2), epidermal growth factor receptor (EGFR), fibroblast growth factor receptor 4 (FGFR4), and matrix metalloproteinase-2 (MMP-2) was evaluated.

Results: Syringin exhibited significant cytotoxicity against MCF-7 cells (IC50: 32.11 μM for 24 hours and 21.35 μM for 48 hours) and was non-toxic on healthy HDFn cells (IC50: >100 μM for 24 and 48 hours). It significantly suppressed the activity of cancer and angiogenesis regulating enzymes in vitro with commendable IC50 values on TGF-βR1 kinase (IC50: 6.48 μM), HER2 kinase (IC50: 7.18 μM), EGFR kinase (IC50: 12.38 μM), FGFR4 kinase (IC50: 16.03 μM), and MMP-2 (IC50: 16.07 μM).

Conclusion: Findings showed the selective toxicity of syringin on breast cancer cells and its potential against pro-angiogenic enzymes. These discoveries strongly indicate the significance and therapeutic potential of syringin in targeted cancer therapy.

Graphical Abstract

[1]
World Health Organization. Breast cancer. 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer [Accessed on: January 9, 2022].
[2]
World Cancer Research Fund. Breast cancer statistics. 2022. Available from: https://www.wcrf.org/dietandcancer/breast-cancer-statistics [Accessed on: 9, 2022].
[3]
Lukong KE. Understanding breast cancer–The long and winding road. BBA Clin 2017; 7: 64-77.
[http://dx.doi.org/10.1016/j.bbacli.2017.01.001] [PMID: 28194329]
[4]
Riggio AI, Varley KE, Welm AL. The lingering mysteries of metastatic recurrence in breast cancer. Br J Cancer 2021; 124(1): 13-26.
[http://dx.doi.org/10.1038/s41416-020-01161-4] [PMID: 33239679]
[5]
Dalal B, Quinn TJ, Foster L, Lin M, Matthews M, Yuhan B. Ligand- Directed Tumor Targeting with Hybrid Viral Phage Nanoparticles. In: Grumezescu AM, Ed. Drug targeting and stimuli sensitive drug delivery systems. Oxford, United Kingdom: Elsevier 2018; pp. 483-516.
[6]
Fallah A, Sadeghinia A, Kahroba H, et al. Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases. Biomed Pharmacother 2019; 110: 775-85.
[http://dx.doi.org/10.1016/j.biopha.2018.12.022] [PMID: 30554116]
[7]
Sakurai T, Kudo M. Signaling pathways governing tumor angiogenesis. Oncology 2011; 81(S1): 24-9.
[http://dx.doi.org/10.1159/000333256] [PMID: 22212932]
[8]
Yingling JM, McMillen WT, Yan L, et al. Preclinical assessment of galunisertib (LY2157299 monohydrate), a first-in-class transforming growth factor-β receptor type I inhibitor. Oncotarget 2018; 9(6): 6659-77.
[http://dx.doi.org/10.18632/oncotarget.23795] [PMID: 29467918]
[9]
Batlle E, Massagué J. Transforming growth factor-β signaling in immunity and cancer. Immunity 2019; 50(4): 924-40.
[http://dx.doi.org/10.1016/j.immuni.2019.03.024] [PMID: 30995507]
[10]
Safina A, Vandette E, Bakin AV. ALK5 promotes tumor angiogenesis by upregulating matrix metalloproteinase-9 in tumor cells. Oncogene 2007; 26(17): 2407-22.
[http://dx.doi.org/10.1038/sj.onc.1210046] [PMID: 17072348]
[11]
Ling LE, Lee WC. Tgf-beta type I receptor (Alk5) kinase inhibitors in oncology. Curr Pharm Biotechnol 2011; 12(12): 2190-202.
[http://dx.doi.org/10.2174/138920111798808257] [PMID: 21619541]
[12]
Petrelli F, Tomasello G, Barni S, Lonati V, Passalacqua R, Ghidini M. Clinical and pathological characterization of HER2 mutations in human breast cancer: A systematic review of the literature. Breast Cancer Res Treat 2017; 166(2): 339-49.
[http://dx.doi.org/10.1007/s10549-017-4419-x] [PMID: 28762010]
[13]
Le Du F, Diéras V, Curigliano G. The role of tyrosine kinase inhibitors in the treatment of HER2+ metastatic breast cancer. Eur J Cancer 2021; 154: 175-89.
[http://dx.doi.org/10.1016/j.ejca.2021.06.026] [PMID: 34280871]
[14]
Li X, Yang C, Wan H, et al. Discovery and development of pyrotinib: A novel irreversible EGFR/HER2 dual tyrosine kinase inhibitor with favorable safety profiles for the treatment of breast cancer. Eur J Pharm Sci 2017; 110: 51-61.
[http://dx.doi.org/10.1016/j.ejps.2017.01.021] [PMID: 28115222]
[15]
Harper KL, Sosa MS, Entenberg D, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer. Nature 2016; 540(7634): 588-92.
[http://dx.doi.org/10.1038/nature20609] [PMID: 27974798]
[16]
Wang J, Xu B. Targeted therapeutic options and future perspectives for HER2-positive breast cancer. Signal Transduct Target Ther 2019; 4(1): 34.
[http://dx.doi.org/10.1038/s41392-019-0069-2] [PMID: 31637013]
[17]
London M, Gallo E. Epidermal Growth Factor Receptor (EGFR) involvement in epithelial‐derived cancers and its current antibody‐based immunotherapies. Cell Biol Int 2020; 44(6): 1267-82.
[http://dx.doi.org/10.1002/cbin.11340] [PMID: 32162758]
[18]
Roskoski R Jr. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol Res 2019; 139: 395-411.
[http://dx.doi.org/10.1016/j.phrs.2018.11.014] [PMID: 30500458]
[19]
Levine KM, Ding K, Chen L, Oesterreich S. FGFR4: A promising therapeutic target for breast cancer and other solid tumors. Pharmacol Ther 2020; 214: 107590.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107590] [PMID: 32492514]
[20]
Tiong KH, Tan BS, Choo HL, et al. Fibroblast growth factor receptor 4 (FGFR4) and Fibroblast Growth Factor 19 (FGF19) autocrine enhance breast cancer cells survival. Oncotarget 2016; 7(36): 57633-50.
[http://dx.doi.org/10.18632/oncotarget.9328] [PMID: 27192118]
[21]
Desnoyers LR, Pai R, Ferrando RE, et al. Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models. Oncogene 2008; 27(1): 85-97.
[http://dx.doi.org/10.1038/sj.onc.1210623] [PMID: 17599042]
[22]
Zhou W, Yu X, Sun S, et al. Increased expression of MMP-2 and MMP-9 indicates poor prognosis in glioma recurrence. Biomed Pharmacother 2019; 118: 109369.
[http://dx.doi.org/10.1016/j.biopha.2019.109369] [PMID: 31545229]
[23]
Li S, Luo W. Matrix metalloproteinase 2 contributes to aggressive phenotype, epithelial-mesenchymal transition and poor outcome in nasopharyngeal carcinoma. OncoTargets Ther 2019; 12: 5701-11.
[http://dx.doi.org/10.2147/OTT.S202280] [PMID: 31410017]
[24]
Isaacson KJ, Martin Jensen M, Subrahmanyam NB, Ghandehari H. Matrix-metalloproteinases as targets for controlled delivery in cancer: An analysis of upregulation and expression. J Control Release 2017; 259: 62-75.
[http://dx.doi.org/10.1016/j.jconrel.2017.01.034] [PMID: 28153760]
[25]
Tauro M, Lynch C. Cutting to the chase: How matrix metalloproteinase-2 activity controls breast-cancer-to-bone metastasis. Cancers (Basel) 2018; 10(6): 185.
[http://dx.doi.org/10.3390/cancers10060185] [PMID: 29874869]
[26]
Pucci C, Martinelli C, Ciofani G. Innovative approaches for cancer treatment: Current perspectives and new challenges. Ecancermedicalscience 2019; 13: 961.
[http://dx.doi.org/10.3332/ecancer.2019.961] [PMID: 31537986]
[27]
Choudhari AS, Mandave PC, Deshpande M, Ranjekar P, Prakash O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front Pharmacol 2020; 10: 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[28]
Lau KM, Yue GGL, Chan YY, et al. A review on the immunomodulatory activity of Acanthopanax senticosus and its active components. Chin Med 2019; 14(1): 25.
[http://dx.doi.org/10.1186/s13020-019-0250-0] [PMID: 31388349]
[29]
Singh D, Chaudhuri PK. Chemistry and pharmacology of Tinospora cordifolia Nat Prod Commun 2017; 12(2): 1934578X1701200.
[http://dx.doi.org/10.1177/1934578X1701200240] [PMID: 30428235]
[30]
Li F, Zhang N, Wu Q, et al. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy. Int J Mol Med 2017; 39(1): 199-207.
[http://dx.doi.org/10.3892/ijm.2016.2824] [PMID: 27959392]
[31]
Tan J, Luo J, Meng C, Jiang N, Cao J, Zhao J. Syringin exerts neuroprotective effects in a rat model of cerebral ischemia through the FOXO3a/NF-κB pathway. Int Immunopharmacol 2021; 90: 107268.
[http://dx.doi.org/10.1016/j.intimp.2020.107268] [PMID: 33316740]
[32]
Lee CH, Huang CW, Chang PC, et al. Reactive oxygen species mediate the chemopreventive effects of syringin in breast cancer cells. Phytomedicine 2019; 61: 152844.
[http://dx.doi.org/10.1016/j.phymed.2019.152844] [PMID: 31029906]
[33]
Bartmańska A, Tronina T, Popłoński J, Milczarek M, Filip-Psurska B, Wietrzyk J. Highly cancer selective antiproliferative activity of natural prenylated flavonoids. Molecules 2018; 23(11): 2922.
[http://dx.doi.org/10.3390/molecules23112922] [PMID: 30423918]
[34]
Singh K, Gangrade A, Jana A, Mandal BB, Das N. Design, synthesis, characterization, and antiproliferative activity of organoplatinum compounds bearing a 1,2,3-triazole ring. ACS Omega 2019; 4(1): 835-41.
[http://dx.doi.org/10.1021/acsomega.8b02849] [PMID: 31459480]
[35]
Johnson-Arbor K, Dubey R. Doxorubicin. StatPearls 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459232 [Accessed November 2, 2021].
[36]
Lalitha LJ, Sales TJ, Clarance PP, et al. In-vitro phytopharmacological and anti-cancer activity of Loranthus longiflorus desv. var. Falcatuskurz against the human lung cancer cells. J King Saud Univ Sci 2020; 32(1): 1246-53.
[http://dx.doi.org/10.1016/j.jksus.2019.11.022]
[37]
Badran A. tul-Wahab A, Zafar H, et al. Antipsychotics drug aripiprazole as a lead against breast cancer cell line (MCF-7) in vitro. PLoS One 2020; 15(8): e0235676.
[http://dx.doi.org/10.1371/journal.pone.0235676] [PMID: 32746451]
[38]
Alkasalias T, Moyano-Galceran L, Arsenian-Henriksson M, Lehti K. Fibroblasts in the tumor microenvironment: Shield or spear? Int J Mol Sci 2018; 19(5): 1532.
[http://dx.doi.org/10.3390/ijms19051532] [PMID: 29883428]
[39]
Czemplik M. Korzun-Chłopicka U, Szatkowski M, Działo M, Szopa J, Kulma A. Optimization of phenolic compounds extraction from flax shives and their effect on human fibroblasts. Evid Based Complementary Altern: eCAM 2017; 3526392.
[http://dx.doi.org/10.1155/2017/3526392]
[40]
Schirrmacher V. From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). Int J Oncol 2019; 54(2): 407-19. [Review
[http://dx.doi.org/10.3892/ijo.2018.4661] [PMID: 30570109]
[41]
Sufian AS, Ramasamy K, Ahmat N, Zakaria ZA, Yusof MIM. Isolation and identification of antibacterial and cytotoxic compounds from the leaves of Muntingia calabura L. J Ethnopharmacol 2013; 146(1): 198-204.
[http://dx.doi.org/10.1016/j.jep.2012.12.032] [PMID: 23276785]
[42]
Aventurado CA, Billones JB, Vasquez RD, Castillo AL. In ovo and in silico evaluation of the anti-angiogenic potential of syringin. Drug Des Devel Ther 2020; 14: 5189-204.
[http://dx.doi.org/10.2147/DDDT.S271952] [PMID: 33268982]
[43]
Kelley RK, Gane E, Assenat E, et al. A phase 2 study of Galunisertib (TGF-β1 receptor type I inhibitor) and sorafenib in patients with advanced hepatocellular carcinoma. Clin Transl Gastroenterol 2019; 10(7): e00056.
[http://dx.doi.org/10.14309/ctg.0000000000000056] [PMID: 31295152]
[44]
Wick A, Desjardins A, Suarez C, et al. Phase 1b/2a study of galunisertib, a small molecule inhibitor of transforming growth factor-beta receptor I, in combination with standard temozolomide-based radiochemotherapy in patients with newly diagnosed malignant glioma. Invest New Drugs 2020; 38(5): 1570-9.
[http://dx.doi.org/10.1007/s10637-020-00910-9] [PMID: 32140889]
[45]
Sicard AA, Suarez NG, Cappadocia L, Annabi B. Functional targeting of the TGF-βR1 kinase domain and downstream signaling: A role for the galloyl moiety of green tea-derived catechins in ES-2 ovarian clear cell carcinoma. J Nutr Biochem 2021; 87: 108518.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108518] [PMID: 33017609]
[46]
Allison KH. Molecular Testing in Breast Cancer. In: Coleman WB, Tsongalis GJ, Eds. Diagnostic Molecular Pathology. California: Academic Press 2017; pp. 257-69.
[http://dx.doi.org/10.1016/B978-0-12-800886-7.00021-2]
[47]
Loibl S, Gianni L. HER2-positive breast cancer. Lancet 2017; 389(10087): 2415-29.
[http://dx.doi.org/10.1016/S0140-6736(16)32417-5] [PMID: 27939064]
[48]
Dhritlahre RK, Saneja A. Recent advances in HER2-targeted delivery for cancer therapy. Drug Discov Today 2021; 26(5): 1319-29.
[http://dx.doi.org/10.1016/j.drudis.2020.12.014] [PMID: 33359114]
[49]
Matsumoto A, Hayashida T, Takahashi M, Jinno H, Kitagawa Y. Antitumor effect of lapatinib and cytotoxic agents by suppression of E2F1 in HER2 positive breast cancer. Mol Med Rep 2018; 18(1): 958-64.
[http://dx.doi.org/10.3892/mmr.2018.9068] [PMID: 29845287]
[50]
Hassan MS, Williams F, Awasthi N, et al. Combination effect of lapatinib with foretinib in HER2 and MET co-activated experimental esophageal adenocarcinoma. Sci Rep 2019; 9(1): 17608.
[http://dx.doi.org/10.1038/s41598-019-54129-7] [PMID: 31772236]
[51]
Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol 2018; 12(1): 3-20.
[http://dx.doi.org/10.1002/1878-0261.12155] [PMID: 29124875]
[52]
Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat 2012; 136(2): 331-45.
[http://dx.doi.org/10.1007/s10549-012-2289-9] [PMID: 23073759]
[53]
Hu L, Fan M, Shi S, et al. Dual target inhibitors based on EGFR: Promising anticancer agents for the treatment of cancers (2017-). Eur J Med Chem 2022; 227: 113963.
[http://dx.doi.org/10.1016/j.ejmech.2021.113963] [PMID: 34749202]
[54]
Minguet J, Smith KH, Bramlage P. Targeted therapies for treatment of non-small cell lung cancer-Recent advances and future perspectives. Int J Cancer 2016; 138(11): 2549-61.
[http://dx.doi.org/10.1002/ijc.29915] [PMID: 26537995]
[55]
Zhou J, Kwak KJ, Wu Z, et al. Plaur confers resistance to gefitinib through EGFR/P-AKT/survivin signaling pathway. Cell Physiol Biochem 2018; 47(5): 1909-24.
[http://dx.doi.org/10.1159/000491071] [PMID: 29961070]
[56]
Lang L, Teng Y. Fibroblast growth factor receptor 4 targeting in cancer: New insights into mechanisms and therapeutic strategies. Cells 2019; 8(1): 31.
[http://dx.doi.org/10.3390/cells8010031] [PMID: 30634399]
[57]
Garcia-Recio S, Thennavan A, East MP, et al. FGFR4 regulates tumor subtype differentiation in luminal breast cancer and metastatic disease. J Clin Invest 2020; 130(9): 4871-87.
[http://dx.doi.org/10.1172/JCI130323] [PMID: 32573490]
[58]
Yi C, Chen L, Lin Z, et al. Lenvatinib targets FGF receptor 4 to enhance antitumor immune response of anti–programmed cell death‐1 in HCC. Hepatology 2021; 74(5): 2544-60.
[http://dx.doi.org/10.1002/hep.31921] [PMID: 34036623]
[59]
Han L, Sheng B, Zeng Q, Yao W, Jiang Q. Correlation between MMP2 expression in lung cancer tissues and clinical parameters: A retrospective clinical analysis. BMC Pulm Med 2020; 20(1): 283.
[http://dx.doi.org/10.1186/s12890-020-01317-1] [PMID: 33115469]
[60]
Albelwi FF, Teleb M, Abu-Serie MM, et al. Halting tumor progression via novel non-hydroxamate triazole-based Mannich bases MMP-2/9 inhibitors; design, microwave-assisted synthesis, and biological evaluation. Int J Mol Sci 2021; 22(19): 10324.
[http://dx.doi.org/10.3390/ijms221910324] [PMID: 34638665]
[61]
Shen S, Kozikowski AP. Why hydroxamates may not be the best histone deacetylase inhibitors-what some may have forgotten or would rather forget? ChemMedChem 2016; 11(1): 15-21.
[http://dx.doi.org/10.1002/cmdc.201500486] [PMID: 26603496]
[62]
Fitzmaurice C, Abate D, Abbasi N, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017. JAMA Oncol 2019; 5(12): 1749-68.
[http://dx.doi.org/10.1001/jamaoncol.2019.2996] [PMID: 31560378]
[63]
Meegan MJ, O’Boyle NM. Special Issue “Anticancer Drugs”. Pharmaceuticals 2019; 12(3): 134.
[http://dx.doi.org/10.3390/ph12030134] [PMID: 31527393]
[64]
Wang X, Zhang H, Chen X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist 2019; 2: 141-60.
[http://dx.doi.org/10.20517/cdr.2019.10] [PMID: 34322663]
[65]
Li H, Qiu Z, Li F, Wang C. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis. Oncol Lett 2017; 14(5): 5865-70.
[http://dx.doi.org/10.3892/ol.2017.6924] [PMID: 29113219]
[66]
Madu CO, Wang S, Madu CO, Lu Y. Angiogenesis in breast cancer progression, diagnosis, and treatment. J Cancer 2020; 11(15): 4474-94.
[http://dx.doi.org/10.7150/jca.44313] [PMID: 32489466]
[67]
Koltai T, Cardone RA, Reshkin SJ. Synergy between low dose metronomic chemotherapy and the ph-centered approach against cancer. Int J Mol Sci 2019; 20(21): 5438.
[http://dx.doi.org/10.3390/ijms20215438] [PMID: 31683667]
[68]
Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6(1): 201.
[http://dx.doi.org/10.1038/s41392-021-00572-w] [PMID: 34054126]
[69]
Wang J, Xiang H, Lu Y, Wu T. Role and clinical significance of TGF β1 and TGF βR1 in malignant tumors (Review). Int J Mol Med 2021; 47(4): 55.
[http://dx.doi.org/10.3892/ijmm.2021.4888] [PMID: 33604683]
[70]
Albagoush SA, Limaiem F. HER2 StatPearls. Treasure Island: StatPearls Publishing 2021.
[71]
Thomas R, Weihua Z. Rethink of EGFR in cancer with its kinase independent function on board. Front Oncol 2019; 9: 800.
[http://dx.doi.org/10.3389/fonc.2019.00800] [PMID: 31508364]
[72]
Baraibar I, Mezquita L, Gil-Bazo I, Planchard D. Novel drugs targeting EGFR and HER2 exon 20 mutations in metastatic NSCLC. Crit Rev Oncol Hematol 2020; 148: 102906.
[http://dx.doi.org/10.1016/j.critrevonc.2020.102906] [PMID: 32109716]
[73]
Wang YP, Liu IJ, Chung MJ, Wu HC. Novel anti-EGFR scFv human antibody-conjugated immunoliposomes enhance chemotherapeutic efficacy in squamous cell carcinoma of head and neck. Oral Oncol 2020; 106: 104689.
[http://dx.doi.org/10.1016/j.oraloncology.2020.104689] [PMID: 32330686]
[74]
Zaid TM, Yeung TL, Thompson MS, et al. Identification of FGFR4 as a potential therapeutic target for advanced-stage, high-grade serous ovarian cancer. Clin Cancer Res 2013; 19(4): 809-20.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2736] [PMID: 23344261]
[75]
Ho HK, Pok S, Streit S, et al. Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and alpha-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention. J Hepatol 2009; 50(1): 118-27.
[http://dx.doi.org/10.1016/j.jhep.2008.08.015] [PMID: 19008009]
[76]
Webb AH, Gao BT, Goldsmith ZK, et al. Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer 2017; 17(1): 434.
[http://dx.doi.org/10.1186/s12885-017-3418-y] [PMID: 28633655]
[77]
Kaczorowska A. Miękus N, Stefanowicz J, Adamkiewicz-Drożyńska E. Selected matrix metalloproteinases (MMP-2, MMP-7) and their inhibitor (TIMP-2) in adult and pediatric cancer. Diagnostics (Basel) 2020; 10(8): 547.
[http://dx.doi.org/10.3390/diagnostics10080547] [PMID: 32751899]
[78]
Yu CF, Chen FH, Lu MH, Hong JH, Chiang CS. Dual roles of tumour cells-derived matrix metalloproteinase 2 on brain tumour growth and invasion. Br J Cancer 2017; 117(12): 1828-36.
[http://dx.doi.org/10.1038/bjc.2017.362] [PMID: 29065106]
[79]
Winer A, Adams S, Mignatti P. Matrix metalloproteinase inhibitors in cancer therapy: Turning past failures into future successes. Mol Cancer Ther 2018; 17(6): 1147-55.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0646] [PMID: 29735645]
[80]
García-Vilas JA, Quesada AR, Medina MÁ. Hydroxytyrosol targets extracellular matrix remodeling by endothelial cells and inhibits both ex vivo and in vivo angiogenesis. Food Chem 2017; 221: 1741-6.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.111] [PMID: 27979155]
[81]
Moore-Smith L, Pasche B. TGFBR1 signaling and breast cancer. J Mammary Gland Biol Neoplasia 2011; 16(2): 89-95.
[82]
Ferlay J, Colombet M, Soerjomataram I, et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 2019; 144(8): 1941-53.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[83]
Kopeć M, Abramczyk H. Angiogenesis-a crucial step in breast cancer growth, progression and dissemination by Raman imaging. Spectrochim Acta A Mol Biomol Spectrosc 2018; 198: 338-45.
[http://dx.doi.org/10.1016/j.saa.2018.02.058] [PMID: 29486925]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy