Generic placeholder image

Current Nanomaterials

Editor-in-Chief

ISSN (Print): 2405-4615
ISSN (Online): 2405-4623

Review Article

Optical Properties of Nanoparticles Dispersed in Ambient Medium and their Dependences on Temperature

Author(s): Victor K. Pustovalov*

Volume 8, Issue 3, 2023

Published on: 21 November, 2022

Page: [233 - 258] Pages: 26

DOI: 10.2174/2405461508666221102090945

Price: $65

Abstract

This review describes the basic and application aspects of the optical properties of nanoparticles (NPs), which determine the dynamics and results of optical (laser) radiation interaction with NPs and their surroundings through NP light absorption and heat generation. In addition to the importance of primary optical processes, the thermal application of the light–NP interaction has attracted significant interest from various areas ranging from photochemistry to laser material processing and nanobiomedicine. First of all, the information provided is intended for laser specialists, photochemists and nanobiologists who are not so familiar with various optical data for understanding of the influence of NP optical properties on the results of optical or laser action on NPs and medium. Secondly, our review will be useful for researchers who conduct high-temperature investigations of the intense optical action on NPs that needs to take into account the dependence of NP optical properties on its temperature under NP heating. Our attention is focused on two variants of the applications of NP optical properties. Firstly, we shortly reviewed the optical properties of NPs at their initial or slightly higher temperatures reached under the influence of moderate radiation intensity. They are presented in numerous publications and are used as basic data. On the other side, the development of modern hightemperature laser and optical technologies needs to use the NPs optical properties at temperatures of about 1x103 K and more. For high power laser and optical technologies, it is necessary to take into account the temperature dependences of the optical parameters of various metals, dielectrics and other materials. Among these technologies, one should list laser processing of NPs, thermal laser biomedicine, solar and photo nanocatalysis, solar nanostructured absorbers. The selection and use of suitable optical properties of NPs are crucial to successful achievements and results in high-temperature experiments and applications. Novel information on optical property dependence on temperature obtained from currently available literature has been presented for possible applications in optical and laser high-temperature processes interactions with NPs. However, unfortunately, the essential information on the effect of temperature on the optical properties of NPs is currently limited. In addition to the latest information, this review also includes the figures obtained by our own calculations to provide readers with a better understanding of the NP optical properties. From the side of the application, the use of NP optical properties is considered, which provide multiple varieties of moderate and hightemperature technology opportunities, many of which are ongoing and some of them are promising bright results in the near future. The beneficial outcome and the results of further activities in the research of intense laser and optical interactions with NPs can influence various fields of science and technology: nano and photochemistry, biomedicine, nanophysics, material science, etc.

Graphical Abstract

[1]
Bohren C, Huffman D. Absorption and scattering of light by small particles. New York: Wiley-Interscience 1983.
[2]
Kreibig U, Vollmer M. Optical properties of metal clusters. Berlin: Springer 1995.
[http://dx.doi.org/10.1007/978-3-662-09109-8]
[3]
Gaponenko S. Introduction to nanophotonics. Cambridge: Cambridge University Press 2010.
[http://dx.doi.org/10.1017/CBO9780511750502]
[4]
Quinten M. Optical properties of nanoparticle systems: Mie and beyond. New York: Wiley-VCH Verlag GmbH & Co 2011.
[http://dx.doi.org/10.1002/9783527633135]
[5]
Trugler A. Optical properties of metallic nanoparticles. Heidelberg: Springer 2016.
[http://dx.doi.org/10.1007/978-3-319-25074-8]
[6]
Aliofkhazraei M, Ed. Handbook of Nanoparticles. Heidelberg: Springer 2016.
[http://dx.doi.org/10.1007/978-3-319-15338-4]
[7]
Barhoum A. Fundamentals of Nanoparticles Classifications, synthesis methods, properties and characterization. Amsterdam: Elsevier 2018.
[8]
Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev 2011; 111(6): 3736-827.
[http://dx.doi.org/10.1021/cr1004452] [PMID: 21648955]
[9]
Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances 2021; 2(6): 1821-71.
[http://dx.doi.org/10.1039/D0MA00807A]
[10]
Mayergoyz I. Plasmon resonances in nanopaticles. Singapore: World Scientific Publishing 2013.
[http://dx.doi.org/10.1142/8158]
[11]
Klimov V. Nano Plasmonics. Stanford: Pan Stanford Publishing 2014.
[12]
Pelton M, Bryant GW. Introduction to Metal-Nanoparticle Plasmonics. New-York: A Wiley-Science 2013.
[13]
Barbillon G. Plasmonics and its Applications. MDPI - Multidisciplinary Digital Publishing Institute 2019.
[14]
Priest L, Peters JS, Kukura P. Scattering-based light microscopy: from metal nanoparticles to single proteins. Chem Rev 2021; 121(19): 11937-70.
[http://dx.doi.org/10.1021/acs.chemrev.1c00271] [PMID: 34587448]
[15]
Kokhanovsky A. Springer series in light scattering. Light scattering and radiative transfer. Heidelberg: Springer International Publishing 2016.
[16]
Mishchenko M, Travis LD, Lacis AA. Scattering, Absorption, and Emission of Light by Small Particles. Cambridge: Cambridge University Press 2002.
[17]
Palik ED. Handbook of Optical Constants of Solids. Orlando: Academic Press 1985.
[18]
Refractive index database 2022. Available from: http://refractiveindex.info/
[19]
Weber M. Handbook of Optical Materials. New York: CRC Press 2003.
[20]
Johnson PB, Christy RW. Optical constants of the noble metals. Phys Rev, B, Solid State 1972; 6(12): 4370-9.
[http://dx.doi.org/10.1103/PhysRevB.6.4370]
[21]
Singh S, Zeng H, Guo C, Cai W, Eds. Nanomaterials Processing and Characterization with Lasers. New-York: Wiley-VCH Verlag Gmbh 2014.
[22]
Stalmashonak A, Seifert G, Abdolvand A. Ultra-short pulsed laser engineered metal-glass nanocomposites. Cham: Springer 2013.
[http://dx.doi.org/10.1007/978-3-319-00437-2]
[23]
Pustovalov VK, Smetannikov AS, Zharov VP. Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses. Laser Phys Lett 2008; 5(11): 775-92.
[http://dx.doi.org/10.1002/lapl.200810072]
[24]
Austin LA, Mackey MA, Dreaden EC, El-Sayed MA. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol 2014; 88(7): 1391-417.
[http://dx.doi.org/10.1007/s00204-014-1245-3] [PMID: 24894431]
[25]
Jauffred L, Samadi A, Klingberg H, Bendix PM, Oddershede LB. Plasmonic heating of nanostructures. Chem Rev 2019; 119(13): 8087-130.
[http://dx.doi.org/10.1021/acs.chemrev.8b00738] [PMID: 31125213]
[26]
Agrawal G, Khatri R. Solar thermal collectors: direct absorption using nanofluids: Enhancing thermal performance by reducing heat losses and improving fluid properties. Riga: Lap Lambert Academic Publishing 2016.
[27]
Escoubas L, Carlberg M, Le Rouzo J, et al. Design and realization of light absorbers using plasmonic nanoparticles. Prog Quantum Electron 2019; 63: 1-22.
[http://dx.doi.org/10.1016/j.pquantelec.2018.12.001]
[28]
Wang Y, Liu H, Zhu J. Solar thermophotovoltaics: Progress, challenges, and opportunities. APL Mater 2019; 7(8): 080906.
[http://dx.doi.org/10.1063/1.5114829]
[29]
Adleman JR, Boyd DA, Goodwin DG, Psaltis D. Heterogenous catalysis mediated by plasmon heating. Nano Lett 2009; 9(12): 4417-23.
[http://dx.doi.org/10.1021/nl902711n] [PMID: 19908825]
[30]
Mateo D, Cerrillo JL, Durini S, Gascon J. Fundamentals and applications of photo-thermal catalysis. Chem Soc Rev 2021; 50(3): 2173-210.
[http://dx.doi.org/10.1039/D0CS00357C] [PMID: 33336654]
[31]
Born M, Wolf E. Principles of optics. Oxford: Pergamon Press 1964.
[32]
Temple TL. Choosing optical constants for the simulation of Ag, Au and Cu nanospheres. Plasmonics 2015; 10(2): 455-67.
[http://dx.doi.org/10.1007/s11468-014-9827-8]
[33]
Hagemann HJ, Gudat W, Kunz C. Optical constants from the far infrared to the X-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3. J Opt Soc Am 1975; 65(6): 742-4.
[http://dx.doi.org/10.1364/JOSA.65.000742]
[34]
Werner WSM, Glantschnig K, Ambrosch-Draxl C. Optical constants and inelastic electron-scattering data for 17 elemental metals. J Phys Chem Ref Data 2009; 38(4): 1013-92.
[http://dx.doi.org/10.1063/1.3243762]
[35]
Weaver JH, Frederikse HPR. Optical properties of metals and semiconductorsCRC Handbook of Chemistry and Physics. (74th ed.). CRC Press 1993; pp. 12-109.
[36]
Babar S, Weaver JH. Optical constants of Cu, Ag, and Au revisited. Appl Opt 2015; 54(3): 477-81.
[http://dx.doi.org/10.1364/AO.54.000477]
[37]
Babar S, Weaver JH. Optical constants of Cu, Ag, and Au revisited. 2022. Available from: http://jhweaver.matse.illinois.edu/
[38]
Smith NV. Optical constants of rubidium and cesium from 0.5 to 4.0 eV. Phys Rev, B, Solid State 1970; 2(8): 2840-8.
[http://dx.doi.org/10.1103/PhysRevB.2.2840]
[39]
Johnson P, Christy R. Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd. Phys Rev, B, Solid State 1974; 9(12): 5056-70.
[http://dx.doi.org/10.1103/PhysRevB.9.5056]
[40]
Hale GM, Querry MR. Optical constants of water in the 200 nm to 200 μm wavelength region. Appl Opt 1973; 12(3): 555-63.
[http://dx.doi.org/10.1364/AO.12.000555] [PMID: 20125343]
[41]
Malitson IH. Inter specimen comparison of the refractive index of fused silica. J Opt Soc Am 1965; 55(10): 1205-8.
[http://dx.doi.org/10.1364/JOSA.55.001205]
[42]
Kitamura R, Pilon L, Jonasz M. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl Opt 2007; 46(33): 8118-33.
[http://dx.doi.org/10.1364/AO.46.008118] [PMID: 18026551]
[43]
Kreiht F, Black W. Basic heat transfer. New York: Harper and Row 1980.
[44]
Lide DR, Kehiaian HV. CRC Handbook of Thermophysical and Thermochemical Data. Cleveland: CRC Press 2020.
[http://dx.doi.org/10.1201/9781003067719]
[45]
Zinoviev V. Handbook of Thermophysical properties of metals at high temperatures. Moscow: Metallurgy publisher 1989.
[46]
Pustovalov VK. Theoretical study of heating of spherical nanoparticle in media by short laser pulses. Chem Phys 2005; 308(1-2): 103-8.
[http://dx.doi.org/10.1016/j.chemphys.2004.08.005]
[47]
Pustovalov VK, Smetannikov AS. Analytical and computer modelling of thermal processes of laser interaction with a single nanoparticle. RSC Advances 2014; 4(99): 55760-72.
[http://dx.doi.org/10.1039/C4RA07772E]
[48]
Pustovalov VK. Light-to-heat conversion and heating of single nanoparticles, their assemblies, and the surrounding medium under laser pulses. RSC Advances 2016; 6(84): 81266-89.
[http://dx.doi.org/10.1039/C6RA11130K]
[49]
Otter M. Temperaturabhängigkeit der optischen Konstanten massiver Metalle. Eur Phys J A 1961; 161(5): 539-49.
[http://dx.doi.org/10.1007/BF01341551]
[50]
Winsemius P, Kampen FF, Lengkeek HP, Went CG. Temperature dependence of the optical properties of Au, Ag and Cu. J Phys F Met Phys 1976; 6(8): 1583-606.
[http://dx.doi.org/10.1088/0305-4608/6/8/017]
[51]
Miller JC. Optical properties of liquid metals at high temperatures. Philos Mag 1969; 20(168): 1115-32.
[http://dx.doi.org/10.1080/14786436908228198]
[52]
Comins NR. The optical properties of liquid metals. Philos Mag 1972; 25(4): 817-31.
[http://dx.doi.org/10.1080/14786437208229306]
[53]
Schmid M, Zehnder S, Schwaller P, Neuenschwander B, Held M, Hunziker U. Measuring optical properties on rough and liquid metal surfaces. ALT Proceedings 12012;
[http://dx.doi.org/10.12684/alt.1.78]
[54]
Aksyutov LN. Temperature dependence of the optical constants of tungsten and gold. J Appl Spectrosc 1977; 26(5): 656-60.
[http://dx.doi.org/10.1007/BF00611851]
[55]
Minissale M, Pardanaud C, Bisson R, Gallais L. The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experimental and theoretical study. J Phys D Appl Phys 2017; 50: 1361-3.
[http://dx.doi.org/10.1088/1361-6463/aa81f3]
[56]
Ujihara K. Reflectivity of metals at high temperatures. J Appl Phys 1972; 43(5): 2376-83.
[http://dx.doi.org/10.1063/1.1661506]
[57]
Magnozzi M, Ferrera M, Mattera L, Canepa M, Bisio F. Plasmonics of Au nanoparticles in a hot thermodynamic bath. Nanoscale 2019; 11(3): 1140-6.
[http://dx.doi.org/10.1039/C8NR09038F] [PMID: 30574968]
[58]
Ferrera M, Magnozzi M, Canepa M, Bisio F. Thermoplasmonics of Ag nanoparticles in a variable-temperature bath. J Phys Chem C 2020; 124(31): 17204-10.
[http://dx.doi.org/10.1021/acs.jpcc.0c04085]
[59]
Tripura Sundari S, Srinivasu K, Dash S, Tyagi AK. Temperature evolution of optical constants and their tuning in silver. Solid State Commun 2013; 167: 36-9.
[http://dx.doi.org/10.1016/j.ssc.2013.05.001]
[60]
Sundari ST, Chandra S, Tyagi AK. Temperature dependent optical properties of silver from spectroscopic ellipsometry and density functional theory calculations. J Appl Phys 2013; 114(3): 033515.
[http://dx.doi.org/10.1063/1.4813874]
[61]
Ferrera M, Magnozzi M, Bisio F, Canepa M. Temperature-dependent permittivity of silver and implications for thermoplasmonics. Phys Rev Mater 2019; 3(10): 105201.
[http://dx.doi.org/10.1103/PhysRevMaterials.3.105201]
[62]
Reddy H, Guler U, Chaudhuri K, et al. Temperature-dependent optical properties of single crystalline and polycrystalline silver thin films. ACS Photonics 2017; 4(5): 1083-91.
[http://dx.doi.org/10.1021/acsphotonics.6b00886]
[63]
Reddy H, Guler U, Kildishev AV, Boltasseva A, Shalaev VM. Temperature dependent optical properties of gold thin films. Opt Mater Express 2016; 6(9): 2776-802.
[http://dx.doi.org/10.1364/OME.6.002776]
[64]
Owens JC. Optical refractive index of air: Dependence on pressure, temperature and composition. Appl Opt 1967; 6(1): 51-9.
[http://dx.doi.org/10.1364/AO.6.000051] [PMID: 20057695]
[65]
Ciddor PE. Refractive index of air: New equations for the visible and near infrared. Appl Opt 1996; 35(9): 1566-73.
[http://dx.doi.org/10.1364/AO.35.001566] [PMID: 21085275]
[66]
Thormählen I, Straub J, Grigull U. Refractive index of water and its dependence on wavelength, temperature, and density. J Phys Chem Ref Data 1985; 14(4): 933-45.
[http://dx.doi.org/10.1063/1.555743]
[67]
Lingart Yu, Petrov V, Tikhonova N. Optical properties of Al2O3 for high temperatures. Teplopfysica high temperatures 1982; 20: 872-0.
[68]
Gryvnak DA, Burch DE. Optical and infrared properties of Al2O3 at elevated temperatures. J Opt Soc Am 1965; 55(6): 625-32.
[http://dx.doi.org/10.1364/JOSA.55.000625]
[69]
Reddy H, Guler U, Kudyshev Z, Kildishev AV, Shalaev VM, Boltasseva A. Temperature-dependent optical properties of plasmonic titanium nitride thin films. ACS Photonics 2017; 4(6): 1413-20.
[http://dx.doi.org/10.1021/acsphotonics.7b00127]
[70]
Zhang F, Zhang RJ, Zhang DX, et al. Temperature-dependent optical properties of titanium oxide thin films TiO2 studied by spectroscopic ellipsometry. Appl Phys Express 2013; 6(12): 121101.
[http://dx.doi.org/10.7567/APEX.6.121101]
[71]
Tan CZ, Arndt J. Temperature dependence of refractive index of glassy SiO 2 in the infrared wavelength range. J Phys Chem Solids 2000; 61(8): 1315-20.
[http://dx.doi.org/10.1016/S0022-3697(99)00411-4]
[72]
Wray JH, Neu JT. Refractive index of several glasses as a function of wavelength and temperature. J Opt Soc Am 1969; 59(6): 774-6.
[http://dx.doi.org/10.1364/JOSA.59.000774]
[73]
Anisimov SI, Imas YaA, Romanov GS, Khodyko YuV. Action of High -Power Radiation on Metals. Springfield: National Technical Information Service 1971.
[74]
Mie G. Contributions to the optics of turbid media, especially colloidal metal solutions. Ann Phys 1908; 330(3): 377-445.
[http://dx.doi.org/10.1002/andp.19083300302]
[75]
Palpant B, Prével B, Lermé J, et al. Optical properties of gold clusters in the size range 2–4 nm. Phys Rev B Condens Matter 1998; 57(3): 1963-70.
[http://dx.doi.org/10.1103/PhysRevB.57.1963]
[76]
Oldenburg SJ, Averitt RD, Westcott SL, Halas NJ. Nanoengineering of optical resonances. Chem Phys Lett 1998; 288(2-4): 243-7.
[http://dx.doi.org/10.1016/S0009-2614(98)00277-2]
[77]
Link S, El-Sayed MA. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J Phys Chem B 1999; 103(40): 8410-26.
[http://dx.doi.org/10.1021/jp9917648]
[78]
Jensen T, Kelly L, Lazarides A, Schatz GC. Electrodynamics of noble metal nanoparticles and nanoparticle clusters. J Cluster Sci 1999; 10(2): 295-317.
[http://dx.doi.org/10.1023/A:1021977613319]
[79]
Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J Phys Chem B 2003; 107(3): 668-77.
[http://dx.doi.org/10.1021/jp026731y]
[80]
Bruzzone S, Malvaldi M, Arrighini GP, Guidotti C. Light scattering by gold nanoparticles: Role of simple dielectric modes. J Phys Chem B 2004; 108(30): 10853-8.
[http://dx.doi.org/10.1021/jp049401h]
[81]
Pustovalov VK, Babenko VA. Optical properties of gold nanoparticles at laser radiation wavelengths for nanotechnology and medicine. Laser Phys Lett 2004; 1: 516-20.
[http://dx.doi.org/10.1002/lapl.200410111]
[82]
Pustovalov VK, Babenko VA. Computer modeling of optical properties of gold ellipsoidal nanoparticles at laser radiation wavelengths. Laser Phys Lett 2005; 2(2): 84-8.
[http://dx.doi.org/10.1002/lapl.200410126]
[83]
Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 2006; 110(14): 7238-48.
[http://dx.doi.org/10.1021/jp057170o] [PMID: 16599493]
[84]
Astafyeva LG, Pustovalov VK, Fritzsche W. Characterization of plasmonic and thermo-optical parameters of spherical metallic nanoparticles. Nano Struct Nano Obj 2017; 12: 57-67.
[http://dx.doi.org/10.1016/j.nanoso.2017.08.014]
[85]
Jiang K, Smith DA, Pinchuk A. Size-dependent photothermal conversion efficiencies of plasmonically heated gold NPs. J Phys Chem C 2013; 117(51): 27073-80.
[http://dx.doi.org/10.1021/jp409067h]
[86]
Daneshfar N. The study of scattering-to-absorption ratio in plasmonic nanoparticles for photovoltaic cells and sensor applications. Plasmonics 2021; 16(6): 2017-23.
[http://dx.doi.org/10.1007/s11468-021-01464-z]
[87]
Pustovalov VK. Modeling and analysis of optical properties of nanoparticles and nanofluids for effective absorption of solar radiation and their heating. SN Applied Sciences 2019; 1(4): 356.
[http://dx.doi.org/10.1007/s42452-019-0370-2]
[88]
Pustovalov V, Astafyeva L. Investigation of thermo-optical characteristics of the interaction processes of laser radiation with silver nanoparticles. Laser Phys 2013; 23: 065901.
[89]
Amendola V, Bakr OM, Stellacci F. A study of the surface plasmon resonance of silver nanoparticles by the discrete dipole approximation method: Effect of shape, size, structure, and assembly. Plasmonics 2010; 5(1): 85-97.
[http://dx.doi.org/10.1007/s11468-009-9120-4]
[90]
Qin Z, Wang Y, Randrianalisoa J, et al. Quantitative comparison of photothermal heat generation between gold nanospheres and nanorods. Sci Rep 2016; 6(1): 29836.
[http://dx.doi.org/10.1038/srep29836] [PMID: 27445172]
[91]
Chen M, He Y, Wang X, Hu Y. Numerically investigating the optical properties of plasmonic metallic nanoparticles for effective solar absorption and heating. Sol Energy 2018; 161: 17-24.
[http://dx.doi.org/10.1016/j.solener.2017.12.032]
[92]
Cheng L, Zhu G, Liu G, Zhu L. FDTD simulation of the optical properties for gold nanoparticles. Mater Res Express 2020; 7(12): 125009.
[http://dx.doi.org/10.1088/2053-1591/abd139]
[93]
Pustovalov VK, Astafyeva LG, Fritzsche W. Analysis of optical properties of spherical metallic nanoparticles for effective absorption of solar radiation and their heating. Sol Energy 2015; 122: 1334-41.
[http://dx.doi.org/10.1016/j.solener.2015.09.022]
[94]
Holm VRA, Greve MM, Holst B. A theoretical investigation of the optical properties of metal nanoparticles in water for photo thermal conversion enhancement. Energy Convers Manage 2017; 149: 536-42.
[http://dx.doi.org/10.1016/j.enconman.2017.07.027]
[95]
Coronado EA, Encina ER, Stefani FD. Optical properties of metallic nanoparticles: manipulating light, heat and forces at the nanoscale. Nanoscale 2011; 3(10): 4042-59.
[http://dx.doi.org/10.1039/c1nr10788g] [PMID: 21931921]
[96]
Pustovalov VK. Thermo-optical properties of spherical homogeneous and core–shell nanoparticles and their applicationsHandbook of nanoparticles. Heidelberg: Springer 2016; pp. 819-41.
[http://dx.doi.org/10.1007/978-3-319-15338-4_37]
[97]
Gutiérrez Y, Losurdo M, González F, Everitt HO, Moreno F. Nanoplasmonic photothermal heating and near-field enhancements: a comparative survey of nineteen metals. J Phys Chem C 2020; 124(13): 7386-95.
[http://dx.doi.org/10.1021/acs.jpcc.0c00757]
[98]
Hashemi Zadeh S, Rashidi-Huyeh M, Palpant B. Enhancement of the thermo-optical response of silver nanoparticles due to surface plasmon resonance. J Appl Phys 2017; 122(16): 163108.
[http://dx.doi.org/10.1063/1.4997276]
[99]
Anderson LJE, Mayer KM, Fraleigh RD, Yang Y, Lee S, Hafner JH. Quantitative measurements of individual gold nanoparticle scattering cross sections. J Phys Chem C 2010; 114(25): 11127-32.
[http://dx.doi.org/10.1021/jp1040663]
[100]
Berto P, Ureña EB, Bon P, Quidant R, Rigneault H, Baffou G. Quantitative absorption spectroscopy of nano-objects. Phys Rev B Condens Matter Mater Phys 2012; 86(16): 165417.
[http://dx.doi.org/10.1103/PhysRevB.86.165417]
[101]
Muskens OL, Del Fatti N, Vallée F, Huntzinger JR, Billaud P, Broyer M. Single metal nanoparticle absorption spectroscopy and optical characterization. Appl Phys Lett 2006; 88(6): 063109.
[http://dx.doi.org/10.1063/1.2172143]
[102]
Billaud P, Huntzinger JR, Cottancin E, et al. Optical extinction spectroscopy of single silver nanoparticles. Eur Phys J D 2007; 43(1-3): 271-4.
[http://dx.doi.org/10.1140/epjd/e2007-00112-y]
[103]
Baida H, Christofilos D, Maioli P, Crut A, Del Fatti N, Vallée F. Ultrafast nonlinear spectroscopy of a single silver nanoparticle. J Raman Spectrosc 2011; 42(10): 1891-6.
[http://dx.doi.org/10.1002/jrs.2874]
[104]
Baida H, Mongin D, Christofilos D, et al. Ultrafast nonlinear optical response of a single gold nanorod near its surface plasmon resonance. Phys Rev Lett 2011; 107(5): 057402.
[http://dx.doi.org/10.1103/PhysRevLett.107.057402] [PMID: 21867097]
[105]
Crut A, Maioli P, Del Fatti N, Vallée F. Optical absorption and scattering spectroscopies of single nano-objects. Chem Soc Rev 2014; 43(11): 3921-56.
[http://dx.doi.org/10.1039/c3cs60367a] [PMID: 24724158]
[106]
Juvé V, Cardinal MF, Lombardi A, et al. Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: Single gold nanorods. Nano Lett 2013; 13(5): 2234-40.
[http://dx.doi.org/10.1021/nl400777y] [PMID: 23611370]
[107]
Yorulmaz M, Nizzero S, Hoggard A, et al. Single-particle absorption spectroscopy by photothermal contrast. Nano Lett 2015; 15(5): 3041-7.
[http://dx.doi.org/10.1021/nl504992h] [PMID: 25849105]
[108]
Horneber A, Braun K, Rogalski J, Leiderer P, Meixner AJ, Zhang D. Nonlinear optical imaging of single plasmonic nanoparticles with 30 nm resolution. Phys Chem Chem Phys 2015; 17(33): 21288-93.
[http://dx.doi.org/10.1039/C4CP05342G] [PMID: 25659798]
[109]
Khadir S, Andrén D, Chaumet PC, et al. Full optical characterization of single nanoparticles using quantitative phase imaging. Optica 2020; 7(3): 243-8.
[http://dx.doi.org/10.1364/OPTICA.381729]
[110]
Zilli A, Langbein W, Borri P. Quantitative measurement of the optical cross sections of single nano-objects by correlative transmission and scattering microspectroscopy. ACS Photonics 2019; 6(8): 2149-60.
[http://dx.doi.org/10.1021/acsphotonics.9b00727] [PMID: 32064304]
[111]
Bharti A, Chae KH, Goyal N. Real-time synthesis and detection of plasmonic metal (Au, Ag) nanoparticles under monochromatic X-ray nano-tomography. Sci Rep 2020; 10(1): 20877.
[http://dx.doi.org/10.1038/s41598-020-77853-x] [PMID: 33257746]
[112]
Davletshin YR, Lombardi A, Cardinal MF, et al. A quantitative study of the environmental effects on the optical response of gold nanorods. ACS Nano 2012; 6(9): 8183-93.
[http://dx.doi.org/10.1021/nn302869v] [PMID: 22931408]
[113]
Amendola V, Pilot R, Frasconi M, Maragò OM, Iatì MA. Surface plasmon resonance in gold nanoparticles: a review. J Phys Condens Matter 2017; 29(20): 203002.
[http://dx.doi.org/10.1088/1361-648X/aa60f3] [PMID: 28426435]
[114]
Wang L, Zare D, Chow TH, Wang J, Magnozzi M, Chergui M. Disentangling light- and temperature-induced thermal effects in colloidal Au nanoparticles. J Phys Chem C 2022; 126(7): 3591-9.
[http://dx.doi.org/10.1021/acs.jpcc.1c10747] [PMID: 35242272]
[115]
Tian M, Yuan Z, Liu Y, Lu C, Ye Z, Xiao L. Recent advances of plasmonic nanoparticle-based optical analysis in homogeneous solution and at the single-nanoparticle level. Analyst 2020; 145(14): 4737-52.
[http://dx.doi.org/10.1039/D0AN00609B] [PMID: 32500906]
[116]
Taylor RA, Phelan PE, Otanicar TP, Adrian R, Prasher R. Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res Lett 2011; 6(1): 225.
[http://dx.doi.org/10.1186/1556-276X-6-225] [PMID: 21711750]
[117]
Pustovalov VK, Astafyeva LG, Fritzsche W. Optical properties of nanoparticles and nanofluids for direct absorption of solar radiation. Nanotechnology for Environmental Engineering 2018; 3(1): 15-22.
[http://dx.doi.org/10.1007/s41204-018-0044-0]
[118]
Bigall NC, Härtling T, Klose M, Simon P, Eng LM, Eychmüller A. Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: synthesis and distinct optical properties. Nano Lett 2008; 8(12): 4588-92.
[http://dx.doi.org/10.1021/nl802901t] [PMID: 19367978]
[119]
Amendola V, Meneghetti M. Size evaluation of gold nanoparticles by UV-VIS spectroscopy. J Phys Chem C 2009; 113(11): 4277-85.
[http://dx.doi.org/10.1021/jp8082425]
[120]
Dang TMD, Le TTT, Fribourg-Blanc E, Dang MC. Synthesis and optical properties of copper nanoparticles prepared by a chemical reduction method. Advances in Natural Sciences: Nanoscience and Nanotechnology 2011; 2(1): 015009.
[http://dx.doi.org/10.1088/2043-6262/2/1/015009]
[121]
Kameya Y, Hanamura K. Enhancement of solar radiation absorption using nanoparticle suspension. Sol Energy 2011; 85(2): 299-307.
[http://dx.doi.org/10.1016/j.solener.2010.11.021]
[122]
Jin H, Lin G, Bai L, et al. Photothermal conversion efficiency of nanofluids: An experimental and numerical study. Sol Energy 2016; 139: 278-89.
[http://dx.doi.org/10.1016/j.solener.2016.09.021]
[123]
He Q, Wang S, Zeng S, Zheng Z. Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems. Energy Convers Manage 2013; 73: 150-7.
[http://dx.doi.org/10.1016/j.enconman.2013.04.019]
[124]
Moreira LM, Carvalho EA, Bell MJV, et al. Thermo-optical properties of silver and gold nanofluids. J Therm Anal Calorim 2013; 114(2): 557-64.
[http://dx.doi.org/10.1007/s10973-013-3021-7]
[125]
Gorji TB, Ranjbar AA. A review on optical properties and application of nanofluids in direct absorption solar collectors (DASCs). Renew Sustain Energy Rev 2017; 72: 10-32.
[http://dx.doi.org/10.1016/j.rser.2017.01.015]
[126]
Ryasnyanskiy AI, Palpant B, Debrus S, Pal U, Stepanov AL. Nonlinear optical properties of gold nanoparticles dispersed in different optically transparent matrices. Phys Solid State 2009; 51(1): 55-60.
[http://dx.doi.org/10.1134/S1063783409010065]
[127]
Chen F, Qiao B, Dai S, Zhang X, Ji W. Optical property of gold nanoparticle embedded chalcogenide glasses. Opt Mater Express 2018; 8(10): 3197-206.
[http://dx.doi.org/10.1364/OME.8.003197]
[128]
Rashidi Huyeh M, Shirdel Havar M, Palpant B. Thermo-optical properties of embedded silver nanoparticles. J Appl Phys 2012; 112(10): 103101.
[http://dx.doi.org/10.1063/1.4766409]
[129]
Nikonorov NV, Sidorov AI, Tsekhomskii VA. Silver nanoparticles in oxide glasses: technologies and properties. Part 10.Silver nanoparticles. Intech 2010; 177-200.
[http://dx.doi.org/10.5772/8506]
[130]
Rentería-Tapia V, Velásquez-Ordoñez C, Martínez MO, Barrera-Calva E, González-García F. Silver nanoparticles dispersed on silica glass for applications as photothermal selective material. Energy Procedia 2014; 57: 2241-8.
[http://dx.doi.org/10.1016/j.egypro.2014.10.231]
[131]
Stepanov AL. Nonlinear Optical Properties of Metal Nanoparticles in Silicate GlassGlass Nanocomposites. Elsevier 2016; pp. 165-79.
[http://dx.doi.org/10.1016/B978-0-323-39309-6.00007-9]
[132]
Ferrari P, Upadhyay S, Shestakov MV, et al. Wavelength-dependent nonlinear optical properties of Ag nanoparticles dispersed in a glass host. J Phys Chem C 2017; 121(49): 27580-9.
[http://dx.doi.org/10.1021/acs.jpcc.7b09017]
[133]
Gao JD, Zhao CY, Wang BX. Effect of metal particles in cermets on spectral selectivity. J Appl Phys 2017; 121(11): 113105.
[http://dx.doi.org/10.1063/1.4978418]
[134]
Butet J, Yang KY, Dutta-Gupta S, Martin OJF. Maximizing nonlinear optical conversion in plasmonic nanoparticles through ideal absorption of light. ACS Photonics 2016; 3(8): 1453-60.
[http://dx.doi.org/10.1021/acsphotonics.6b00031]
[135]
Grigoriev V, Bonod N, Wenger J, Stout B. Optimizing nanoparticle designs for ideal absorption of light. ACS Photonics 2015; 2(2): 263-70.
[http://dx.doi.org/10.1021/ph500456w]
[136]
Pustovalov VK. Influence of the temperature dependence of optical properties of gold nanoparticles and their heating, melting and evaporation by laser pulses. High Temp Mater Process 2022; 26(1): 41-9.
[http://dx.doi.org/10.1615/HighTempMatProc.2022041882]
[137]
Pustovalov VK, Astaf’eva LG. Temperature dependences of the optical properties of metal nanoparticles in various media. Opt Spectrosc 2021; 129(3): 385-90.
[http://dx.doi.org/10.1134/S0030400X21030152]
[138]
Yeshchenko OA, Bondarchuk IS, Gurin VS, Dmitruk IM, Kotko AV. Temperature dependence of the surface plasmon resonance in gold nanoparticles. Surf Sci 2013; 608: 275-81.
[http://dx.doi.org/10.1016/j.susc.2012.10.019]
[139]
Yeshchenko OA, Pinchuk AO. Thermo-optical effects in plasmonic metal nanostructures. Ukrainian J Phys 2021; 66(2): 112-40.
[http://dx.doi.org/10.15407/ujpe66.2.112]
[140]
Gerasimov VS, Ershov AE, Gavrilyuk AP, Karpov SV, Ågren H, Polyutov SP. Suppression of surface plasmon resonance in Au nanoparticles upon transition to the liquid state. Opt Express 2016; 24(23): 26851-6.
[http://dx.doi.org/10.1364/OE.24.026851] [PMID: 27857413]
[141]
Pustovalov VK. Modeling of the processes of laser-nanoparticle interaction taking into account temperature dependences of parameters. Laser Phys 2011; 21(5): 906-12.
[http://dx.doi.org/10.1134/S1054660X11090234]
[142]
Pustovalov VK, Chumakov AN. Optical characteristics of metallic nanoparticles during melting by laser radiation. J Appl Spectrosc 2017; 84(1): 71-5.
[http://dx.doi.org/10.1007/s10812-017-0429-z]
[143]
Yeshchenko OA, Kutsevol NV, Naumenko AP. Light induced heating of gold nanoparticles in colloidal solution: dependence on detuning from surface plasmon resonance. Plasmonics 2016; 11(1): 345-50.
[http://dx.doi.org/10.1007/s11468-015-0034-z]
[144]
Celanovic I, Soljacic M. High-temperature nanophotonics: from theory to real devices and systems. J Opt 2016; 18: 073004.
[145]
Liu J, He H, Xiao D, et al. Recent advances of plasmonic nanoparticles and their applications. Materials 2018; 11(10): 1833-43.
[http://dx.doi.org/10.3390/ma11101833] [PMID: 30261657]
[146]
Wang L, Hasanzadeh Kafshgari M, Meunier M. Optical properties and applications of plasmonic‐metal nanoparticles. Adv Funct Mater 2020; 30(51): 2005400.
[http://dx.doi.org/10.1002/adfm.202005400]
[147]
Chen J, Ye Z, Yang F, Yin Y. Plasmonic nanostructures for photothermal conversion. Small Sci 2021; 1(2): 2000055.
[http://dx.doi.org/10.1002/smsc.202000055]
[148]
Chen Q, Chen Q, Qi H, Ruan L, Ren Y. Experimental comparison of photothermal conversion efficiency of gold nanotriangle and nanorod in laser induced thermal therapy. Nanomaterials 2017; 7(12): 416-21.
[http://dx.doi.org/10.3390/nano7120416] [PMID: 29186825]
[149]
Liu Y, Kangas J, Wang Y, et al. Photothermal conversion of gold nanoparticles for uniform pulsed laser warming of vitrified biomaterials. Nanoscale 2020; 12(23): 12346-56.
[http://dx.doi.org/10.1039/D0NR01614D] [PMID: 32490463]
[150]
Pustovalov VK, Chumakov AN. Laser melting and evaporation of nanoparticles: A simplified model for estimations of threshold fluence. Opt Laser Technol 2020; 126: 106082.
[http://dx.doi.org/10.1016/j.optlastec.2020.106082]
[151]
Barton P, Mukherjee S, Prabha J, Boudouris BW, Pan L, Xu X. Fabrication of silver nanostructures using femtosecond laser-induced photoreduction. Nanotechnology 2017; 28(50): 505302.
[http://dx.doi.org/10.1088/1361-6528/aa977b] [PMID: 29091584]
[152]
Di Martino G, Turek VA, Braeuninger-Weimer P, Hofmann S, Baumberg JJ. Laser-induced reduction and in-situ optical spectroscopy of individual plasmonic copper nanoparticles for catalytic reactions. Appl Phys Lett 2017; 110(7): 071111.
[http://dx.doi.org/10.1063/1.4976694]
[153]
Alshammari AS, Alenezi MR, Silva SRP. Excimer laser sintereing of silver nanoparticles electrodes for fully solution processed organic thin film transistors. Opt Laser Technol 2019; 120: 105758.
[http://dx.doi.org/10.1016/j.optlastec.2019.105758]
[154]
Zacharatos F, Duderstadt M, Almpanis E, et al. Laser printing of Au nanoparticles with sub-micron resolution for the fabrication of monochromatic reflectors on stretchable substrates. Opt Laser Technol 2021; 135: 106660.
[http://dx.doi.org/10.1016/j.optlastec.2020.106660]
[155]
Liu J, Hou Z, Li T, Fu Y, Wang Z. A comparative study of nanoparticle-enhanced laser-induced breakdown spectroscopy. J Anal At Spectrom 2020; 35(10): 2274-81.
[http://dx.doi.org/10.1039/D0JA00257G]
[156]
Zhao B, Aravind I, Yang S, et al. Enhanced plasma generation from metal nanostructures via photoexcited hot electrons. J Phys Chem C 2021; 125(12): 6800-4.
[http://dx.doi.org/10.1021/acs.jpcc.1c00765]
[157]
Ji X, Tang D, Li Y, et al. Influence of aluminum nanoparticles and binders on the laser initiation of cyclotrimethylenetrinitramine. Opt Laser Technol 2019; 120: 105677.
[http://dx.doi.org/10.1016/j.optlastec.2019.105677]
[158]
Kitz M, Preisser S, Wetterwald A, Jaeger M, Thalmann GN, Frenz M. Vapor bubble generation around gold nano-particles and its application to damaging of cells. Biomed Opt Express 2011; 2(2): 291-304.
[http://dx.doi.org/10.1364/BOE.2.000291] [PMID: 21339875]
[159]
Moon S, Zhang Q, Xu Z, et al. Plasmonic nanobubbles–a perspective. J Phys Chem C 2021; 125(46): 25357-68.
[http://dx.doi.org/10.1021/acs.jpcc.1c07244]
[160]
Pustovalov VK. Model for estimations of laser threshold fluencies for photothermal bubble generation around nanoparticles. Appl Phys, A Mater Sci Process 2020; 126(3): 196-9.
[http://dx.doi.org/10.1007/s00339-020-3370-6]
[161]
Zhang Q, Neal RD, Huang D, Neretina S, Lee E, Luo T. Surface bubble growth in plasmonic nanoparticle suspension. ACS Appl Mater Interfaces 2020; 12(23): 26680-7.
[http://dx.doi.org/10.1021/acsami.0c05448] [PMID: 32402195]
[162]
Zhang Y, An W, Zhao C, Dong Q. Radiation induced plasmonic nanobubbles: fundamentals, applications and prospects. AIMS Energy 2021; 9(4): 676-713.
[http://dx.doi.org/10.3934/energy.2021032]
[163]
Upputuri PK, Pramanik M. Fast photoacoustic imaging systems using pulsed laser diodes: a review. Biomed Eng Lett 2018; 8(2): 167-81.
[http://dx.doi.org/10.1007/s13534-018-0060-9] [PMID: 30603201]
[164]
Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J 2003; 84(6): 4023-32.
[http://dx.doi.org/10.1016/S0006-3495(03)75128-5] [PMID: 12770906]
[165]
Schomaker M, Heinemann D, Kalies S, et al. Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine. J Nanobiotechnology 2015; 13(1): 10-7.
[http://dx.doi.org/10.1186/s12951-014-0057-1] [PMID: 25645721]
[166]
Pylaev TE, Efremov Y, Avdeeva ES, et al. Optoporation and recovery of living cells under Au nanoparticle layer-mediated NIR-laser irradiation. ACS Appl Nano Mater 2021; 4(12): 13206-17.
[http://dx.doi.org/10.1021/acsanm.1c02734]
[167]
Lalayan AA, Israelyan SS. Metal nanoparticles and IR laser applications in medicine for biotissue ablation and welding. Laser Phys 2016; 26(5): 055605.
[http://dx.doi.org/10.1088/1054-660X/26/5/055605]
[168]
Rastinehad AR, Anastos H, Wajswol E, et al. Gold nanoshell-localized photothermal ablation of prostate tumors in a clinical pilot device study. Proc Natl Acad Sci 2019; 116(37): 18590-6.
[http://dx.doi.org/10.1073/pnas.1906929116] [PMID: 31451630]
[169]
Bian W, Wang Y, Pan Z, et al. Review of functionalized nanomaterials for photothermal therapy of cancers. ACS Appl Nano Mater 2021; 4(11): 11353-85.
[http://dx.doi.org/10.1021/acsanm.1c01903]
[170]
Vines JB, Yoon JH, Ryu NE, Lim DJ, Park H. Gold nanoparticles for photothermal cancer therapy. Front Chem 2019; 7: 167.
[http://dx.doi.org/10.3389/fchem.2019.00167] [PMID: 31024882]
[171]
Ali MRK, Wu Y, El-Sayed MA. Gold-nanoparticle-assisted plasmonic photothermal therapy advances toward clinical application. J Phys Chem C 2019; 123(25): 15375-93.
[http://dx.doi.org/10.1021/acs.jpcc.9b01961]
[172]
Qin Z, Bischof JC. Thermophysical and biological responses of gold nanoparticle laser heating. Chem Soc Rev 2012; 41(3): 1191-217.
[http://dx.doi.org/10.1039/C1CS15184C] [PMID: 21947414]
[173]
Dreaden EC, Mackey MA, Huang X, Kang B, El-Sayed MA. Beating cancer in multiple ways using nanogold. Chem Soc Rev 2011; 40(7): 3391-404.
[http://dx.doi.org/10.1039/c0cs00180e] [PMID: 21629885]
[174]
Goddard ZR, Marín MJ, Russell DA, Searcey M. Active targeting of gold nanoparticles as cancer therapeutics. Chem Soc Rev 2020; 49(23): 8774-89.
[http://dx.doi.org/10.1039/D0CS01121E] [PMID: 33089858]
[175]
Philippot K, Roucoux A, Eds. Nanoparticles in Catalysis: Advances in Synthesis and Applications. Wiley-VCH 2021.
[http://dx.doi.org/10.1002/9783527821761]
[176]
Forsythe RC, Cox CP, Wilsey MK, Müller AM. Pulsed laser in liquids made nanomaterials for catalysis. Chem Rev 2021; 121(13): 7568-637.
[http://dx.doi.org/10.1021/acs.chemrev.0c01069] [PMID: 34077177]
[177]
Ye Z, Wei L, Xiao L, Wang J. Laser illumination-induced dramatic catalytic activity change on Au nanospheres. Chem Sci 2019; 10(22): 5793-800.
[http://dx.doi.org/10.1039/C9SC01666J] [PMID: 31293767]
[178]
Zhang X, Li X, Reish ME, et al. Plasmon-enhanced catalysis: distinguishing thermal and nonthermal effects. Nano Lett 2018; 18(3): 1714-23.
[http://dx.doi.org/10.1021/acs.nanolett.7b04776] [PMID: 29438619]
[179]
Wang Q, Domen K. Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem Rev 2020; 120(2): 919-85.
[http://dx.doi.org/10.1021/acs.chemrev.9b00201] [PMID: 31393702]
[180]
Gellé A, Jin T, de la Garza L, Price GD, Besteiro LV, Moores A. Applications of plasmon-enhanced nanocatalysis to organic transformations. Chem Rev 2020; 120(2): 986-1041.
[http://dx.doi.org/10.1021/acs.chemrev.9b00187] [PMID: 31725267]
[181]
Kalogirou SA. Solar energy engineering: processes and systems. (2nd ed.), Cambridge: Academic Press 2013.
[182]
Application of thermo-fluid processes in energy systems: key issues and recent developments for a sustainable future. Masud M, Khan K, Chowdhury A, Sayeed Hassan N, Eds. Springer: Berlin 2017.
[183]
Reddy KS, Kamnapure NR, Srivastava S. Nanofluid and nanocomposite applications in solar energy conversion systems for performance enhancement. Int J Low Carbon Technol 2017; 12: 1-23.
[184]
Esmaeili M, Karami M, Delfani S. Performance enhancement of a direct absorption solar collector using copper oxide porous foam and nanofluid. Int J Energy Res 2020; 44(7): 5527-44.
[http://dx.doi.org/10.1002/er.5305]
[185]
Behura AK, Gupta HK. Efficient direct absorption solar collector using nanomaterial suspended Heat Transfer Fluid. Mater Today Proc 2020; 22: 1664-8.
[http://dx.doi.org/10.1016/j.matpr.2020.02.183]
[186]
Gorji TB, Ranjbar AA. A numerical and experimental investigation on the performance of a low-flux direct absorption solar collector (DASC) using graphite, magnetite and silver nanofluids. Sol Energy 2016; 135: 493-505.
[http://dx.doi.org/10.1016/j.solener.2016.06.023]
[187]
Chen M, He Y, Zhu J, Kim DR. Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes. Energy Convers Manage 2016; 112: 21-30.
[http://dx.doi.org/10.1016/j.enconman.2016.01.009]
[188]
Gupta MC, Ungaro C, Foley JJ IV, Gray SK. Optical nanostructures design, fabrication, and applications for solar/thermal energy conversion. Sol Energy 2018; 165: 100-14.
[http://dx.doi.org/10.1016/j.solener.2018.01.010]
[189]
Boldoo T, Ham J, Kim E, Cho H. Review of the photothermal energy conversion performance of nanofluids, their applications, and recent advances. Energies 2020; 13(21): 5748-83.
[http://dx.doi.org/10.3390/en13215748]
[190]
Fang Z, Zhen YR, Neumann O, et al. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett 2013; 13(4): 1736-42.
[http://dx.doi.org/10.1021/nl4003238] [PMID: 23517407]
[191]
Amjad M, Raza G, Xin Y, et al. Volumetric solar heating and steam generation via gold nanofluids. Appl Energy 2017; 206: 393-400.
[http://dx.doi.org/10.1016/j.apenergy.2017.08.144]
[192]
Wang X, He Y, Liu X, Shi L, Zhu J. Investigation of photothermal heating enabled by plasmonic nanofluids for direct solar steam generation. Sol Energy 2017; 157: 35-46.
[http://dx.doi.org/10.1016/j.solener.2017.08.015]
[193]
Zeiny A, Jin H, Lin G, Song P, Wen D. Solar evaporation via nanofluids: A comparative study. Renew Energy 2018; 122: 443-54.
[http://dx.doi.org/10.1016/j.renene.2018.01.043]
[194]
Neumann O, Feronti C, Neumann AD, et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc Natl Acad Sci USA 2013; 110(29): 11677-81.
[http://dx.doi.org/10.1073/pnas.1310131110] [PMID: 23836642]
[195]
Wang Z, Horseman T, Straub AP, et al. Pathways and challenges for efficient solar-thermal desalination. Sci Adv 2019; 5(7): eaax0763.
[http://dx.doi.org/10.1126/sciadv.aax0763] [PMID: 31360770]
[196]
Bait O. Direct and indirect solar–powered desalination processes loaded with nanoparticles: A review. Sustain Energy Technol Assess 2020; 37: 100597.
[http://dx.doi.org/10.1016/j.seta.2019.100597]
[197]
Seyednezhad M, Sheikholeslami M, Ali JA, Shafee A, Nguyen TK. Nanoparticles for water desalination in solar heat exchanger. J Therm Anal Calorim 2020; 139(3): 1619-36.
[http://dx.doi.org/10.1007/s10973-019-08634-6]
[198]
Kim JU, Lee S, Kang SJ, Kim T. Materials and design of nanostructured broadband light absorbers for advanced light-to-heat conversion. Nanoscale 2018; 10(46): 21555-74.
[http://dx.doi.org/10.1039/C8NR06024J] [PMID: 30431040]
[199]
Wang X, Li H, Yu X, Shi X, Liu J. High-performance solution-processed plasmonic Ni nanochain-Al2O3 selective solar thermal absorbers. Appl Phys Lett 2012; 101(20): 203109.
[http://dx.doi.org/10.1063/1.4766730]
[200]
Feng C, McEnaney K, Chen G, Ren Z. A review of cermet-based spectrally selective solar absorbers. Environ Sci 2014; 7: 1615-27.
[201]
Liu C, Zhang D, Liu Y, et al. Numerical study of an efficient solar absorber consisting of metal nanoparticles. Nanoscale Res Lett 2017; 12(1): 601-8.
[http://dx.doi.org/10.1186/s11671-017-2363-7] [PMID: 29168003]
[202]
Zain M, Amjad M, Farooq M, et al. Performance investigation of a solar thermal collector based on nanostructured energy materials. Front Mater 2021; 7: 617199.
[http://dx.doi.org/10.3389/fmats.2020.617199]
[203]
Bermel P. Thermophotovoltaics: an alternative strategy for converting heat to electricity. J Opt 2016; 18: 32-3.
[204]
Chirumamilla M, Krishnamurthy GV, Knopp K, et al. Metamaterial emitter for thermophotovoltaics stable up to 1400 °C. Sci Rep 2019; 9(1): 7241.
[http://dx.doi.org/10.1038/s41598-019-43640-6] [PMID: 31076610]
[205]
Chen M, Chen X, Yan H, Zhou P. Theoretical design of nanoparticle-based spectrally emitter for thermophotovoltaic applications. Physica E 2021; 126: 114471.
[http://dx.doi.org/10.1016/j.physe.2020.114471]
[206]
Ghanekar A, Lin L, Zheng Y. Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems. Opt Express 2016; 24(10): A868-77.
[http://dx.doi.org/10.1364/OE.24.00A868] [PMID: 27409959]
[207]
Ghanekar A, Tian Y, Zhang S, Cui Y, Zheng Y. Miemetamaterials-based thermal emitter for near-field thermophotovoltaic systems. Materials 2017; 10(8): 885.
[http://dx.doi.org/10.3390/ma10080885] [PMID: 28773241]
[208]
Horiuchi N. Efficient thermophotovoltaics. Nat Photonics 2020; 14(2): 66-71.
[http://dx.doi.org/10.1038/s41566-020-0585-1]
[209]
Keane D, McGuigan K, Fernandez-Ibanez P, Pillai S. Solar photocatalysis for water disinfection: Materials and reactor design. Catal Sci Technol 2014; 4: 1211-26.
[210]
Alonso E, Romero M. Review of experimental investigation on directly irradiated particles solar reactors. Renew Sustain Energy Rev 2015; 41: 53-67.
[http://dx.doi.org/10.1016/j.rser.2014.08.027]
[211]
Bora LV, Mewada RK. Visible/solar light active photocatalysts for organic effluent treatment: Fundamentals, mechanisms and parametric review. Renew Sustain Energy Rev 2017; 76: 1393-421.
[http://dx.doi.org/10.1016/j.rser.2017.01.130]
[212]
Baffou G, Cichos F, Quidant R. Applications and challenges of thermoplasmonics. Nat Mater 2020; 19(9): 946-58.
[http://dx.doi.org/10.1038/s41563-020-0740-6] [PMID: 32807918]
[213]
Cheng Y, Smith KJ, Arinze ES, et al. Size- and surface-dependent photoresponses of solution-processed aluminum nanoparticles. ACS Photonics 2020; 7(3): 637-45.
[http://dx.doi.org/10.1021/acsphotonics.9b01170]
[214]
Rassekh M, Shirmohammadi R, Ghasempour R, Razi Astaraei F, Farjami Shayesteh S. Effect of plasmonic Aluminum nanoparticles shapes on optical absorption enhancement in silicon thin-film solar cells. Phys Lett A 2021; 408: 127509.
[http://dx.doi.org/10.1016/j.physleta.2021.127509]
[215]
Jiang W, Fu Q, Wei H, Yao A. TiN nanoparticles: synthesis and application as near-infrared photothermal agents for cancer therapy. J Mater Sci 2019; 54(7): 5743-56.
[http://dx.doi.org/10.1007/s10853-018-03272-z]
[216]
Kharitonov A, Kharintsev S. Tunable optical materials for multi-resonant plasmonics: from TiN to TiON [Invited]. Opt Mater Express 2020; 10(2): 513-31.
[http://dx.doi.org/10.1364/OME.382160]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy