Generic placeholder image

Pharmaceutical Nanotechnology

Editor-in-Chief

ISSN (Print): 2211-7385
ISSN (Online): 2211-7393

Research Article

Effect of the Surfactant Charge on the Characteristics and Anticancer Effects of Docetaxel-loaded Poloxamer Polymeric Micelles

Author(s): Dwianto Harry Nugraha*, Kusnandar Anggadiredja and Heni Rachmawati

Volume 11, Issue 2, 2023

Published on: 04 January, 2023

Page: [167 - 179] Pages: 13

DOI: 10.2174/2211738511666221103152156

Price: $65

Abstract

Background: The main problem in the use of docetaxel as a potent chemotherapeutic agent is its solubility. Practically insoluble docetaxel requires a harsh formulation with high surfactant and alcohol concentrations to comply with the product quality. However, this formulation is inconvenient for patients. Polymeric micelles using a biocompatible polymer, poloxamer, seem to be a promising approach to increase the solubility of docetaxel, avoiding the high polysorbate and alcohol contents in the commercial product and yielding similar or better anticancer effects.

Objective: This study aims to investigate the effects of surfactant with three different charges on the particle size, chemical stability, in vitro drug release and anticancer efficacy of the docetaxelloaded poloxamer-based polymeric micelle formulation.

Methods: The freeze drying method was used to prepare polymeric micelles of docetaxel. Dynamic light scattering was used to determine particle size. The morphology of particles was investigated using a transmission electron microscope. High Pressure Liquid Chromatography was used to measure encapsulation efficiency, drug loading, and percentage of drug released. MTT assay was used to assess the anticancer effect.

Results: Nonionic and anionic surfactants tended to increase the particle size, while cationic surfactants had no effect. Furthermore, the addition of cationic surfactant increased the chemical stability of docetaxel. Poloxamer polymeric micelles have sustained drug release, and the addition of a surfactant can increase polymeric micelle drug release. All surfactant charges increased the anticancer efficacy of docetaxel compared to the commercial formulation Taxotere, except for the formulation prepared with an anionic surfactant.

Conclusion: The charge of the surfactant affects the particle size, chemical stability, drug release and anticancer properties of docetaxel-loaded poloxamer polymeric micelles. Cationic surfactant formulations have shown to be promising, resulting in the most stable and highest anticancer effect.

Graphical Abstract

[1]
World Health Organization. Cancer 2018. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed January 25, 2019).
[2]
Jones SE, Erban J, Overmoyer B, et al. Randomized phase III study of docetaxel compared with paclitaxel in metastatic breast cancer. J Clin Oncol 2005; 23(24): 5542-51.
[http://dx.doi.org/10.1200/JCO.2005.02.027] [PMID: 16110015]
[3]
Jones S, Holmes FA, O’Shaughnessy J, et al. Docetaxel with cyclophosphamide is associated with an overall survival benefit compared with doxorubicin and cyclophosphamide: 7-year follow-up of us oncology research trial 9735. J Clin Oncol 2009; 27(8): 1177-83.
[http://dx.doi.org/10.1200/JCO.2008.18.4028] [PMID: 19204201]
[4]
James ND, Sydes MR, Clarke NW, et al. Addition of docetaxel, zoledronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): Survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 2016; 387(10024): 1163-77.
[http://dx.doi.org/10.1016/S0140-6736(15)01037-5] [PMID: 26719232]
[5]
He C, Cai P, Li J, et al. Blood-brain barrier-penetrating amphiphilic polymer nanoparticles deliver docetaxel for the treatment of brain metastases of triple negative breast cancer. J Control Release 2017; 246: 98-109.
[http://dx.doi.org/10.1016/j.jconrel.2016.12.019] [PMID: 28017889]
[6]
Fang X. Chen, Sha X, Jiang, Chen Y, Ren. Pluronic P105/F127 mixed micelles for the delivery of docetaxel against taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation. Int J Nanomedicine 2013; 73: 73.
[http://dx.doi.org/10.2147/IJN.S38221]
[7]
Ma Y, Zheng Y, Zeng Z, Jiang L, Chen H, Liu R. Novel docetaxel-loaded nanoparticles based on PCL-Tween 80 copolymer for cancer treatment. Nanoscale Res Lett 2011; 6(1): 260.
[8]
Tagawa N, Sugiyama E, Tajima M, et al. Comparison of adverse events following injection of original or generic docetaxel for the treatment of breast cancer. Cancer Chemother Pharmacol 2017; 80(4): 841-9.
[http://dx.doi.org/10.1007/s00280-017-3425-3] [PMID: 28864856]
[9]
Elm’hadi C, Tanz R, Khmamouche MR, et al. Toxicities of docetaxel: Original drug versus generics—a comparative study about 81 cases. Springerplus 2016; 5(1): 732.
[http://dx.doi.org/10.1186/s40064-016-2351-x] [PMID: 27386229]
[10]
Therapeutic Goods Administration. Australian Public Assessment Report for Docetaxel 2013.
[11]
Sandoz Inc. Docetaxel Injection Prescribing Information 2021.
[12]
Shilpa Medicare. Docetaxel Injection (Non-Alcohol). Prescribing Information 2021.
[13]
Gothwal A, Khan I, Kesharwani P, Chourasia MK, Gupta U. Micelle-Based Drug Delivery for Brain Tumors. In: Nanotechnology-Based Targeted Drug Delivery Systems for Brain Tumors. Elsevier Inc. Amsterdam 2018.
[http://dx.doi.org/10.1016/B978-0-12-812218-1.00011-7]
[14]
Gulati N, Chaudhary A, Sharma A, Nagaich U, Deepak P. Polymeric micelles: Potential drug delivery devices. Indones J Pharm 2013; 222-37.
[15]
Zhang L, Tan L, Chen L, et al. A simple method to improve the stability of docetaxel micelles. Sci Rep 2016; 6(1): 36957.
[http://dx.doi.org/10.1038/srep36957] [PMID: 27833135]
[16]
Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 2013; 453(1): 198-214.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.042] [PMID: 22944304]
[17]
Mendonça DVC, Lage LMR, Lage DP, et al. Poloxamer 407 (Pluronic® F127)-based polymeric micelles for amphotericin B: In vitro biological activity, toxicity and in vivo therapeutic efficacy against murine tegumentary leishmaniasis. Exp Parasitol 2016; 169: 34-42.
[http://dx.doi.org/10.1016/j.exppara.2016.07.005] [PMID: 27427166]
[18]
Lucia A, Toloza AC, Guzmán E, Ortega F, Rubio RG. Novel polymeric micelles for insect pest control: Encapsulation of essential oil monoterpenes inside a triblock copolymer shell for head lice control. PeerJ 2017; 5: e3171.
[http://dx.doi.org/10.7717/peerj.3171] [PMID: 28439460]
[19]
Meng X, Liu J, Yu X, Li J, Lu X, Shen T. Pluronic F127 and D-α-Tocopheryl Polyethylene Glycol Succinate (TPGS) mixed micelles for targeting drug delivery across the blood brain barrier. Sci Rep 2017; 7(1): 2964.
[http://dx.doi.org/10.1038/s41598-017-03123-y] [PMID: 28592843]
[20]
Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997; 388(6645): 860-2.
[http://dx.doi.org/10.1038/42218] [PMID: 9278046]
[21]
Russo E, Villa C. Poloxamer hydrogels for biomedical applications. Pharmaceutics 2019; 11(12): 671.
[http://dx.doi.org/10.3390/pharmaceutics11120671] [PMID: 31835628]
[22]
Giuliano E, Paolino D, Fresta M, Cosco D. Drug-loaded biocompatible nanocarriers embedded in poloxamer 407 hydrogels as therapeutic formulations. Medicines 2018; 6: 7.
[23]
Zarrintaj P, Ramsey JD, Samadi A, et al. Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomater 2020; 110: 37-67.
[http://dx.doi.org/10.1016/j.actbio.2020.04.028] [PMID: 32417265]
[24]
Mofizur Rahman M, Moniruzzaman M, Haque S. Effect of Poloxamer on release of poorly water soluble drug Loratadine from solid dispersion: Kneading method. Maced Pharm Bull 2015; 61: 45-50.
[http://dx.doi.org/10.33320/maced.pharm.bull.2015.61.01.001]
[25]
Szafraniec J, Antosik A, Knapik-Kowalczuk J, et al. The self-assembly phenomenon of poloxamers and its effect on the dissolution of a poorly soluble drug from solid dispersions obtained by solvent methods. Pharmaceutics 2019; 11(3): 130.
[http://dx.doi.org/10.3390/pharmaceutics11030130] [PMID: 30893859]
[26]
Singla P, Singh O, Sharma S, et al. Temperature-dependent solubilization of the hydrophobic antiepileptic drug lamotrigine in different pluronic micelles—a spectroscopic, heat transfer method, small-angle neutron scattering, dynamic light scattering, and in vitro release study. ACS Omega 2019; 4(6): 11251-62.
[http://dx.doi.org/10.1021/acsomega.9b00939] [PMID: 31460227]
[27]
Kreidel RN, Duque MD, Serra CHR, et al. Dissolution enhancement and characterization of nimodipine solid dispersions with poloxamer 407 or PEG 6000. J Dispers Sci Technol 2012; 33(9): 1354-9.
[http://dx.doi.org/10.1080/01932691.2011.605663]
[28]
Dugar RP, Gajera BY, Dave RH. Fusion method for solubility and dissolution rate enhancement of ibuprofen using block copolymer poloxamer 407. AAPS PharmSciTech 2016; 17(6): 1428-40.
[http://dx.doi.org/10.1208/s12249-016-0482-6] [PMID: 26817763]
[29]
Dutra LMU, Ribeiro MENP, Cavalcante IM, et al. Binary mixture micellar systems of F127 and P123 for griseofulvin solubilisation. Polímeros 2015; 25(5): 433-9.
[http://dx.doi.org/10.1590/0104-1428.1831]
[30]
Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomedicine 2010; 6(6): 714-29.
[http://dx.doi.org/10.1016/j.nano.2010.05.005] [PMID: 20542144]
[31]
Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. J Control Release 2012; 159(3): 312-23.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.012] [PMID: 22285551]
[32]
Zhang Z, Wei X, Zhang X, Lu W. p-Hydroxybenzoic acid (p-HA) modified polymeric micelles for brain-targeted docetaxel delivery. Chin Sci Bull 2013; 58(21): 2651-6.
[http://dx.doi.org/10.1007/s11434-013-5760-z]
[33]
Hussain MD. Saxena. Poloxamer 407/TPGS mixed micelles for delivery of gambogic acid to breast and multidrug-resistant cancer. Int J Nanomedicine 2012; 7: 713-21.
[http://dx.doi.org/10.2147/IJN.S28745] [PMID: 22359450]
[34]
Miura Y, Takenaka T, Toh K, et al. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs to glioblastoma through the blood-brain tumor barrier. ACS Nano 2013; 7(10): 8583-92.
[http://dx.doi.org/10.1021/nn402662d] [PMID: 24028526]
[35]
Li AJ, Zheng YH, Liu GD, Liu WS, Cao PC, Bu ZF. Efficient delivery of docetaxel for the treatment of brain tumors by cyclic RGD-tagged polymeric micelles. Mol Med Rep 2015; 11(4): 3078-86.
[http://dx.doi.org/10.3892/mmr.2014.3017] [PMID: 25434368]
[36]
Almeida M, Magalhães M, Veiga F, Figueiras A. Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer. J Polym Res 2018; 25(1): 31.
[http://dx.doi.org/10.1007/s10965-017-1426-x]
[37]
Chen B, Le W, Wang Y, et al. Targeting negative surface charges of cancer cells by multifunctional nanoprobes. Theranostics 2016; 6(11): 1887-98.
[http://dx.doi.org/10.7150/thno.16358] [PMID: 27570558]
[38]
Johansson BB. Blood-brain barrier: Role of brain endothelial surface charge and glycocalyx. In: Ischemic Blood Flow Brain. 2001; pp. 33-8.
[http://dx.doi.org/10.1007/978-4-431-67899-1_5]
[39]
He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010; 31(13): 3657-66.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.065] [PMID: 20138662]
[40]
Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomedicine 2012; 7: 5577-91.
[http://dx.doi.org/10.2147/IJN.S36111] [PMID: 23144561]
[41]
Harush-Frenkel O, Rozentur E, Benita S, Altschuler Y. Surface charge of nanoparticles determines their endocytic and transcytotic pathway in polarized MDCK cells. Biomacromolecules 2008; 9(2): 435-43.
[http://dx.doi.org/10.1021/bm700535p] [PMID: 18189360]
[42]
Mourya VK, Inamdar N, Nawale RB, Kulthe SS. Polymeric Micelles: General Considerations and their Applications Indian J Pharm Educ Res 2011; 45(2): 128-38.
[43]
Huynh-Ba K. Handbook of Stability Testing in Pharmaceutical Development. 2009.
[http://dx.doi.org/10.1007/978-0-387-85627-8]
[44]
USP. Docetaxel Injection Monograph. USP43-NF39. 2021.
[45]
Jamalzadeh L, Ghafoori H, Aghamaali M, Sariri R. Induction of apoptosis in human breast cancer MCF-7 cells by a semi- synthetic derivative of artemisinin: A caspase-related mechanism. Iran J Biotechnol 2017; 15(3): 157-65.
[http://dx.doi.org/10.15171/ijb.1567] [PMID: 29845064]
[46]
Batrakova EV, Kabanov AV. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J Control Release 2008; 130: 98-106.
[47]
Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood-brain barrier: The role of nanomaterials in treating neurological diseases. Adv Mater 2018; 30(46): 1801362.
[http://dx.doi.org/10.1002/adma.201801362] [PMID: 30066406]
[48]
Pitto-Barry A, Barry NPE. Pluronic® block-copolymers in medicine: From chemical and biological versatility to rationalisation and clinical advances. Polym Chem 2014; 5(10): 3291-7.
[http://dx.doi.org/10.1039/C4PY00039K]
[49]
Kulkarni SA, Feng SS. Effects of surface modification on delivery efficiency of biodegradable nanoparticles across the blood-brain barrier. Nanomedicine 2011; 6(2): 377-94.
[http://dx.doi.org/10.2217/nnm.10.131] [PMID: 21385139]
[50]
Le W, Chen B, Cui Z, Liu Z, Shi D. Detection of cancer cells based on glycolytic-regulated surface electrical charges. Biophys Rep 2019; 5(1): 10-8.
[http://dx.doi.org/10.1007/s41048-018-0080-0]
[51]
Saengkrit N, Saesoo S, Srinuanchai W, Phunpee S, Ruktanonchai UR. Influence of curcumin-loaded cationic liposome on anticancer activity for cervical cancer therapy. Colloids Surf B Biointerfaces 2014; 114: 349-56.
[http://dx.doi.org/10.1016/j.colsurfb.2013.10.005] [PMID: 24246195]
[52]
Sulek MW, Wasilewski T. Kurzydłowski KJ. The effect of concentration on lubricating properties of aqueous solutions of sodium lauryl sulfate and ethoxylated sodium lauryl sulfate. Tribol Lett 2010; 40(3): 337-45.
[http://dx.doi.org/10.1007/s11249-010-9668-3]
[53]
Gubitosa J, Rizzi V, Fini P, Cosma P. Hair care cosmetics: From traditional shampoo to solid clay and herbal shampoo, A review. Cosmetics 2019; 6(1): 13.
[http://dx.doi.org/10.3390/cosmetics6010013]
[54]
Silva A, Martins-Gomes C, Coutinho T, et al. Soft cationic nanoparticles for drug delivery: Production and cytotoxicity of solid lipid nanoparticles (SLNs). Appl Sci 2019; 9(20): 4438.
[http://dx.doi.org/10.3390/app9204438]
[55]
Shane HL, Lukomska E, Stefaniak AB, Anderson SE. Divergent hypersensitivity responses following topical application of the quaternary ammonium compound, didecyldimethylammonium bromide. J Immunotoxicol 2017; 14(1): 204-14.
[http://dx.doi.org/10.1080/1547691X.2017.1397826] [PMID: 29124973]
[56]
Qiao H, Li B, Zhang H, Liu D, Diao H, Sun G. Effects of the equimolarly mixed cationic-nonionic surfactants of didodecyldimethylammonium bromide and polyoxyethylene sorbitan monooleate 80 on serum proteins—spectroscopic study. J Photochem Photobiol B Biol 2018; 187: 151-61.
[57]
Abolmaali SS, Tamaddon AM, Salmanpour M, Mohammadi S, Dinarvand R. Block ionomer micellar nanoparticles from double hydrophilic copolymers, classifications and promises for delivery of cancer chemotherapeutics. Eur J Pharm Sci 2017; 104: 393-405.
[http://dx.doi.org/10.1016/j.ejps.2017.04.009] [PMID: 28416470]
[58]
Raval N, Maheshwari R, Kalyane D, Youngren-Ortiz SR, Chougule MB, Tekade RK. Importance of physicochemical characterization of nanoparticles in pharmaceutical product development. In: Basic Fundamentals of Drug Delivery Advances in Pharmaceutical Product Development and Research:. Amsterdam: Elsevier Inc. 2018; pp. 369-400.
[http://dx.doi.org/10.1016/B978-0-12-817909-3.00010-8]
[59]
Gupta V, Trivedi P. In vitro and in vivo characterization of pharmaceutical topical nanocarriers containing anticancer drugs for skin cancer treatment. In: Lipid Nanocarriers for Drug Targeting. Amsterdam: Elsevier Inc. 2018; pp. 563-627.
[http://dx.doi.org/10.1016/B978-0-12-813687-4.00015-3]
[60]
Krstić M, Medarević Đ, Đuriš J, Ibrić S. Chapter 12 - Self-nanoemulsifying drug delivery systems (SNEDDS) and self-microemulsifying drug delivery systems (SMEDDS) as lipid nanocarriers for improving dissolution rate and bioavailability of poorly soluble drugs. In: Lipid Nanocarriers for Drug Targeting. 2018; pp. 473-508.
[http://dx.doi.org/10.1016/B978-0-12-813687-4.00012-8]
[61]
Gumustas M, Sengel-Turk CT, Gumustas A, Ozkan SA, Uslu B. Effect of Polymer-Based Nanoparticles on the Assay of Antimicrobial Drug Delivery Systems. In: Multifunctional Systems for Combined Delivery, Biosensing and Diagnostics:. Amsterdam: Elsevier Inc. 2017; pp. 67-108.
[http://dx.doi.org/10.1016/B978-0-323-52725-5.00005-8]
[62]
Bodratti A, Alexandridis P. Formulation of poloxamers for drug delivery. J Funct Biomater 2018; 9(1): 11.
[http://dx.doi.org/10.3390/jfb9010011] [PMID: 29346330]
[63]
Ćirin D, Krstonošić V, Poša M. Properties of poloxamer 407 and polysorbate mixed micelles: Influence of polysorbate hydrophobic chain. J Ind Eng Chem 2017; 47: 194-201.
[http://dx.doi.org/10.1016/j.jiec.2016.11.032]
[64]
Suksiriworapong J, Rungvimolsin T. A-gomol A, Junyaprasert VB, Chantasart D. Development and characterization of lyophilized diazepam-loaded polymeric micelles. AAPS PharmSciTech 2014; 15(1): 52-64.
[http://dx.doi.org/10.1208/s12249-013-0032-4] [PMID: 24092522]
[65]
Ivanova R, Alexandridis P, Lindman B. Interaction of poloxamer block copolymers with cosolvents and surfactants. Colloids Surf A Physicochem Eng Asp 2001; 183-185: 41-53.
[http://dx.doi.org/10.1016/S0927-7757(01)00538-6]
[66]
Almgren M, Van Stam J, Lindblad C, Li P, Stilbs P, Bahadur P. Aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly-(ethy-lene oxide) triblock copolymers in the presence of sodium dodecyl sulfate in aqueous solution. J Phys Chem 1991; 95(14): 5677-84.
[http://dx.doi.org/10.1021/j100167a055]
[67]
Caria A, Regev O, Khan A. Surfactant-polymer interactions: Phase diagram and fusion of vesicle in the didodecyldimethylammonium bromide-poly(ethylene oxide)-water system. J Colloid Interface Sci 1998; 200(1): 19-30.
[http://dx.doi.org/10.1006/jcis.1997.5310]
[68]
Rao BM, Chakraborty A, Srinivasu MK, et al. A stability-indicating HPLC assay method for docetaxel. J Pharm Biomed Anal 2006; 41(2): 676-81.
[http://dx.doi.org/10.1016/j.jpba.2006.01.011] [PMID: 16473490]
[69]
Medarević DP, Kachrimanis K, Mitrić M, Djuriš J, Djurić Z, Ibrić S. Dissolution rate enhancement and physicochemical characterization of carbamazepine-poloxamer solid dispersions. Pharm Dev Technol 2016; 21(3): 268-76.
[http://dx.doi.org/10.3109/10837450.2014.996899] [PMID: 25582577]
[70]
Li Z, Huang Y, Peng S, et al. Liposomes consisting of pluronic F127 and phospholipid: Effect of matrix on morphology, stability and curcumin delivery. J Dispers Sci Technol 2020; 41(2): 207-13.
[http://dx.doi.org/10.1080/01932691.2018.1562353]
[71]
Bezuglaya E, Lyapunov N, Lysokobylka O, et al. Interaction of surfactants with poloxamers 338 and its effect on some properties of cream base. ScienceRise: Pharmaceutical Science 2021; 2021(6 (34)): 4-19.
[http://dx.doi.org/10.15587/2519-4852.2021.249312]
[72]
Allotey-Babington GL, Nettey H, D’Sa S, Braz Gomes K, D’Souza MJ. Cancer chemotherapy: Effect of poloxamer modified nanoparticles on cellular function. J Drug Deliv Sci Technol 2018; 47: 181-92.
[73]
El-Gogary I, Gaber AAA, Nasr M. Polymeric nanocapsular baicalin: Chemometric optimization, physicochemical characterization and mechanistic anticancer approaches on breast cancer cell lines. Sci Rep 2019; 9: 1-14.
[http://dx.doi.org/10.1038/s41598-019-47586-7]
[74]
Serbest G, Horwitz J, Jost M, Barbee KA. Mechanisms of cell death and neuroprotection by poloxamer 188 after mechanical trauma. FASEB J 2006; 20(2): 308-10.
[http://dx.doi.org/10.1096/fj.05-4024fje] [PMID: 16371428]
[75]
Rello-Varona S, Herrero-Martín D, Lagares-Tena L, et al. The importance of being dead: Cell death mechanisms assessment in anti-sarcoma therapy. Front Oncol 2015; 5: 82.
[http://dx.doi.org/10.3389/fonc.2015.00082] [PMID: 25905041]
[76]
Balvan J, Krizova A, Gumulec J, et al. Multimodal holographic microscopy: Distinction between apoptosis and oncosis. PLoS One 2015; 10(3): e0121674.
[http://dx.doi.org/10.1371/journal.pone.0121674] [PMID: 25803711]
[77]
Moss DK, Betin VM, Malesinski SD, Lane JD. A novel role for microtubules in apoptotic chromatin dynamics and cellular fragmentation. J Cell Sci 2006; 119(11): 2362-74.
[http://dx.doi.org/10.1242/jcs.02959] [PMID: 16723742]
[78]
Atkin-Smith GK, Poon IKH. Disassembly of the Dying: Mechanisms and Functions. Trends Cell Biol 2017; 27(2): 151-62.
[http://dx.doi.org/10.1016/j.tcb.2016.08.011] [PMID: 27647018]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy