Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Elucidation of the Mechanisms and Molecular Targets of Run-zao-zhiyang Capsule for Itch based on Network Pharmacology, Molecular Docking and In Vitro Experiment

Author(s): Jiawei Wang, Huixin Li, Zixuan Yang, Chunyue Huang, Yichun Sun* and Xiao Hu*

Volume 26, Issue 10, 2023

Published on: 07 December, 2022

Page: [1866 - 1878] Pages: 13

DOI: 10.2174/1386207326666221031115440

Price: $65

Abstract

Background: Traditional Chinese medicine formula (TCMF) Run-zao-zhi-yang capsule (RZZY) is commonly used in treating itch in China. However, there are few studies on its mechanisms. In this study, we revealed the mechanisms and molecular targets of RZZY for itch by network pharmacology, molecular docking, and in vitro experiments.

Methods: The network pharmacology consisted of active ingredient collection, target acquisition, enrichment analysis, biological process analysis, and network construction. Molecular docking was carried out using molegro virtual docker (MVD) software. LPS-induced RAW 264.7 cells were used to evaluate the in vitro anti-inflammatory activity.

Results: We collected 483 high-confidence targets that interacted with 16 active compounds of RZZY, including 121 common genes related to itch. 43 important targets and 20 important pathways were identified according to the network and system analysis. Target-pathway network function analysis suggested that RZZY is treated for itch by multiple ways in immune regulation, hormone adjustment, anti-inflammation, and anti-oxidation. Molecular docking results demonstrated that daidzein and formononetin could be closely combined with 4 proteins. In vitro experiments displayed that RZZY, sophocarpine, catalpol, emodin, and daidzein had suppressive effects against TNF-α, IL-1β, or IL-6 production in LPS-induced RAW 264.7 cells. Interestingly, the result of network pharmacology revealed that RZZY might be more suitable for senile pruritus, consistent with the bibliometric analysis of RZZY’s clinical indications.

Conclusion: This study illustrated the potential mechanisms and molecular targets of RZZY for itch, which may contribute to the proper use of RZZY in clinical practice.

Graphical Abstract

[1]
Chen, X.J.; Sun, Y.G. Central circuit mechanisms of itch. Nat. Commun., 2020, 11(1), 3052.
[http://dx.doi.org/10.1038/s41467-020-16859-5] [PMID: 32546780]
[2]
Dhand, A.; Aminoff, M.J. The neurology of itch. Brain, 2014, 137(2), 313-322.
[http://dx.doi.org/10.1093/brain/awt158] [PMID: 23794605]
[3]
Kahremany, S.; Hofmann, L.; Gruzman, A.; Cohen, G. Advances in understanding the initial steps of pruritoceptive itch: How the itch hits the switch. Int. J. Mol. Sci., 2020, 21(14), 4883.
[http://dx.doi.org/10.3390/ijms21144883] [PMID: 32664385]
[4]
Yosipovitch, G.; Rosen, J.D.; Hashimoto, T. Itch: From mechanism to (novel) therapeutic approaches. J. Allergy Clin. Immunol., 2018, 142(5), 1375-1390.
[http://dx.doi.org/10.1016/j.jaci.2018.09.005] [PMID: 30409247]
[5]
Zhou, X.; Seto, S.W.; Chang, D.; Kiat, H.; Razmovski-Naumovski, V.; Chan, K.; Bensoussan, A. Synergistic effects of Chinese herbal medicine: A comprehensive review of methodology and current research. Front. Pharmacol., 2016, 7, 201.
[http://dx.doi.org/10.3389/fphar.2016.00201]
[6]
Li, Y.; Li, R.; Zeng, Z.; Li, S.; Luo, S.; Wu, J.; Zhou, C.; Xu, D. Prediction of the mechanisms of Xiaoai Jiedu Recipe in the treatment of breast cancer: A comprehensive approach study with experimental validation. J. Ethnopharmacol., 2020, 252, 112603.
[http://dx.doi.org/10.1016/j.jep.2020.112603] [PMID: 31981747]
[7]
Mi, N.; Deng, W. Clinical observation of Yu-ping-feng granules combined with clocyclizine hydrochloride tablets in the treatment of senile pruritus. Med. Innova. China, 2019, 16, 76-79.
[8]
Wu, X.; Chen, Y.; Qi, D.M.; Luo, Y.L. The curative effect of Zhi-yang-xi-feng decoction plus and reducing combined with loratadine tablets in treating diabetic skin pruritus and blood heat. J. Pract. Trad. Chin. Med., 2020, 36, 897-898.
[9]
Liu, B.Q.; Wang, F. Clinical observation of Run-zao-zhi-yang capsule combined with ebastine tablets in the treatment of skin pruritus in winter. Dermatosis Venereal, 2021, 43, 453-454.
[10]
Yu, Y.; Wu, Y. Run-zao-zhi-yang capsule in the treatment of senile systemic skin pruritus and its effect on patients’ quality of life. Geriatrics & Health Care, 2020, 26, 670-672.
[11]
Zhao, J.; Yang, J.; Tian, S.; Zhang, W. A survey of web resources and tools for the study of TCM network pharmacology. Quant. Biol., 2019, 7(1), 17-29.
[http://dx.doi.org/10.1007/s40484-019-0167-8]
[12]
Noor, F. Tahir ul Qamar, M.; Ashfaq, U.A.; Albutti, A.; Alwashmi, A.S.S.; Aljasir, M.A. Network pharmacology approach for medicinal plants: Review and assessment. Pharmaceuticals (Basel), 2022, 15(5), 572.
[http://dx.doi.org/10.3390/ph15050572] [PMID: 35631398]
[13]
Li, X.; Wei, S.; Niu, S.; Ma, X.; Li, H.; Jing, M.; Zhao, Y. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput. Biol. Med., 2022, 144, 105389.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105389] [PMID: 35303581]
[14]
Zhao, J.; Tian, S.; Lu, D.; Yang, J.; Zeng, H.; Zhang, F.; Tu, D.; Ge, G.; Zheng, Y.; Shi, T.; Xu, X.; Zhao, S.; Yang, Y.; Zhang, W. Systems pharmacological study illustrates the immune regulation, anti-infection, anti-inflammation, and multi-organ protection mechanism of Qing-Fei-Pai-Du decoction in the treatment of COVID-19. Phytomedicine, 2021, 85, 153315.
[http://dx.doi.org/10.1016/j.phymed.2020.153315] [PMID: 32978039]
[15]
Gu, Y.; Huang, P.; Cheng, T.; Yang, J.; Wu, G.; Sun, Y.; Liu, A.; Li, H.; Zhao, J.; Ye, J. A multiomics and network pharmacological study reveals the neuroprotective efficacy of Fu-Fang-Dan-Zhi tablets against glutamate-induced oxidative cell death. Comput. Biol. Med., 2022, 148, 105873.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105873] [PMID: 35868043]
[16]
Lin, S.; Yue, X.; Ouyang, D.; Li, Q.; Yang, P. The profiling and identification of chemical components, prototypes and metabolites of Run-zao-zhi-yang capsule in rat plasma, urine and bile by an UPLC-Q-TOF/MSE -based high-throughput strategy. Biomed. Chromatogr., 2018, 32(9), e4261.
[http://dx.doi.org/10.1002/bmc.4261] [PMID: 29644719]
[17]
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T. I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan‐Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The genecards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics, 2016, 54, 1.30--1.30.33.
[18]
Fu, X.; Cong, H.; Zhao, S.; Li, Y.; Liu, T.; Sun, Y.; Lv, N. Construction of glycometabolism- and hormone-related lncrna-mediated feedforward loop networks reveals global patterns of lncRNAs and drug repurposing in gestational diabetes. Front. Endocrinol. (Lausanne), 2020, 11, 93.
[http://dx.doi.org/10.3389/fendo.2020.00093] [PMID: 32210913]
[19]
Minoru, K.; Susumu, G. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28, 27-30.
[20]
Fabregat, A.; Jupe, S.; Matthews, L.; Sidiropoulos, K.; Gillespie, M.; Garapati, P.; Haw, R.; Jassal, B.; Korninger, F.; May, B.; Milacic, M.; Roca, C.D.; Rothfels, K.; Sevilla, C.; Shamovsky, V.; Shorser, S.; Varusai, T.; Viteri, G.; Weiser, J.; Wu, G.; Stein, L.; Hermjakob, H.; D’Eustachio, P. The reactome pathway knowledgebase. Nucleic Acids Res., 2018, 46(D1), D649-D655.
[http://dx.doi.org/10.1093/nar/gkx1132] [PMID: 29145629]
[21]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[22]
Drutskaya1, M.S.; Efimov1, G.A.; Zvartsev1, R.V.; Chashchina, A.A.; Chudakov, D.M.; Tillib, S.V.; Kruglov, A.A.; Nedospasov, S.A. Experimental models of arthritis in which pathogenesis is dependent on TNF expression. Biochemistry (Mosc.), 2014, 79, 1349-1357.
[23]
Luo, Y.H.; Li, S.J. The role of serum IFN-γ, IL-2, TNF-α and IgE levels in the pathogenesis of senile pruritus. Guide China Med., 2018, 16, 40-41.
[24]
Tsybikov, N.N.; Petrisheva, I.V.; Fefelova, E.V.; Kuznik, B.I.; Magen, E. Plasma α-defensins are elevated during exacerbation of atopic dermatitis. Clin. Exp. Dermatol., 2016, 41(3), 253-259.
[http://dx.doi.org/10.1111/ced.12767] [PMID: 26411782]
[25]
Nordlind, K.; Chin, L.B.; Ahmed, A.A.; Brakenhoff, J.; Theodorsson, E.; Lidén, S. Immunohistochemical localization of interleukin-6-like immunoreactivity to peripheral nerve-like structures in normal and inflamed human skin. Arch. Dermatol. Res., 1996, 288(8), 431-435.
[http://dx.doi.org/10.1007/BF02505230] [PMID: 8844120]
[26]
Yang, G.; Wu, Z.Y.; Wang, Y.Y.; Yang, Y.F.; Li, H. Mechanism of estrogen facilitated histamine induced pruritus in mice. Shenjing Jiepouxue Zazhi, 2019, 35, 277-282.
[27]
Watanabe, Y.; Makino, E.; Tajiki-Nishino, R.; Koyama, A.; Tajima, H.; Ishimota, M.; Fukuyama, T. Involvement of estrogen receptor α in pro-pruritic and pro-inflammatory responses in a mouse model of allergic dermatitis. Toxicol. Appl. Pharmacol., 2018, 355, 226-237.
[http://dx.doi.org/10.1016/j.taap.2018.07.008] [PMID: 30017638]
[28]
Sääf, A.; Pivarcsi, A.; Winge, M.C.G.; Wahlgren, C.F.; Homey, B.; Nordenskjöld, M.; Tengvall-Linder, M.; Bradley, M. Characterization of EGFR and ErbB2 expression in atopic dermatitis patients. Arch. Dermatol. Res., 2012, 304(10), 773-780.
[http://dx.doi.org/10.1007/s00403-012-1242-4] [PMID: 22552355]
[29]
Fitzgerald, K.A.; Kagan, J.C. Toll-like receptors and the control of immunity. Cell, 2020, 180(6), 1044-1066.
[http://dx.doi.org/10.1016/j.cell.2020.02.041] [PMID: 32164908]
[30]
Liu, T.; Berta, T.; Xu, Z.Z.; Park, C.K.; Zhang, L.; Lü, N.; Liu, Q.; Liu, Y.; Gao, Y.J.; Liu, Y.C.; Ma, Q.; Dong, X.; Ji, R.R. TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. J. Clin. Invest., 2012, 122(6), 2195-2207.
[http://dx.doi.org/10.1172/JCI45414] [PMID: 22565312]
[31]
Liu, T.; Han, Q.; Chen, G.; Huang, Y.; Zhao, L.X.; Berta, T.; Gao, Y.J.; Ji, R.R. Toll-like receptor 4 contributes to chronic itch, alloknesis, and spinal astrocyte activation in male mice. Pain, 2016, 157(4), 806-817.
[http://dx.doi.org/10.1097/j.pain.0000000000000439] [PMID: 26645545]
[32]
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China, 5th ed.; China medicine science and technology press: Beijing, China, 2020, 183, pp. 211-310.
[33]
Li, S.; Zhang, Z.Q.; Wu, L.J.; Zhang, X.G.; Wang, Y.Y.; Li, Y.D. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network. IET Syst. Biol., 2007, 1(1), 51-60.
[http://dx.doi.org/10.1049/iet-syb:20060032] [PMID: 17370429]
[34]
Zhang, Q.; Wang, H.Z.; Gao, J.; Bai, D.X.; Wu, C.X.; Chen, Y.Q.; Li, N. Effect of traditional Chinese medicine desire regulating therapy on sleep quality of patients with senile pruritus. Chung Hua Hu Li Tsa Chih, 2017, 52, 161-165.
[35]
Zhang, Z.J.; Zhu, J.; Meng, H. Research progress on pathogenesis of senile pruritus. Zhongguo Laonianxue Zazhi, 2018, 38, 251-253.
[36]
Yang, L.L.; Wang, G.Q.; Yang, L.M.; Huang, Z.B.; Zhang, W.Q.; Yu, L.Z. Endotoxin molecule lipopolysaccharide-induced zebrafish inflammation model: A novel screening method for anti-inflammatory drugs. Molecules, 2014, 19(2), 2390-2409.
[http://dx.doi.org/10.3390/molecules19022390] [PMID: 24566310]
[37]
Hebeda, C.B.; Bolonheis, S.M.; Nakasato, A.; Belinati, K.; Souza, P.D.C.; Gouvea, D.R.; Lopes, N.P.; Farsky, S.H.P. Effects of chlorogenic acid on neutrophil locomotion functions in response to inflammatory stimulus. J. Ethnopharmacol., 2011, 135(2), 261-269.
[http://dx.doi.org/10.1016/j.jep.2011.02.033] [PMID: 21414398]
[38]
Han, L.; Yang, H.; Zheng, Y.; Wei, X.; Dan, W.; Zhang, L.; Ding, Q.; Ma, X.; Wang, X.; Zhao, L.; Tong, X. Mechanism exploration of Gouqi-wentang formula against type 2 diabetes mellitus by phytochemistry and network pharmacology-based analysis and biological validation. Chin. Med., 2021, 16(1), 93.
[http://dx.doi.org/10.1186/s13020-021-00479-2] [PMID: 34579756]
[39]
Niu, K.M.; Bao, T.; Gao, L.; Ru, M.; Li, Y.; Jiang, L.; Ye, C.; Wang, S.; Wu, X. The impacts of short-term NMN supplementation on serum metabolism, fecal microbiota, and telomere length in pre-aging phase. Front. Nutr., 2021, 8, 756243.
[http://dx.doi.org/10.3389/fnut.2021.756243] [PMID: 34912838]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy