Generic placeholder image

Current Gene Therapy

Editor-in-Chief

ISSN (Print): 1566-5232
ISSN (Online): 1875-5631

Research Article

Reversal of Neuropsychiatric Comorbidities in an Animal Model of Temporal Lobe Epilepsy Following Systemic Administration of Dental Pulp Stem Cells and Bone Marrow Mesenchymal Stem Cells

Author(s): Sivapriya Senthilkumar, Krishnamoorthi Maiya, Nishta Kusum Jain, Sundeep Mata, Snehal Mangaonkar, Prajnya Prabhu, Kiranmai S. Rai, Bindu M. Kutty and Anandh Dhanushkodi*

Volume 23, Issue 3, 2023

Published on: 20 April, 2023

Page: [198 - 214] Pages: 17

DOI: 10.2174/1566523223666221027113723

Price: $65

Abstract

Introduction: We aim to investigate whether timed systemic administration of dental pulp stem cells (DPSCs) or bone marrow mesenchymal stem cells (BM-MSCs) with status epilepticus (SE) induced blood-brain barrier (BBB) damage could facilitate the CNS homing of DPSCs/BM-MSCs and mitigate neurodegeneration, neuroinflammation and neuropsychiatric comorbidities in an animal model of Temporal Lobe epilepsy (TLE).

Background: Cognitive impairments, altered emotional responsiveness, depression, and anxiety are the common neuropsychiatric co-morbidities observed in TLE patients. Mesenchymal stem cells (MSCs) transplantation has gained immense attention in treating TLE, as ~30% of patients do not respond to anti-epileptic drugs. While MSCs are known to cross the BBB, better CNS homing and therapeutic effects could be achieved when the systemic administration of MSC is timed with BBB damage following SE.

Objectives: The objectives of the present study are to investigate the effects of systemic administration of DPSCs/BM-MSCs timed with BBB damage on CNS homing of DPSCs/BM-MSCs, neurodegeneration, neuroinflammation and neuropsychiatric comorbidities in an animal model of TLE.

Methodology: We first assessed the BBB leakage following kainic acid-induced SE and timed the intravenous administration of DPSCs/BM-MSCs to understand the CNS homing/engraftment potential of DPSCs/BM-MSCs and their potential to mitigate neurodegeneration, neuroinflammation and neuropsychiatric comorbidities.

Results: Our results revealed that systemic administration of DPSCs/BM-MSCs attenuated neurodegeneration, neuroinflammation, and ameliorated neuropsychiatric comorbidities. Three months following intravenous administration of DPSCs/BM-MSCs, we observed a negligible number of engrafted cells in the corpus callosum, sub-granular zone, and sub-ventricular zone.

Conclusion: Thus, it is evident that functional recovery is still achievable despite poor engraftment of MSCs into CNS following systemic administration.

[1]
Cavarsan CF, Malheiros J, Hamani C, Najm I, Covolan L. Is mossy fiber sprouting a potential therapeutic target for epilepsy? Front Neurol 2018; 9: 1023.
[http://dx.doi.org/10.3389/fneur.2018.01023] [PMID: 30555406]
[2]
Polli RS, Malheiros JM, dos Santos R, et al. Changes in hippocampal volume are correlated with cell loss but not with seizure frequency in two chronic models of temporal lobe epilepsy. Front Neurol 2014; 5: 111.
[http://dx.doi.org/10.3389/fneur.2014.00111] [PMID: 25071699]
[3]
Covolan L, Ribeiro LTC, Longo BM, Mello LEAM. Cell damage and neurogenesis in the dentate granule cell layer of adult rats after pilocarpine- or kainate-induced status epilepticus. Hippocampus 2000; 10(2): 169-80.
[http://dx.doi.org/10.1002/(SICI)1098-1063(2000)10:2<169:AID-HIPO6>3.0.CO;2-W] [PMID: 10791839]
[4]
Sloviter RS, Zappone CA, Harvey BD, Frotscher M. Kainic acid-induced recurrent mossy fiber innervation of dentate gyrus inhibitory interneurons: Possible anatomical substrate of granule cell hyperinhibition in chronically epileptic rats. J Comp Neurol 2006; 494(6): 944-60.
[http://dx.doi.org/10.1002/cne.20850] [PMID: 16385488]
[5]
Dhanushkodi A, McDonald MP. Intracranial V. cholerae sialidase protects against excitotoxic neurodegeneration. PLoS One 2011; 6(12)e29285
[http://dx.doi.org/10.1371/journal.pone.0029285] [PMID: 22195039]
[6]
Dhanushkodi A, Shetty AK. Is exposure to enriched environment beneficial for functional post-lesional recovery in temporal lobe epilepsy? Neurosci Biobehav Rev 2008; 32(4): 657-74.
[http://dx.doi.org/10.1016/j.neubiorev.2007.10.004] [PMID: 18178250]
[7]
Vrinda M, Sasidharan A, Aparna S, Srikumar BN, Kutty BM, Shankaranarayana Rao BS. Enriched environment attenuates behavioral seizures and depression in chronic temporal lobe epilepsy. Epilepsia 2017; 58(7): 1148-58.
[http://dx.doi.org/10.1111/epi.13767] [PMID: 28480502]
[8]
Maia GH, Quesado JL, Soares JI, et al. Loss of hippocampal neurons after kainate treatment correlates with behavioral deficits. PLoS One 2014; 9(1)e84722
[http://dx.doi.org/10.1371/journal.pone.0084722] [PMID: 24409306]
[9]
Detour J, Schroeder H, Desor D, Nehlig A. A 5-month period of epilepsy impairs spatial memory, decreases anxiety, but spares object recognition in the lithium-pilocarpine model in adult rats. Epilepsia 2005; 46(4): 499-508.
[http://dx.doi.org/10.1111/j.0013-9580.2005.38704.x] [PMID: 15816943]
[10]
Grivas A, Schramm J, Kral T, et al. Surgical treatment for refractory temporal lobe epilepsy in the elderly: Seizure outcome and neuropsychological sequels compared with a younger cohort. Epilepsia 2006; 47(8): 1364-72.
[http://dx.doi.org/10.1111/j.1528-1167.2006.00608.x] [PMID: 16922883]
[11]
Ring HA, Moriarty J, Trimble MR. A prospective study of the early postsurgical psychiatric associations of epilepsy surgery. J Neurol Neurosurg Psychiatry 1998; 64(5): 601-4.
[http://dx.doi.org/10.1136/jnnp.64.5.601] [PMID: 9598674]
[12]
Torensma R, Prins HJ, Schrama E, et al. The impact of cell source, culture methodology, culture location, and individual donors on gene expression profiles of bone marrow-derived and adipose-derived stromal cells. Stem Cells Dev 2013; 22(7): 1086-96.
[http://dx.doi.org/10.1089/scd.2012.0384] [PMID: 23145933]
[13]
Kim DS, Lee MW, Lee TH, Sung KW, Koo HH, Yoo KH. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells. Biomed Rep 2017; 6(3): 300-6.
[http://dx.doi.org/10.3892/br.2017.845] [PMID: 28451390]
[14]
Porada C, Zanjani E, Almeida-Porada G. Adult mesenchymal stem cells: A pluripotent population with multiple applications. Curr Stem Cell Res Ther 2006; 1(3): 365-9.
[http://dx.doi.org/10.2174/157488806778226821] [PMID: 18220880]
[15]
Fischer UM, Harting MT, Jimenez F, et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: The pulmonary first-pass effect. Stem Cells Dev 2009; 18(5): 683-92.
[http://dx.doi.org/10.1089/scd.2008.0253] [PMID: 19099374]
[16]
Becker AD, Riet IV. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells 2016; 8(3): 73-87.
[http://dx.doi.org/10.4252/wjsc.v8.i3.73] [PMID: 27022438]
[17]
Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther 2016; 7(1): 7.
[http://dx.doi.org/10.1186/s13287-015-0271-2] [PMID: 26753925]
[18]
Liu L, Eckert MA, Riazifar H, Kang DK, Agalliu D, Zhao W. From blood to the brain: Can systemically transplanted mesenchymal stem cells cross the blood-brain barrier? Stem Cells Int 2013; 2013: 1-7.
[http://dx.doi.org/10.1155/2013/435093] [PMID: 23997771]
[19]
Gorter JA, van Vliet EA, Aronica E. Status epilepticus, blood-brain barrier disruption, inflammation, and epileptogenesis. Epilepsy Behav 2015; 49: 13-6.
[http://dx.doi.org/10.1016/j.yebeh.2015.04.047]
[20]
van Vliet EA, Aronica E, Gorter JA. Blood-brain barrier dysfunction, seizures and epilepsy. Semin Cell Dev Biol 2015; 38: 26-34.
[http://dx.doi.org/10.1016/j.semcdb.2014.10.003] [PMID: 25444846]
[21]
van Vliet EA, da Costa Araújo S, Redeker S, van Schaik R, Aronica E, Gorter JA. Blood-brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain 2007; 130(2): 521-34.
[http://dx.doi.org/10.1093/brain/awl318] [PMID: 17124188]
[22]
Calik M, Abuhandan M, Sonmezler A, et al. Elevated serum S-100B levels in children with temporal lobe epilepsy. Seizure 2013; 22(2): 99-102.
[http://dx.doi.org/10.1016/j.seizure.2012.10.012] [PMID: 23146618]
[23]
Liang KG, Mu RZ, Liu Y, Jiang D, Jia TT, Huang YJ. Increased serum S100B levels in patients with epilepsy: A systematic review and meta-analysis study. Front Neurosci 2019; 13: 456.
[http://dx.doi.org/10.3389/fnins.2019.00456] [PMID: 31156363]
[24]
Lu C, Li J, Sun W, et al. Elevated plasma S100B concentration is associated with mesial temporal lobe epilepsy in Han Chinese: A case–control study. Neurosci Lett 2010; 484(2): 139-42.
[http://dx.doi.org/10.1016/j.neulet.2010.08.036] [PMID: 20727940]
[25]
Simani L, Elmi M, Asadollahi M. Serum GFAP level: A novel adjunctive diagnostic test in differentiate epileptic seizures from psychogenic attacks. Seizure 2018; 61: 41-4.
[http://dx.doi.org/10.1016/j.seizure.2018.07.010] [PMID: 30077862]
[26]
Racine RJ. Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol 1972; 32(3): 281-94.
[http://dx.doi.org/10.1016/0013-4694(72)90177-0] [PMID: 4110397]
[27]
Racine RJ. Modification of seizure activity by electrical stimulation: I. after-discharge threshold. Electroencephalogr Clin Neurophysiol 1972; 32(3): 269-79.
[http://dx.doi.org/10.1016/0013-4694(72)90176-9] [PMID: 4110396]
[28]
Venugopal CKS, Rai KS, Pinnelli VB, Kutty BM, Dhanushkodi A. Neuroprotection by human dental pulp mesenchymal stem cells: From billions to nano. Curr Gene Ther 2018; 18(5): 307-23.
[http://dx.doi.org/10.2174/1566523218666180913152615] [PMID: 30209999]
[29]
Venugopal C, Shamir C, Senthilkumar S, et al. Dosage and passage dependent neuroprotective effects of exosomes derived from rat bone marrow mesenchymal stem cells: An in vitro analysis. Curr Gene Ther 2018; 18(5): 379-90.
[http://dx.doi.org/10.2174/1566523218666180125091952] [PMID: 29366415]
[30]
Friard O, Gamba M. BORIS: A free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol Evol 2016; 7(11): 1325-30.
[http://dx.doi.org/10.1111/2041-210X.12584]
[31]
Hall CS. Emotional behavior in the rat. I. Defecation and urination as measures of individual differences in emotionality. J Comp Psychol 1934; 18(3): 385-403.
[http://dx.doi.org/10.1037/h0071444]
[32]
Kersten M, Rabbe T, Blome R, et al. Novel object recognition in rats with NMDAR dysfunction in CA1 after stereotactic injection of anti-NMDAR encephalitis cerebrospinal fluid. Front Neurol 2019; 10: 586.
[http://dx.doi.org/10.3389/fneur.2019.00586] [PMID: 31231304]
[33]
Ventorp F, Bay-Richter C, Nagendra AS, et al. Exendin-4 treatment improves LPS-induced depressive-like behavior without affecting pro-inflammatory cytokines. J Parkinsons Dis 2017; 7(2): 263-73.
[http://dx.doi.org/10.3233/JPD-171068] [PMID: 28387682]
[34]
Pellow S, Chopin P, File SE, Briley M. Validation of open: Closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods 1985; 14(3): 149-67.
[http://dx.doi.org/10.1016/0165-0270(85)90031-7] [PMID: 2864480]
[35]
Dong H, Csernansky CA, Goico B, Csernansky JG. Hippocampal neurogenesis follows kainic acid-induced apoptosis in neonatal rats. J Neurosci 2003; 23(5): 1742-9.
[http://dx.doi.org/10.1523/JNEUROSCI.23-05-01742.2003] [PMID: 12629178]
[36]
Jessberger S, Römer B, Babu H, Kempermann G. Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol 2005; 196(2): 342-51.
[http://dx.doi.org/10.1016/j.expneurol.2005.08.010] [PMID: 16168988]
[37]
Inostroza M, Cid E, Brotons-Mas J, et al. Hippocampal-dependent spatial memory in the water maze is preserved in an experimental model of temporal lobe epilepsy in rats. PLoS One 2011; 6(7)e22372
[http://dx.doi.org/10.1371/journal.pone.0022372] [PMID: 21829459]
[38]
Inostroza M, Cid E, Menendez de la Prida L, Sandi C. Different emotional disturbances in two experimental models of temporal lobe epilepsy in rats. PLoS One 2012; 7(6)e38959
[http://dx.doi.org/10.1371/journal.pone.0038959] [PMID: 22720001]
[39]
Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: From animal models to human behavior. Neuron 2005; 48(2): 175-87.
[http://dx.doi.org/10.1016/j.neuron.2005.09.025] [PMID: 16242399]
[40]
Dhanushkodi A, Venugopal C, Bevinahal PKK, et al. Infusion of human embryonic kidney cell line conditioned medium reverses kainic acid induced hippocampal damage in mice. Cytotherapy 2014; 16(12): 1760-70.
[http://dx.doi.org/10.1016/j.jcyt.2014.07.001] [PMID: 25442789]
[41]
Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 2009; 10(6): 397-409.
[http://dx.doi.org/10.1038/nrn2647] [PMID: 19469025]
[42]
Herman JP, Cullinan WE. Neurocircuitry of stress: Central control of the hypothalamo–pituitary–adrenocortical axis. Trends Neurosci 1997; 20(2): 78-84.
[http://dx.doi.org/10.1016/S0166-2236(96)10069-2] [PMID: 9023876]
[43]
Yu S, Holsboer F, Almeida OFX. Neuronal actions of glucocorticoids: Focus on depression. J Steroid Biochem Mol Biol 2008; 108(3-5): 300-9.
[http://dx.doi.org/10.1016/j.jsbmb.2007.09.014] [PMID: 17933520]
[44]
Brotis AG, Giannis T, Kapsalaki E, Dardiotis E, Fountas KN. Complications after anterior temporal lobectomy for medically intractable epilepsy: A systematic review and meta-analysis. Stereotact Funct Neurosurg 2019; 97(2): 69-82.
[http://dx.doi.org/10.1159/000500136] [PMID: 31288240]
[45]
Ahmed NE-MB, Murakami M, Hirose Y, Nakashima M. Therapeutic potential of dental pulp stem cell secretome for Alzheimer’s disease treatment: An in vitro study. Stem Cells Int 2016; 2016: 1-11.
[http://dx.doi.org/10.1155/2016/8102478]
[46]
Bae JS, Han HS, Youn DH, et al. Bone marrow-derived mesenchymal stem cells promote neuronal networks with functional synaptic transmission after transplantation into mice with neurodegeneration. Stem Cells 2007; 25(5): 1307-16.
[http://dx.doi.org/10.1634/stemcells.2006-0561] [PMID: 17470534]
[47]
Calió ML, Marinho DS, Ko GM, et al. Transplantation of bone marrow mesenchymal stem cells decreases oxidative stress, apoptosis, and hippocampal damage in brain of a spontaneous stroke model. Free Radic Biol Med 2014; 70: 141-54.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.01.024] [PMID: 24525001]
[48]
Huang AHC, Snyder BR, Cheng PH, Chan AWS. Putative dental pulp-derived stem/stromal cells promote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells 2008; 26(10): 2654-63.
[http://dx.doi.org/10.1634/stemcells.2008-0285] [PMID: 18687995]
[49]
Huang GTJ, Gronthos S, Shi S. Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J Dent Res 2009; 88(9): 792-806.
[http://dx.doi.org/10.1177/0022034509340867] [PMID: 19767575]
[50]
Ibarretxe G, Crende O, Aurrekoetxea M, García-Murga V, Etxaniz J, Unda F. Neural crest stem cells from dental tissues: A new hope for dental and neural regeneration. Stem Cells Int 2012; 2012: 1-12.
[http://dx.doi.org/10.1155/2012/103503] [PMID: 23093977]
[51]
Mukhamedshina Y, Gracheva O, Mukhutdinova D, Chelyshev Y, Rizvanov A. Mesenchymal stem cells and the neuronal microenvironment in the area of spinal cord injury. Neural Regen Res 2019; 14(2): 227-37.
[http://dx.doi.org/10.4103/1673-5374.244778] [PMID: 30531002]
[52]
Pittenger MF, Discher DE, Péault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: Cell biology to clinical progress. NPJ Regen Med 2019; 4(1): 22.
[http://dx.doi.org/10.1038/s41536-019-0083-6] [PMID: 31815001]
[53]
Venturin GT, Greggio S, Marinowic DR, et al. Bone marrow mononuclear cells reduce seizure frequency and improve cognitive outcome in chronic epileptic rats. Life Sci 2011; 89(7-8): 229-34.
[http://dx.doi.org/10.1016/j.lfs.2011.06.006] [PMID: 21718708]
[54]
Qin C, Lu Y, Wang K, et al. Transplantation of bone marrow mesenchymal stem cells improves cognitive deficits and alleviates neuropathology in animal models of Alzheimer’s disease: A meta-analytic review on potential mechanisms. Transl Neurodegener 2020; 9(1): 20.
[http://dx.doi.org/10.1186/s40035-020-00199-x] [PMID: 32460886]
[55]
Fukumura S, Sasaki M, Kataoka-Sasaki Y, et al. Intravenous infusion of mesenchymal stem cells reduces epileptogenesis in a rat model of status epilepticus. Epilepsy Res 2018; 141: 56-63.
[http://dx.doi.org/10.1016/j.eplepsyres.2018.02.008] [PMID: 29475054]
[56]
Costa-Ferro ZSM, Vitola AS, Pedroso MF, et al. Prevention of seizures and reorganization of hippocampal functions by transplantation of bone marrow cells in the acute phase of experimental epilepsy. Seizure 2010; 19(2): 84-92.
[http://dx.doi.org/10.1016/j.seizure.2009.12.003] [PMID: 20080419]
[57]
Tfilin M, Sudai E, Merenlender A, Gispan I, Yadid G, Turgeman G. Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol Psychiatry 2010; 15(12): 1164-75.
[http://dx.doi.org/10.1038/mp.2009.110] [PMID: 19859069]
[58]
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 2000; 97(25): 13625-30.
[http://dx.doi.org/10.1073/pnas.240309797] [PMID: 11087820]
[59]
Mead B, Berry M, Logan A, Scott RAH, Leadbeater W, Scheven BA. Stem cell treatment of degenerative eye disease. Stem Cell Res (Amst) 2015; 14(3): 243-57.
[http://dx.doi.org/10.1016/j.scr.2015.02.003] [PMID: 25752437]
[60]
Mead B, Hill LJ, Blanch RJ, et al. Mesenchymal stromal cell–mediated neuroprotection and functional preservation of retinal ganglion cells in a rodent model of glaucoma. Cytotherapy 2016; 18(4): 487-96.
[http://dx.doi.org/10.1016/j.jcyt.2015.12.002] [PMID: 26897559]
[61]
Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Intravitreally transplanted dental pulp stem cells promote neuroprotection and axon regeneration of retinal ganglion cells after optic nerve injury. Invest Ophthalmol Vis Sci 2013; 54(12): 7544-56.
[http://dx.doi.org/10.1167/iovs.13-13045] [PMID: 24150755]
[62]
Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: Comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS One 2014; 9(10)e109305
[http://dx.doi.org/10.1371/journal.pone.0109305] [PMID: 25290916]
[63]
Mead B, Logan A, Berry M, Leadbeater W, Scheven B. Dental pulp stem cells, a paracrine-mediated therapy for the retina. Neural Regen Res 2014; 9(6): 577-8.
[http://dx.doi.org/10.4103/1673-5374.130089] [PMID: 25206857]
[64]
Mead B, Logan A, Berry M, Leadbeater W, Scheven BA. Concise review: Dental pulp stem cells: A novel cell therapy for retinal and central nervous system repair. Stem Cells 2017; 35(1): 61-7.
[http://dx.doi.org/10.1002/stem.2398] [PMID: 27273755]
[65]
Sakai K, Yamamoto A, Matsubara K, et al. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. J Clin Invest 2011; 122(1): 80-90.
[http://dx.doi.org/10.1172/JCI59251] [PMID: 22133879]
[66]
Argibay B, Trekker J, Himmelreich U, et al. Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia. Sci Rep 2017; 7(1): 40758.
[http://dx.doi.org/10.1038/srep40758] [PMID: 28091591]
[67]
Liu H, Honmou O, Harada K, et al. Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain 2006; 129(10): 2734-45.
[http://dx.doi.org/10.1093/brain/awl207] [PMID: 16901914]
[68]
Borlongan CV, Hadman M, Davis Sanberg C, Sanberg PR. Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 2004; 35(10): 2385-9.
[http://dx.doi.org/10.1161/01.STR.0000141680.49960.d7] [PMID: 15345799]
[69]
Boltze J, Schmidt UR, Reich DM, et al. Determination of the therapeutic time window for human umbilical cord blood mononuclear cell transplantation following experimental stroke in rats. Cell Transplant 2012; 21(6): 1199-211.
[http://dx.doi.org/10.3727/096368911X589609] [PMID: 22182968]
[70]
Senthilkumar S, Venugopal C, Parveen S, et al. Remarkable migration propensity of dental pulp stem cells towards neurodegenerative milieu: An in vitro analysis. Neurotoxicology 2020; 81: 89-100.
[http://dx.doi.org/10.1016/j.neuro.2020.08.006] [PMID: 32905802]
[71]
Mita T, Furukawa-Hibi Y, Takeuchi H, et al. Conditioned medium from the stem cells of human dental pulp improves cognitive function in a mouse model of Alzheimer’s disease. Behav Brain Res 2015; 293: 189-97.
[http://dx.doi.org/10.1016/j.bbr.2015.07.043] [PMID: 26210934]
[72]
Bevinahal PKK, Venugopal C, Yencharla HCPS, et al. Conditioned medium reconditions hippocampal neurons against kainic acid induced excitotoxicity: An in vitro study. J Toxicol 2014; 2014: 1-8.
[http://dx.doi.org/10.1155/2014/194967] [PMID: 25505907]
[73]
Drago D, Cossetti C, Iraci N, et al. The stem cell secretome and its role in brain repair. Biochimie 2013; 95(12): 2271-85.
[http://dx.doi.org/10.1016/j.biochi.2013.06.020] [PMID: 23827856]
[74]
Venugopal C, Prasad YSHC, Shobha K, Pinnelli VB, Dhanushkodi A. HEK-293 secretome attenuates kainic acid neurotoxicity through insulin like growth factor-phosphatidylinositol-3-kinases pathway and by temporal regulation of antioxidant defense machineries. Neurotoxicology 2018; 69: 189-200.
[http://dx.doi.org/10.1016/j.neuro.2017.11.010] [PMID: 29208536]
[75]
Vizoso F, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: Toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 2017; 18(9): 1852.
[http://dx.doi.org/10.3390/ijms18091852] [PMID: 28841158]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy