Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Mini-Review Article

A Comprehensive Review of Nanoemulsion Applications and their Recent Advancements

Author(s): Prativa Das*, Jnyana Ranjan Panda, Ch Niranjan Patro, Baby Sahu and Soumya Stuti Patnaik

Volume 8, Issue 3, 2023

Published on: 25 November, 2022

Page: [209 - 223] Pages: 15

DOI: 10.2174/2405461508666221103121439

Price: $65

Abstract

Background: Nanoemulsions are submicron-sized suspensions that are being studied extensively as pharmacological vehicles for enhancing the outcomes of drug delivery. Nanoemulsions are isotropic thermodynamic systems in which two immiscible liquids (water and oil) are combined to form a single phase using pertinent surfactants. Nano-emulsions are resilient to sedimentation or creaming due to their nano-droplet size. Ostwald ripening represents the principal process accountable for the disintegration of nanoemulsion. Droplet diameters in nanoemulsions typically range from 20 to 500 nanometers. The diameter and surface parameters of nanoemulsion droplets play are of paramount significance in determining the bioactivity of the formulation. Nanoemulsion offers a promising future in various industries like cosmetology, diagnosis, pharmacological regimens, and biomedicine in the future.

Methods: Pharmaceutical surfactants are utilized to synthesize nanoemulsions, which are Generally Regarded As Safe (GRAS). The stability of the NEs against coalescence mainly depends on the type and concentration of the surfactant employed. Nanoemulsions are formulated from a variety of oils, notably natural, semi-synthetic, and synthetic oils.

Results: Over the past decade, various patents and clinical research have exemplified the applications of the NE system. Their application as a drug delivery entity in the ophthalmic, topical, transdermal, intranasal, intravenous, and oral routes is widely appreciated. Also, they have gained remarkable importance in the cosmetic industry.

Conclusion: This review presents the importance of various components of NE and their importance in droplet formation and provides a brief insight into various drug administration routes of NE.

Graphical Abstract

[1]
Karthik P, Ezhilarasi PN, Anandharamakrishnan C. Challenges associated in stability of food grade nanoemulsions. Crit Rev Food Sci Nutr 2017; 57(7): 1435-50.
[http://dx.doi.org/10.1080/10408398.2015.1006767] [PMID: 26114624]
[2]
Chatterjee B, Hamed Almurisi S, Ahmed Mahdi Dukhan A, Mandal UK, Sengupta P. Controversies with self-emulsifying drug delivery system from pharmacokinetic point of view. Drug Deliv 2016; 23(9): 3639-52.
[http://dx.doi.org/10.1080/10717544.2016.1214990] [PMID: 27685505]
[3]
Wilson RJ, Li Y, Yang G, Zhao CX. Nanoemulsions for drug delivery. Particuology 2022; 64: 85-97.
[http://dx.doi.org/10.1016/j.partic.2021.05.009]
[4]
Sabjan KB, Munawar SM, Rajendiran D, Vinoji SK, Kasinathan K. Nanoemulsion as oral drug delivery - A Review. Curr Drug Res Rev 2020; 12(1): 4-15.
[http://dx.doi.org/10.2174/2589977511666191024173508] [PMID: 31774040]
[5]
Sadeq ZA. Review on nanoemulsion: preparation and evaluation. Int J Drug Deliv Technol 2020; 10(1): 187-9.
[http://dx.doi.org/10.25258/ijddt.10.1.33]
[6]
Pandey P, Gulati N, Makhija M, Purohit D, Dureja H. Nanoemulsion: A novel drug delivery approach for enhancement of bioavailability. Recent Pat Nanotechnol 2020; 14(4): 276-93.
[http://dx.doi.org/10.2174/1872210514666200604145755] [PMID: 32496999]
[7]
Singh Y, Meher JG, Raval K, et al. Nanoemulsion: Concepts, development and applications in drug delivery. J Control Release 2017; 252: 28-49.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.008] [PMID: 28279798]
[8]
Yukuyama MN, Kato ETM, Lobenberg R, Bou-Chacra NA. Challenges and future prospects of nanoemulsion as a drug delivery system. Curr Pharm Des 2017; 23(3): 495-508.
[http://dx.doi.org/10.2174/1381612822666161027111957] [PMID: 27799037]
[9]
Gurpret K, Singh SK. Review of nanoemulsion formulation and characterization techniques. Indian J Pharm Sci 2018; 80(5): 781-9.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000422]
[10]
Yang M, Gu Y, Yang D, Tang X, Liu J. Development of triptolide-nanoemulsion gels for percutaneous administration: physicochemical, transport, pharmacokinetic and pharmacodynamic characteristics. J Nanobiotechnology 2017; 15(1): 88.
[http://dx.doi.org/10.1186/s12951-017-0323-0] [PMID: 29202753]
[11]
Erramreddy VV, Tu S, Ghosh S. Rheological reversibility and long-term stability of repulsive and attractive nanoemulsion gels. RSC Advances 2017; 7(75): 47818-32.
[http://dx.doi.org/10.1039/C7RA09605D]
[12]
Patel A, Mohanan A, Ghosh S. Effect of protein type, concentration and oil droplet size on the formation of repulsively jammed elastic nanoemulsion gels. Soft Matter 2019; 15(47): 9762-75.
[http://dx.doi.org/10.1039/C9SM01650C] [PMID: 31742298]
[13]
Moghaddasi F, Housaindokht MR, Darroudi M, Bozorgmehr MR, Sadeghi A. Synthesis of nano curcumin using black pepper oil by O/W nanoemulsion technique and investigation of their biological activities. Lebensm Wiss Technol 2018; 92: 92-100.
[http://dx.doi.org/10.1016/j.lwt.2018.02.023]
[14]
Hanifah M, Jufri M. Formulation and stability testing of nanoemulsion lotion containing Centella asiatica extract. J Young Pharm 2018; 10(4): 404-8.
[http://dx.doi.org/10.5530/jyp.2018.10.89]
[15]
Al Ayoub Y, Gopalan RC, Najafzadeh M, et al. Development and evaluation of nanoemulsion and microsuspension formulations of curcuminoids for lung delivery with a novel approach to understanding the aerosol performance of nanoparticles. Int J Pharm 2019; 557: 254-63.
[http://dx.doi.org/10.1016/j.ijpharm.2018.12.042] [PMID: 30597263]
[16]
Arbain NH, Basri M, Salim N, Wui WT, Abdul Rahman MB. Development and characterization of aerosol nanoemulsion system encapsulating low water soluble quercetin for lung cancer treatment. Mater Today Proc 2018; 5: S137-42.
[http://dx.doi.org/10.1016/j.matpr.2018.08.055]
[17]
El-Messery TM, Altuntas U, Altin G, Özçelik B. The effect of spray-drying and freeze-drying on encapsulation efficiency, in vitro bioaccessibility and oxidative stability of krill oil nanoemulsion system. Food Hydrocoll 2020; 106: 105890.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105890]
[18]
Teo A, Lam Y, Lee SJ, Goh KKT. Spray drying of whey protein stabilized nanoemulsions containing different wall materials – maltodextrin or trehalose. Lebensm Wiss Technol 2021; 136: 110344.
[http://dx.doi.org/10.1016/j.lwt.2020.110344]
[19]
Rajpoot P, Pathak K, Bali V. Therapeutic applications of nanoemulsion based drug delivery systems: a review of patents in last two decades. Recent Pat Drug Deliv Formul 2011; 5(2): 163-72.
[http://dx.doi.org/10.2174/187221111795471427] [PMID: 21361870]
[20]
Montenegro L, Lai F, Offerta A, et al. From nanoemulsions to nanostructured lipid carriers: A relevant development in dermal delivery of drugs and cosmetics. J Drug Deliv Sci Technol 2016; 32: 100-12.
[http://dx.doi.org/10.1016/j.jddst.2015.10.003]
[21]
Marsup P, Yeerong K, Neimkhum W, et al. Enhancement of chemical stability and dermal delivery of Cordyceps militaris extracts by nanoemulsion. Nanomaterials 2020; 10(8): 1565.
[http://dx.doi.org/10.3390/nano10081565] [PMID: 32784892]
[22]
Zaid Alkilani A, Hamed R, Hussein G, Alnadi S. Nanoemulsion-based patch for the dermal delivery of ascorbic acid. J Dispers Sci Technol 2021; 2021: 1-11.
[http://dx.doi.org/10.1080/01932691.2021.1880924]
[23]
Shaker DS, Ishak RAH, Ghoneim A, Elhuoni MA. Nanoemulsion: A review on mechanisms for the transdermal delivery of hydrophobic and hydrophilic drugs. Sci Pharm 2019; 87(3): 17.
[http://dx.doi.org/10.3390/scipharm87030017]
[24]
Rai VK, Mishra N, Yadav KS, Yadav NP. Nanoemulsion as pharmaceutical carrier for dermal and transdermal drug delivery: formulation development, stability issues, basic considerations and applications. J Control Release 2018; 270: 203-25.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.049] [PMID: 29199062]
[25]
Yang Q, Liu S, Gu Y, et al. Development of sulconazole-loaded nanoemulsions for enhancement of transdermal permeation and antifungal activity. Int J Nanomedicine 2019; 14: 3955-66.
[http://dx.doi.org/10.2147/IJN.S206657] [PMID: 31239665]
[26]
Narala A, Suram D, Veerabrahma K. Pharmacokinetic and pharmacodynamic studies of iloperidone-loaded lipid nanoemulsions via oral route of administration. Drug Dev Ind Pharm 2021; 47(4): 618-25.
[http://dx.doi.org/10.1080/03639045.2021.1908332] [PMID: 33784221]
[27]
Gupta BK, Kumar S, Kaur H, Ali J, Baboota S. Attenuation of Oxidative Damage by Coenzyme Q 10 Loaded Nanoemulsion Through Oral Route for the Management of Parkinson’s Disease. Rejuvenation Res 2018; 21(3): 232-48.
[http://dx.doi.org/10.1089/rej.2017.1959] [PMID: 28844183]
[28]
Lin PY, Chen KH, Miao YB, et al. Phase‐changeable nanoemulsions for oral delivery of a therapeutic peptide: toward targeting the pancreas for antidiabetic treatments using lymphatic transport. Adv Funct Mater 2019; 29(13): 1809015.
[http://dx.doi.org/10.1002/adfm.201809015]
[29]
Séguy L, Groo AC, Goux D, Hennequin D, Malzert-Fréon A. Design of non-haemolytic nanoemulsions for intravenous administration of hydrophobic APIs. Pharmaceutics 2020; 12(12): 1141.
[http://dx.doi.org/10.3390/pharmaceutics12121141] [PMID: 33255606]
[30]
Choudhury H, Gorain B, Chatterjee B, Mandal UK, Sengupta P, Tekade RK. Pharmacokinetic and pharmacodynamic features of nanoemulsion following oral, intravenous, topical and nasal route. Curr Pharm Des 2017; 23(17): 2504-31.
[http://dx.doi.org/10.2174/1381612822666161201143600] [PMID: 27908273]
[31]
Chatterjee B, Gorain B, Mohananaidu K, Sengupta P, Mandal UK, Choudhury H. Targeted drug delivery to the brain via intranasal nanoemulsion: Available proof of concept and existing challenges. Int J Pharm 2019; 565: 258-68.
[http://dx.doi.org/10.1016/j.ijpharm.2019.05.032] [PMID: 31095983]
[32]
Bahadur S, Pardhi DM, Rautio J, Rosenholm JM, Pathak K. Intranasal nanoemulsions for direct nose-to-brain delivery of actives for CNS disorders. Pharmaceutics 2020; 12(12): 1230.
[http://dx.doi.org/10.3390/pharmaceutics12121230] [PMID: 33352959]
[33]
Costa CP, Moreira JN, Sousa Lobo JM, Silva AC. Intranasal delivery of nanostructured lipid carriers, solid lipid nanoparticles and nanoemulsions: A current overview of in vivo studies. Acta Pharm Sin B 2021; 11(4): 925-40.
[http://dx.doi.org/10.1016/j.apsb.2021.02.012] [PMID: 33996407]
[34]
Shah K, Chan LW, Wong TW. Critical physicochemical and biological attributes of nanoemulsions for pulmonary delivery of rifampicin by nebulization technique in tuberculosis treatment. Drug Deliv 2017; 24(1): 1631-47.
[http://dx.doi.org/10.1080/10717544.2017.1384298] [PMID: 29063794]
[35]
Qin X, Zhou Y, Wang Y, et al. Preparation and characterization of protein-loaded pfc nanoemulsions for the treatment of heart diseases by pulmonary administration. Eur J Pharm Sci 2021; 158: 105690.
[http://dx.doi.org/10.1016/j.ejps.2020.105690] [PMID: 33359617]
[36]
Li Z, Chen G, Ding L, et al. Increased Survival by Pulmonary Treatment of Established Lung Metastases with Dual STAT3/CXCR4 Inhibition by siRNA Nanoemulsions. Mol Ther 2019; 27(12): 2100-10.
[http://dx.doi.org/10.1016/j.ymthe.2019.08.008] [PMID: 31481310]
[37]
Arbain NH, Salim N, Masoumi HRF, Wong TW, Basri M, Abdul Rahman MB. In vitro evaluation of the inhalable quercetin loaded nanoemulsion for pulmonary delivery. Drug Deliv Transl Res 2019; 9(2): 497-507.
[http://dx.doi.org/10.1007/s13346-018-0509-5] [PMID: 29541999]
[38]
Ding L, Tang S, Tang W, et al. Perfluorocarbon nanoemulsions enhance therapeutic siRNA delivery in the treatment of pulmonary fibrosis. Adv Sci 2022; 9(8): 2103676.
[http://dx.doi.org/10.1002/advs.202103676] [PMID: 34994102]
[39]
Arbain NH, Salim N, Wui WT, Basri M, Rahman MBA. Optimization of quercetin loaded palm oil ester based nanoemulsion formulation for pulmonary delivery. J Oleo Sci 2018; 67(8): 933-40.
[http://dx.doi.org/10.5650/jos.ess17253] [PMID: 30012897]
[40]
Gawin-Mikołajewicz A, Nartowski KP, Dyba AJ, Gołkowska AM, Malec K, Karolewicz B. Ophthalmic nanoemulsions: from composition to technological processes and quality control. Mol Pharm 2021; 18(10): 3719-40.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00650] [PMID: 34533317]
[41]
Dhahir RK, Al-Nima AM, Al-Bazzaz F. Nanoemulsions as ophthalmic drug delivery systems. Turkish J Pharm Sci 2021; 18(5): 652-64.
[http://dx.doi.org/10.4274/tjps.galenos.2020.59319] [PMID: 34708428]
[42]
Gallarate M, Chirio D, Bussano R, et al. Development of O/W nanoemulsions for ophthalmic administration of timolol. Int J Pharm 2013; 440(2): 126-34.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.015] [PMID: 23078859]
[43]
Choradiya BR, Patil SB. A comprehensive review on nanoemulsion as an ophthalmic drug delivery system. J Mol Liq 2021; 339: 116751.
[http://dx.doi.org/10.1016/j.molliq.2021.116751]
[44]
Zhang J, Liu Z, Tao C, et al. Cationic nanoemulsions with prolonged retention time as promising carriers for ophthalmic delivery of tacrolimus. Eur J Pharm Sci 2020; 144: 105229.
[http://dx.doi.org/10.1016/j.ejps.2020.105229] [PMID: 31958581]
[45]
Patel RB, Patel MR, Thakore SD, Patel BG. Nanoemulsion as a Valuable Nanostructure Platform for Pharmaceutical Drug DeliveryNano- and Microscale Drug Delivery Systems. Elsevier 2017; pp. 321-41.
[http://dx.doi.org/10.1016/B978-0-323-52727-9.00017-0]
[46]
Thakore S, Patel R, Patel M. Nanoemulsion or microemulsion? - Understanding the differences and similarities. Pharm Rev 2014; (46): 136-42.
[47]
Anton N, Vandamme TF. Nano-emulsions and micro-emulsions: clarifications of the critical differences. Pharm Res 2011; 28(5): 978-85.
[http://dx.doi.org/10.1007/s11095-010-0309-1] [PMID: 21057856]
[48]
Chime SA, Kenechukwu FC, Attama AA. Nanoemulsions — advances in formulation, characterization and applications in drug delivery. Appl Nanotechnol Drug Deliv 2014; (48): 77-126.
[http://dx.doi.org/10.5772/58673]
[49]
Jaiswal M, Dudhe R, Sharma P K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015; 5(2): 123-7.
[http://dx.doi.org/10.1007/s13205-014-0214-0]
[50]
Koroleva MY, Yurtov EV. Nanoemulsions: the properties, methods of preparation and promising applications. Russ Chem Rev 2012; 81(1): 21-43.
[http://dx.doi.org/10.1070/RC2012v081n01ABEH004219]
[51]
Odriozola-Serrano I, Oms-Oliu G, Martín-Belloso O. Nanoemulsion-based delivery systems to improve functionality of lipophilic components. Front Nutr 2014; 1: 24.
[http://dx.doi.org/10.3389/fnut.2014.00024] [PMID: 25988126]
[52]
Shams N, Sahari MA. Nanoemulsions: Preparation, structure, functional properties and their antimicrobial effects. Appl Appl Food Biotechnol 2016; 3(52): 138-49.
[53]
Gupta A, Eral HB, Hatton TA, Doyle PS. Nanoemulsions: formation, properties and applications. Soft Matter 2016; 12(11): 2826-41.
[http://dx.doi.org/10.1039/C5SM02958A]
[54]
Ismail N B, Alias N H, Syed-Hassan SSA. Nanoemulsion: Formation, characterization. Properties and application
[55]
Kale SN, Deore SL. Emulsion micro emulsion and nano emulsion: A review. Sys Rev Pharm 2016; 8(1): 39-47.
[http://dx.doi.org/10.5530/srp.2017.1.8]
[56]
Ali A, Mekhloufi G, Huang N, Agnely F, Mekhloufi A, Huang G. β-lactoglobulin stabilized nanemulsions—Formulation and process factors affecting droplet size and nanoemulsion stability. Int J Pharm 2016; 500(1-2): 291-304.
[http://dx.doi.org/10.1016/j.ijpharm.2016.01.035] [PMID: 26784982]
[57]
Gorain B, Choudhury H, Tekade RK, Karan S, Jaisankar P, Pal TK. Comparative biodistribution and safety profiling of olmesartan medoxomil oil-in-water oral nanoemulsion. Regul Toxicol Pharmacol 2016; 82: 20-31.
[http://dx.doi.org/10.1016/j.yrtph.2016.10.020] [PMID: 27815174]
[58]
Shakeri A, Sahebkar A. Opinion paper: nanotechnology: a successful approach to improve oral bioavailability of phytochemicals. Recent Pat Drug Deliv Formul 2016; 10(1): 4-6.
[http://dx.doi.org/10.2174/1872211309666150611120724] [PMID: 26063398]
[59]
Lu Y, Qi J, Wu W. Absorption, disposition and pharmacokinetics of nanoemulsions. Curr Drug Metab 2012; 13(4): 396-417.
[http://dx.doi.org/10.2174/138920012800166544] [PMID: 22443535]
[60]
Zhang J, Hu J, Chen D, Tan Q, Zhu B, Jiang R. Improved absorption and in vivo kinetic characteristics of nanoemulsions containing evodiamine–phospholipid nanocomplex. Int J Nanomedicine 2014; 4411: 4411.
[http://dx.doi.org/10.2147/IJN.S59812]
[61]
Parveen R, Baboota S, Ali J, Ahuja A, Vasudev SS, Ahmad S. Oil based nanocarrier for improved oral delivery of silymarin: In vitro and in vivo studies. Int J Pharm 2011; 413(1-2): 245-53.
[http://dx.doi.org/10.1016/j.ijpharm.2011.04.041] [PMID: 21549187]
[62]
Qadir A, Faiyazuddin MD, Talib Hussain MD, Alshammari TM, Shakeel F. Critical steps and energetics involved in a successful development of a stable nanoemulsion. J Mol Liq 2016; 214: 7-18.
[http://dx.doi.org/10.1016/j.molliq.2015.11.050]
[63]
Shakeel F, Ramadan W. Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids Surf B Biointerfaces 2010; 75(1): 356-62.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.010] [PMID: 19783127]
[64]
Sapra B, Thatai P, Bhandari S, Sood J, Jindal M, Tiwary AK. A critical appraisal of microemulsions for drug delivery: part II. Ther Deliv 2014; 5(1): 83-94.
[http://dx.doi.org/10.4155/tde.13.125] [PMID: 24341819]
[65]
Constantinides PP, Tustian A, Kessler DR. Tocol emulsions for drug solubilization and parenteral delivery. Adv Drug Deliv Rev 2004; 56(9): 1243-55.
[http://dx.doi.org/10.1016/j.addr.2003.12.005] [PMID: 15109767]
[66]
Narang A, Delmarre D, Gao D. Stable drug encapsulation in micelles and microemulsions. Int J Pharm 2007; 345(1-2): 9-25.
[http://dx.doi.org/10.1016/j.ijpharm.2007.08.057] [PMID: 17945446]
[67]
Date AA, Nagarsenker MS. Parenteral microemulsions: An overview. Int J Pharm 2008; 355(1-2): 19-30.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.004] [PMID: 18295991]
[68]
Tabibiazar M, Hamishehkar H. Formulation of a food grade Water-In-Oil nanoemulsion: factors affecting on stability. Pharm Sci 2015; 21(4): 220-4.
[http://dx.doi.org/10.15171/PS.2015.40]
[69]
Shahavi MH, Hosseini M, Jahanshahi M, Meyer RL, Darzi GN. Evaluation of critical parameters for preparation of stable clove oil nanoemulsion. Arab J Chem 2019; 12(8): 3225-30.
[http://dx.doi.org/10.1016/j.arabjc.2015.08.024]
[70]
Sharma M, Mann B, Sharma R, et al. Sodium caseinate stabilized clove oil nanoemulsion: Physicochemical properties. J Food Eng 2017; 212: 38-46.
[http://dx.doi.org/10.1016/j.jfoodeng.2017.05.006]
[71]
Meneses AC, Sayer C, Puton BMS, Cansian RL, Araújo PHH, Oliveira D. Production of clove oil nanoemulsion with rapid and enhanced antimicrobial activity against gram‐positive and gram‐negative bacteria. J Food Process Eng 2019; 42(6)
[http://dx.doi.org/10.1111/jfpe.13209]
[72]
Shevalkar G, Pai R, Vavia P. Nanostructured lipid carrier of propofol: a promising alternative to marketed soybean oil–based nanoemulsion. AAPS PharmSciTech 2019; 20(5): 201.
[http://dx.doi.org/10.1208/s12249-019-1408-x] [PMID: 31139968]
[73]
Hidajat MJ, Jo W, Kim H, Noh J. Effective droplet size reduction and excellent stability of limonene nanoemulsion formed by high-pressure homogenizer. Colloids Interfaces 2020; 4(1): 5.
[http://dx.doi.org/10.3390/colloids4010005]
[74]
Rezaei Savadkouhi N, Ariaii P, Charmchian Langerodi M. The effect of encapsulated plant extract of hyssop (Hyssopus officinalis L.) in biopolymer nanoemulsions of Lepidium perfoliatum and Orchis mascula on controlling oxidative stability of soybean oil. Food Sci Nutr 2020; 8(2): 1264-71.
[http://dx.doi.org/10.1002/fsn3.1415] [PMID: 32148832]
[75]
Alfaro L, Hayes D, Boeneke C, et al. Physical properties of a frozen yogurt fortified with a nano-emulsion containing purple rice bran oil. Lebensm Wiss Technol 2015; 62(2): 1184-91.
[http://dx.doi.org/10.1016/j.lwt.2015.01.055]
[76]
Punia S, Kumar M, Siroha AK, Purewal SS. Rice bran oil: emerging trends in extraction, health benefit, and its industrial application. Rice Sci 2021; 28(3): 217-32.
[http://dx.doi.org/10.1016/j.rsci.2021.04.002]
[77]
Guo M, Zhang L, He Q, et al. Synergistic antibacterial effects of ultrasound and thyme essential oils nanoemulsion against Escherichia coli O157:H7. Ultrason Sonochem 2020; 66: 104988.
[http://dx.doi.org/10.1016/j.ultsonch.2020.104988] [PMID: 32222643]
[78]
Ryu V, McClements DJ, Corradini MG, McLandsborough L. Effect of ripening inhibitor type on formation, stability, and antimicrobial activity of thyme oil nanoemulsion. Food Chem 2018; 245: 104-11.
[http://dx.doi.org/10.1016/j.foodchem.2017.10.084] [PMID: 29287320]
[79]
Ozogul Y, Kuley Boğa E, Akyol I, et al. Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens. Food Biosci 2020; 36: 100635.
[http://dx.doi.org/10.1016/j.fbio.2020.100635]
[80]
Ragavan G, Muralidaran Y, Sridharan B, Nachiappa GR, Viswanathan P. Evaluation of garlic oil in nano-emulsified form: Optimization and its efficacy in high-fat diet induced dyslipidemia in Wistar rats. Food Chem Toxicol 2017; 105: 203-13.
[http://dx.doi.org/10.1016/j.fct.2017.04.019] [PMID: 28428086]
[81]
Long Y, Huang W, Wang Q, Yang G. Green synthesis of garlic oil nanoemulsion using ultrasonication technique and its mechanism of antifungal action against Penicillium italicum. Ultrason Sonochem 2020; 64: 104970.
[http://dx.doi.org/10.1016/j.ultsonch.2020.104970] [PMID: 32014757]
[82]
Mossa ATH, Afia SI, Mohafrash SMM, Abou-Awad BA. Formulation and characterization of garlic (Allium sativum L.) essential oil nanoemulsion and its acaricidal activity on eriophyid olive mites (Acari: Eriophyidae). Environ Sci Pollut Res Int 2018; 25(11): 10526-37.
[http://dx.doi.org/10.1007/s11356-017-0752-1] [PMID: 29181754]
[83]
Hassan KA, Mujtaba MA. Antibacterial efficacy of garlic oil nano-emulsion. AIMS Agriculture and Food 2019; 4(1): 194-205.
[http://dx.doi.org/10.3934/agrfood.2019.1.194]
[84]
Paudel SK, Bhargava K, Kotturi H. Antimicrobial activity of cinnamon oil nanoemulsion against Listeria monocytogenes and Salmonella spp. on melons. Lebensm Wiss Technol 2019; 111: 682-7.
[http://dx.doi.org/10.1016/j.lwt.2019.05.087]
[85]
Yildirim ST, Oztop MH, Soyer Y. Cinnamon oil nanoemulsions by spontaneous emulsification: Formulation, characterization and antimicrobial activity. Lebensm Wiss Technol 2017; 84: 122-8.
[http://dx.doi.org/10.1016/j.lwt.2017.05.041]
[86]
Chuesiang P, Sanguandeekul R, Siripatrawan U. Phase inversion temperature-fabricated cinnamon oil nanoemulsion as a natural preservative for prolonging shelf-life of chilled Asian seabass (Lates calcarifer) fillets. Lebensm Wiss Technol 2020; 125: 109122.
[http://dx.doi.org/10.1016/j.lwt.2020.109122]
[87]
Pongsumpun P, Iwamoto S, Siripatrawan U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason Sonochem 2020; 60: 104604.
[http://dx.doi.org/10.1016/j.ultsonch.2019.05.021] [PMID: 31539730]
[88]
Tavares M, da Silva MRM, de Oliveira de Siqueira LB, et al. Trends in insect repellent formulations: A review. Int J Pharm 2018; 539(1-2): 190-209.
[http://dx.doi.org/10.1016/j.ijpharm.2018.01.046] [PMID: 29410208]
[89]
Agrawal N, Maddikeri GL, Pandit AB. Sustained release formulations of citronella oil nanoemulsion using cavitational techniques. Ultrason Sonochem 2017; 36: 367-74.
[http://dx.doi.org/10.1016/j.ultsonch.2016.11.037] [PMID: 28069223]
[90]
Moraes-Lovison M, Marostegan LFP, Peres MS, et al. Nanoemulsions encapsulating oregano essential oil: Production, stability, antibacterial activity and incorporation in chicken pâté. Lebensm Wiss Technol 2017; 77: 233-40.
[http://dx.doi.org/10.1016/j.lwt.2016.11.061]
[91]
Lee JY, Garcia CV, Shin GH, Kim JT. Antibacterial and antioxidant properties of hydroxypropyl methylcellulose-based active composite films incorporating oregano essential oil nanoemulsions. Lebensm Wiss Technol 2019; 106: 164-71.
[http://dx.doi.org/10.1016/j.lwt.2019.02.061]
[92]
Hosny KM, Asfour HZ, Rizg WY, et al. Formulation, optimization, and evaluation of oregano oil nanoemulsions for the treatment of infections due to oral microbiota. Int J Nanomedicine 2021; 16: 5465-78.
[http://dx.doi.org/10.2147/IJN.S325625] [PMID: 34413644]
[93]
Vafayi Malek A, Karimi E, Oskoueian E. Comparison of antioxidant, antibacterial, and cytotoxic effects of essential oil and nanoemulsion of clove essential oil. journal of ilam university of medical sciences 2021; 29(3): 26-37.
[http://dx.doi.org/10.52547/sjimu.29.3.26]
[94]
Sun H, Luo D, Zheng S, Li Z, Xu W. Antimicrobial Behavior and Mechanism of Clove Oil Nanoemulsion. J Food Sci Technol 2021; 59: 1939-47.
[http://dx.doi.org/10.1007/s13197-021-05208-z] [PMID: 35531406]
[95]
Garcia CR, Malik MH, Biswas S, et al. Nanoemulsion delivery systems for enhanced efficacy of antimicrobials and essential oils. Biomater Sci 2022; 10(3): 633-53.
[http://dx.doi.org/10.1039/D1BM01537K] [PMID: 34994371]
[96]
Heidary M, Karimzadeh J, Jafari S, Negahban M, Shakarami J. Aphicidal activity of urea–formaldehyde nanocapsules loaded with the Thymus daenensis Celak essential oil on Brevicoryne brassicae L. Int J Trop Insect Sci 2022; 42(2): 1285-96.
[http://dx.doi.org/10.1007/s42690-021-00646-w]
[97]
Xia Z, Han Y, Du H, McClements DJ, Tang Z, Xiao H. Exploring the effects of carrier oil type on in vitro bioavailability of β-carotene: A cell culture study of carotenoid-enriched nanoemulsions. Lebensm Wiss Technol 2020; 134: 110224.
[http://dx.doi.org/10.1016/j.lwt.2020.110224]
[98]
Zhou X, Wang H, Wang C, et al. Stability and in vitro digestibility of beta-carotene in nanoemulsions fabricated with different carrier oils. Food Sci Nutr 2018; 6(8): 2537-44.
[http://dx.doi.org/10.1002/fsn3.862] [PMID: 30510755]
[99]
Sharif HR, Goff HD, Majeed H, et al. Physicochemical stability of β-carotene and α-tocopherol enriched nanoemulsions: Influence of carrier oil, emulsifier and antioxidant. Colloids Surf A Physicochem Eng Asp 2017; 529: 550-9.
[http://dx.doi.org/10.1016/j.colsurfa.2017.05.076]
[100]
Liang R, Xu S, Shoemaker CF, Li Y, Zhong F, Huang Q. Physical and antimicrobial properties of peppermint oil nanoemulsions. J Agric Food Chem 2012; 60(30): 7548-55.
[http://dx.doi.org/10.1021/jf301129k] [PMID: 22746096]
[101]
Liu Q, Gao Y, Fu X, et al. Preparation of peppermint oil nanoemulsions: Investigation of stability, antibacterial mechanism and apoptosis effects. Colloids Surf B Biointerfaces 2021; 201: 111626.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111626] [PMID: 33631642]
[102]
Enayatifard R, Akbari J, Babaei A, Rostamkalaei SS, Hashemi SMH, Habibi E. Anti-microbial potential of nano-emulsion form of essential oil obtained from aerial parts of Origanum Vulgare L. as Food Additive. Adv Pharm Bull 2021; 11(2): 327-34.
[PMID: 33880355]
[103]
Alam MS, Ali MD, Ahmad S, et al. Evaluation of wound healing potential and biochemical estimation of sage oil nanoemulsion on animal model. Pak J Pharm Sci 2021; 34(4): 1385-92.
[PMID: 34799311]
[104]
Baldissera MD, Da Silva AS, Oliveira CB, et al. Trypanocidal activity of the essential oils in their conventional and nanoemulsion forms: In vitro tests. Exp Parasitol 2013; 134(3): 356-61.
[http://dx.doi.org/10.1016/j.exppara.2013.03.035] [PMID: 23562884]
[105]
Moustafa HZ, Mohamad TG, Torkey H. Effect of formulated nanoemulsion of eucalyptus oil on the cotton bollworms. J Biol Chem Res 2015; 32: 478-84.
[106]
Sugumar S, Clarke SK, Nirmala MJ, Tyagi BK, Mukherjee A, Chandrasekaran N. Nanoemulsion of eucalyptus oil and its larvicidal activity against Culex quinquefasciatus. Bull Entomol Res 2014; 104(3): 393-402.
[http://dx.doi.org/10.1017/S0007485313000710] [PMID: 24401169]
[107]
Chuesiang P, Siripatrawan U, Sanguandeekul R, Yang JS, McClements DJ, McLandsborough L. Antimicrobial activity and chemical stability of cinnamon oil in oil-in-water nanoemulsions fabricated using the phase inversion temperature method. Lebensm Wiss Technol 2019; 110: 190-6.
[http://dx.doi.org/10.1016/j.lwt.2019.03.012]
[108]
Anjali CH, Sharma Y, Mukherjee A, Chandrasekaran N. Neem oil (Azadirachta indica) nanoemulsion-a potent larvicidal agent against Culex quinquefasciatus. Pest Manag Sci 2012; 68(2): 158-63.
[http://dx.doi.org/10.1002/ps.2233] [PMID: 21726037]
[109]
Deeksha K. Pavya, Hari S. Synthesis, characterization and antibacterial effect of neem oil nanoemulsion. Res J Pharm Technol 2019; 12(9): 4400.
[http://dx.doi.org/10.5958/0974-360X.2019.00757.1]
[110]
Liew SN, Utra U, Alias AK, Tan TB, Tan CP, Yussof NS. Physical, morphological and antibacterial properties of lime essential oil nanoemulsions prepared via spontaneous emulsification method. Lebensm Wiss Technol 2020; 128(109388): 109388.
[http://dx.doi.org/10.1016/j.lwt.2020.109388]
[111]
Yazgan H, Ozogul Y, Kuley E. Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria. Int J Food Microbiol 2019; 2019: 108266.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2019.108266]
[112]
Mossa AT, Afia SI, Mohafrash SM, Abou-Awad BA. Rosemary essential oil nanoemulsion, formulation, characterization and acaricidal activity against the two-Spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae). J Plant Prot Res 2019; 59(1): 102-12.
[113]
Yang R, Miao J, Shen Y, et al. Antifungal effect of cinnamaldehyde, eugenol and carvacrol nanoemulsion against Penicillium Digitatum and application in postharvest preservation of citrus fruit. Lebenson Wiss Technol 2021; 2021: 110924.
[http://dx.doi.org/10.1016/j.lwt.2021.110924]
[114]
Gupta R, Shea J, Scaife C, Shurlygina A, Rapoport N. Polymeric micelles and nanoemulsions as drug carriers: Therapeutic efficacy, toxicity, and drug resistance. J Control Release 2015; 212: 70-7.
[http://dx.doi.org/10.1016/j.jconrel.2015.06.019] [PMID: 26091919]
[115]
Musa SH, Basri M, Masoumi HRF, et al. Formulation optimization of palm kernel oil esters nanoemulsion-loaded with chloramphenicol suitable for meningitis treatment. Colloids Surf B Biointerfaces 2013; 112: 113-9.
[http://dx.doi.org/10.1016/j.colsurfb.2013.07.043] [PMID: 23974000]
[116]
Chrastina A, Baron VT, Abedinpour P, Rondeau G, Welsh J, Borgström P. Plumbagin-loaded nanoemulsion drug delivery formulation and evaluation of antiproliferative effect on prostate cancer cells. BioMed Res Int 2018; 2018: 1-7.
[http://dx.doi.org/10.1155/2018/9035452] [PMID: 30534567]
[117]
Sosa L, Clares B, Alvarado HL, et al. Amphotericin B releasing topical nanoemulsion for the treatment of candidiasis and aspergillosis. Nanomedicine 2017; 13(7): 2303-12.
[http://dx.doi.org/10.1016/j.nano.2017.06.021] [PMID: 28712917]
[118]
Rosso A, Lollo G, Chevalier Y, et al. Development and structural characterization of a novel nanoemulsion for oral drug delivery. Colloids Surf A Physicochem Eng Asp 2020; 593: 124614.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124614]
[119]
Kaur A, Nigam K, Bhatnagar I, et al. Treatment of Alzheimer’s diseases using donepezil nanoemulsion: an intranasal approach. Drug Deliv Transl Res 2020; 10(6): 1862-75.
[http://dx.doi.org/10.1007/s13346-020-00754-z] [PMID: 32297166]
[120]
Proof-of Concept Study of Topical 3%-Diclofenac-NanoEmulsion Cream for Knee OA Pain Available from: https://www.clinicaltrials.gov/ct2/show/NCT00484120?cond=Nanoemulsion&draw=1&rank=1 (Accessed on: 2022 -04 -11).
[121]
Transdermal Testosterone Nanoemulsion in Women Libido - Full Text View - ClinicalTrials Available from: https://www.clinicaltrials.gov/ct2/show/NCT02445716?cond=Nanoemulsion&draw=1&rank=2
[122]
Effect of Methotrexate Carried by a Lipid Nanoemulsion on Left Ventricular Remodeling After STEMI. Available from: https://www.clinicaltrials.gov/ct2/show/NCT03516903?cond=Nanoemulsion&draw=1&rank=3
[123]
Study of Brimonidine Tartrate Nanoemulsion Eye Drop Solution in the Treatment of Dry Eye Disease (DED) Available from: https://www.clinicaltrials.gov/ct2/show/NCT03785340?cond=Nanoemulsion&draw=1&rank=4
[124]
Clobetasol propionate ophthalmic nanoemulsion 0.05% for the treatment of inflammation and pain associated with cataract surgery (CLOSE-2). Available from: https://www.clinicaltrials. gov/ct2/show/NCT04249076?cond=Nanoemulsion&draw=1&rank=6
[125]
Photodynamic Therapy for Lentigo Maligna Using 5- aminolevulinic Acid Nanoemulsion as a Light Sensitizing Cream Available from: https://www.clinicaltrials.gov/ct2/show/NCT02685592?cond=Nanoemulsion&draw=1&rank=8
[126]
Use of lipid emulsion or nanoemulsion of propofol on children undergoing ambulatory invasive procedures. Available from: https://www.clinicaltrials.gov/ct2/show/NCT01326078?cond=Nanoemulsion&draw=1&rank=9
[127]
Pilot study of curcumin for women with obesity and high risk for breast cancer Available from: https://www.clinicaltrials.gov/ct2/show/NCT01975363?cond=Nanoemulsion&draw=1&rank=11
[128]
Clinical assessment of voriconazole self nano emulsifying drug delivery system intermediate gel. Case Medical Research 2019.
[http://dx.doi.org/10.31525/ct1-nct04110860]
[129]
Superficial Basal Cell Cancer’s Photodynamic Therapy: Comparing three photosensitizers: HAL and BF-200 ALA versus MAL Available from: https://www.clinicaltrials.gov/ct2/show/NCT02367547?cond=Nanoemulsion&draw=1&rank=14
[130]
Rapoport N, Gupta R, Kim YS, O’Neill BE. Polymeric micelles and nanoemulsions as tumor-targeted drug carriers: Insight through intravital imaging. J Control Release 2015; 206: 153-60.
[http://dx.doi.org/10.1016/j.jconrel.2015.03.010] [PMID: 25776738]
[131]
Loureiro A, Bernardes GJL, Shimanovich U, et al. Folic acid-tagged protein nanoemulsions loaded with CORM-2 enhance the survival of mice bearing subcutaneous A20 lymphoma tumors. Nanomedicine 2015; 11(5): 1077-83.
[http://dx.doi.org/10.1016/j.nano.2015.02.022] [PMID: 25791804]
[132]
Akhter S, Jain G, Ahmad F, et al. Investigation of Nanoemulsion System for Transdermal Delivery of Domperidone: Ex-vivo and in vivo Studies. Curr Nanosci 2008; 4(4): 381-90.
[http://dx.doi.org/10.2174/157341308786306071]
[133]
Sandig AG, Campmany ACC, Campos FF, Villena MJM, Naveros BC. Transdermal delivery of imipramine and doxepin from newly oil-in-water nanoemulsions for an analgesic and anti-allodynic activity: Development, characterization and in vivo evaluation. Colloids Surf B Biointerfaces 2013; 103: 558-65.
[http://dx.doi.org/10.1016/j.colsurfb.2012.10.061] [PMID: 23261580]
[134]
Alam MS, Ali MS, Alam N, Siddiqui MR, Shamim M, Safhi MM. In vivo study of clobetasol propionate loaded nanoemulsion for topical application in psoriasis and atopic dermatitis. Drug Invention Today 2013; 5(1): 8-12.
[http://dx.doi.org/10.1016/j.dit.2013.02.001]
[135]
Alvarado HL, Abrego G, Souto EB, et al. Nanoemulsions for dermal controlled release of oleanolic and ursolic acids: In vitro, ex vivo and in vivo characterization. Colloids Surf B Biointerfaces 2015; 130: 40-7.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.062] [PMID: 25899842]
[136]
Yu M, Ma H, Lei M, Li N, Tan F. In vitro/in vivo characterization of nanoemulsion formulation of metronidazole with improved skin targeting and anti-rosacea properties. Eur J Pharm Biopharm 2014; 88(1): 92-103.
[http://dx.doi.org/10.1016/j.ejpb.2014.03.019] [PMID: 24704200]
[137]
Shakeel F, Baboota S, Ahuja A, Ali J, Shafiq S. Skin permeation mechanism and bioavailability enhancement of celecoxib from transdermally applied nanoemulsion. J Nanobiotechnology 2008; 6(1): 8.
[http://dx.doi.org/10.1186/1477-3155-6-8] [PMID: 18613981]
[138]
Mostafa DM, Kassem AA, Asfour MH, Al Okbi SY, Mohamed DA, Hamed TES. Transdermal cumin essential oil nanoemulsions with potent antioxidant and hepatoprotective activities: In-vitro and in-vivo evaluation. J Mol Liq 2015; 212: 6-15.
[http://dx.doi.org/10.1016/j.molliq.2015.08.047]
[139]
Mostafa DM, Abd El-Alim SH, Asfour MH, Al-Okbi SY, Mohamed DA, Awad G. Transdermal nanoemulsions of Foeniculum vulgare Mill. essential oil: Preparation, characterization and evaluation of antidiabetic potential. J Drug Deliv Sci Technol 2015; 29: 99-106.
[http://dx.doi.org/10.1016/j.jddst.2015.06.021]
[140]
Qian C, Decker EA, Xiao H, McClements DJ. Nanoemulsion delivery systems: Influence of carrier oil on β-carotene bioaccessibility. Food Chem 2012; 135(3): 1440-7.
[http://dx.doi.org/10.1016/j.foodchem.2012.06.047] [PMID: 22953878]
[141]
Wasutrasawat P, Al-Obaidi H, Gaisford S, Lawrence MJ, Warisnoicharoen W. Drug solubilisation in lipid nanoparticles containing high melting point triglycerides. Eur J Pharm Biopharm 2013; 85(3): 365-71.
[http://dx.doi.org/10.1016/j.ejpb.2013.04.020] [PMID: 23688806]
[142]
Mahour R, Sahni JK, Sharma S, Kumar S, Ali J, Baboota S. Nanoemulsion as a tool for improvement of Cilostazol oral bioavailability. J Mol Liq 2015; 212: 792-8.
[http://dx.doi.org/10.1016/j.molliq.2015.10.027]
[143]
Hashem K, Mahmoud F, Elkelawy A. The effect of aspirin nanoemulsion on TNFα and iNOS in gastric tissue in comparison with conventional aspirin. Int J Nanomedicine 2015; 10: 5301-8.
[http://dx.doi.org/10.2147/IJN.S86947] [PMID: 26345150]
[144]
Muheem A, Shakeel F, Jahangir MA, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J 2016; 24(4): 413-28.
[http://dx.doi.org/10.1016/j.jsps.2014.06.004] [PMID: 27330372]
[145]
Wan K, Sun L, Hu X, et al. Novel nanoemulsion based lipid nanosystems for favorable in vitro and in vivo characteristics of curcumin. Int J Pharm 2016; 504(1-2): 80-8.
[http://dx.doi.org/10.1016/j.ijpharm.2016.03.055] [PMID: 27034002]
[146]
Borrin TR, Georges EL, Moraes ICF, Pinho SC. Curcumin-loaded nanoemulsions produced by the Emulsion Inversion Point (EIP) method: An evaluation of process parameters and physico-chemical stability. J Food Eng 2016; 169: 1-9.
[http://dx.doi.org/10.1016/j.jfoodeng.2015.08.012]
[147]
Rebolleda S, Sanz MT, Benito JM, Beltrán S, Escudero I, González San-José ML. Formulation and characterisation of wheat bran oil-in-water nanoemulsions. Food Chem 2015; 167: 16-23.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.097] [PMID: 25148953]
[148]
Kotta S, Khan AW, Pramod K, Ansari SH, Sharma RK, Ali J. Exploring oral nanoemulsions for bioavailability enhancement of poorly water-soluble drugs. Expert Opin Drug Deliv 2012; 9(5): 585-98.
[http://dx.doi.org/10.1517/17425247.2012.668523] [PMID: 22512597]
[149]
Liu Z, Zhang Q, Ding L, et al. Preparation procedure and pharmacokinetic study of water-in-oil nanoemulsion of Panax notoginseng saponins for improving the oral bioavailability. Curr Drug Deliv 2016; 13(4): 600-10.
[http://dx.doi.org/10.2174/1567201812666150608095517] [PMID: 26051185]
[150]
Sessa M, Balestrieri ML, Ferrari G, et al. Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem 2014; 147: 42-50.
[http://dx.doi.org/10.1016/j.foodchem.2013.09.088] [PMID: 24206683]
[151]
Sessa M, Tsao R, Liu R, Ferrari G, Donsì F. Evaluation of the stability and antioxidant activity of nanoencapsulated resveratrol during in vitro digestion. J Agric Food Chem 2011; 59(23): 12352-60.
[http://dx.doi.org/10.1021/jf2031346] [PMID: 22026647]
[152]
de Sousa V, Monteiro , Lione , et al. Development and characterization of a new oral dapsone nanoemulsion system: permeability and in silico bioavailability studies. Int J Nanomedicine 2012; 7: 5175-82.
[http://dx.doi.org/10.2147/IJN.S36479] [PMID: 23055729]
[153]
Doh HJ, Jung Y, Balakrishnan P, Cho HJ, Kim DD. A novel lipid nanoemulsion system for improved permeation of granisetron. Colloids Surf B Biointerfaces 2013; 101: 475-80.
[http://dx.doi.org/10.1016/j.colsurfb.2012.07.019] [PMID: 23010057]
[154]
Rajpoot P, Bali V, Pathak K. Anticancer efficacy, tissue distribution and blood pharmacokinetics of surface modified nanocarrier containing melphalan. Int J Pharm 2012; 426(1-2): 219-30.
[http://dx.doi.org/10.1016/j.ijpharm.2012.01.027] [PMID: 22301424]
[155]
Gong Y, Wu Y, Zheng C, Fan L, Xiong F, Zhu J. An excellent delivery system for improving the oral bioavailability of natural vitamin E in rats. AAPS PharmSciTech 2012; 13(3): 961-6.
[http://dx.doi.org/10.1208/s12249-012-9819-y] [PMID: 22752681]
[156]
Dwivedi P, Khatik R, Chaturvedi P, et al. Arteether Nanoemulsion for Enhanced Efficacy against Plasmodium Yoelii nigeriensis Malaria: An Approach by Enhanced Bioavailability. Colloids Surf B Biointerfaces 2015; 126: 467-75.
[http://dx.doi.org/10.1016/j.colsurfb.2014.12.052] [PMID: 25616971]
[157]
Cho HT, Salvia-Trujillo L, Kim J, Park Y, Xiao H, McClements DJ. Droplet size and composition of nutraceutical nanoemulsions influences bioavailability of long chain fatty acids and Coenzyme Q10. Food Chem 2014; 156: 117-22.
[http://dx.doi.org/10.1016/j.foodchem.2014.01.084] [PMID: 24629946]
[158]
Belhaj N, Dupuis F, Arab-Tehrany E, et al. Formulation, characterization and pharmacokinetic studies of coenzyme Q10 PUFA’s nanoemulsions. Eur J Pharm Sci 2012; 47(2): 305-12.
[http://dx.doi.org/10.1016/j.ejps.2012.06.008] [PMID: 22732255]
[159]
Lim C, Kim D, Sim T, et al. Preparation and characterization of a lutein loading nanoemulsion system for ophthalmic eye drops. J Drug Deliv Sci Technol 2016; 36: 168-74.
[http://dx.doi.org/10.1016/j.jddst.2016.10.009]
[160]
Patel N, Nakrani H, Raval M, Sheth N. Development of loteprednol etabonate-loaded cationic nanoemulsified in-situ ophthalmic gel for sustained delivery and enhanced ocular bioavailability. Drug Deliv 2016; 23(9): 3712-23.
[http://dx.doi.org/10.1080/10717544.2016.1223225] [PMID: 27689408]
[161]
Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv 2013; 10(7): 957-72.
[http://dx.doi.org/10.1517/17425247.2013.790887] [PMID: 23586809]
[162]
Sood S, Jain K, Gowthamarajan K. Intranasal therapeutic strategies for management of Alzheimer’s disease. J Drug Target 2014; 22(4): 279-94.
[http://dx.doi.org/10.3109/1061186X.2013.876644] [PMID: 24404923]
[163]
Md S, Mustafa G, Baboota S, Ali J. Nanoneurotherapeutics approach intended for direct nose to brain delivery. Drug Dev Ind Pharm 2015; 41(12): 1922-34.
[http://dx.doi.org/10.3109/03639045.2015.1052081] [PMID: 26057769]
[164]
Jaiswal M, Kumar A, Sharma S. Nanoemulsions loaded Carbopol® 934 based gel for intranasal delivery of neuroprotective Centella asiatica extract: in–vitro and ex–vivo permeation study. J Pharm Investig 2016; 46(1): 79-89.
[http://dx.doi.org/10.1007/s40005-016-0228-1]
[165]
Pangeni R, Sharma S, Mustafa G, Ali J, Baboota S, Vitamin E. Vitamin E loaded resveratrol nanoemulsion for brain targeting for the treatment of Parkinson’s disease by reducing oxidative stress. Nanotechnology 2014; 25(48): 485102.
[http://dx.doi.org/10.1088/0957-4484/25/48/485102] [PMID: 25392203]
[166]
Lalani J, Baradia D, Lalani R, Misra A. Brain targeted intranasal delivery of tramadol: comparative study of microemulsion and nanoemulsion. Pharm Dev Technol 2015; 20(8): 992-1001.
[http://dx.doi.org/10.3109/10837450.2014.959177] [PMID: 25228122]
[167]
Bahadur S, Pathak K. Buffered nanoemulsion for nose to brain delivery of ziprasidone hydrochloride: preformulation and pharmacodynamic evaluation. Curr Drug Deliv 2012; 9(6): 596-607.
[http://dx.doi.org/10.2174/156720112803529792] [PMID: 22788695]
[168]
Sood S, Jain K, Gowthamarajan K. Optimization of curcumin nanoemulsion for intranasal delivery using design of experiment and its toxicity assessment. Colloids Surf B Biointerfaces 2014; 113: 330-7.
[http://dx.doi.org/10.1016/j.colsurfb.2013.09.030] [PMID: 24121076]
[169]
Sharma A, Singh AP, Harikumar SL. Development and optimization of nanoemulsion based gel for enhanced transdermal delivery of nitrendipine using box-behnken statistical design. Drug Dev Ind Pharm 2020; 46(2): 329-42.
[http://dx.doi.org/10.1080/03639045.2020.1721527] [PMID: 31976777]
[170]
Vishwas S, Singh SK, Gulati M, et al. Harnessing the therapeutic potential of fisetin and its nanoparticles: Journey so far and road ahead. Chem Biol Interact 2022; 356: 109869.
[http://dx.doi.org/10.1016/j.cbi.2022.109869] [PMID: 35231453]
[171]
Ganta S, Sharma P, Paxton JW, Baguley BC, Garg S. Pharmacokinetics and pharmacodynamics of chlorambucil delivered in long-circulating nanoemulsion. J Drug Target 2010; 18(2): 125-33.
[http://dx.doi.org/10.3109/10611860903244199] [PMID: 19728787]
[172]
Li X, Du L, Wang C, Liu Y, Mei X, Jin Y. Highly efficient and lowly toxic docetaxel nanoemulsions for intravenous injection to animals. Pharmazie 2011; 66(7): 479-83.
[PMID: 21812321]
[173]
Sun XL, Zhang N, Li P, Xu W, Zhang N. Formulation and pharmacokinetics of the parenteral fat nano-emulsion of ubenimex. J Chin Pharm Sci 2011; 20(5): 483-92.
[http://dx.doi.org/10.5246/jcps.2011.05.061]
[174]
Zhao H, Lu H, Gong T. zhang. Nanoemulsion loaded with lycobetaine–oleic acid ionic complex: physicochemical characteristics, in vitro, in vivo evaluation, and antitumor activity. Int J Nanomedicine 2013; 8: 1959-73.
[http://dx.doi.org/10.2147/IJN.S43892] [PMID: 23723698]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy