Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Toxicological Advancements in Cocaine Detection: A Review

Author(s): Federico Giuseppe Patanè, Andreana Nicoletta Maria Maglitto, Massimiliano Esposito*, Giuseppe Cocimano, Nunzio Di Nunno, Monica Salerno and Francesco Sessa*

Volume 30, Issue 32, 2023

Published on: 22 December, 2022

Page: [3616 - 3629] Pages: 14

DOI: 10.2174/0929867330666221026160346

Price: $65

Abstract

Cocaine, also known as methyl benzoylecgonine, is one of the most used drugs of abuse and one of the oldest; however, there has been a recent increase in the consumption of this substance. This trend has once again caught the attention of the scientific community. We discuss the current knowledge about this drug, focusing our attention on the forensic approach. Despite the fact that the cut-off of positivity to cocaine in drug tests is quite high, most current tests are able to detect much lower concentrations and could improve forensic sciences in both post-mortem investigations and in people screening. Immunological assays possessing substantial cross-reactivity to cocaine are particularly useful for screening oral fluid, hair, and post-mortem blood, where significant concentrations of the drug can be found. Liquid chromatography has now supplanted the previous techniques because it is very sensitive and specific and allows samples to be analyzed in a shorter time with only minimal sample preparation. Recent studies have focused on increased sensitivity, reduced processing times, and cheaper analysis.

[1]
European monitoring center for drugs and drug addiction (EMCDDA). European Drug Report 2022: Trends and Developments, 2019. s.
[2]
Figg, B. Substance abuse and mental health services administration. J. Consum. Health Internet, 2018, 22(3), 253-262.
[http://dx.doi.org/10.1080/15398285.2018.1513760]
[3]
Pomara, C.; Cassano, T.; D’Errico, S.; Bello, S.; Romano, A.D.; Riezzo, I.; Serviddio, G. Data available on the extent of cocaine use and dependence: Biochemistry, pharmacologic effects and global burden of disease of cocaine abusers. Curr. Med. Chem., 2012, 19(33), 5647-5657.
[http://dx.doi.org/10.2174/092986712803988811] [PMID: 22856655]
[4]
Lapeyre-Mestre, M.; Boucher, A.; Daveluy, A.; Gibaja, V.; Jouanjus, E.; Mallaret, M.; Peyrière, H.; Micallef, J.; Bouquet, E.; Chaouachi, L.; Chevallier, C.; Deheul, S.; Eiden, C.; Fouilhé, N.; Fournier-Choma, C.; Frauger, E.; Guerlais, M.; Le Boisselier, R.; Miremont, G.; Roussin, A.; Tournebize, J. Addictovigilance contribution during COVID-19 epidemic and lockdown in France. Therapie, 2020, 75(4), 343-354.
[http://dx.doi.org/10.1016/j.therap.2020.06.006] [PMID: 32660776]
[5]
Panagiotidis, P.; Rantis, K.; Holeva, V.; Parlapani, E.; Diakogiannis, I. Changes in alcohol use habits in the general population, during the COVID-19 lockdown in Greece. Alcohol Alcohol., 2020, 55(6), 702-704.
[http://dx.doi.org/10.1093/alcalc/agaa092] [PMID: 32959877]
[6]
Banducci, A.N.; Weiss, N.H. Caring for patients with posttraumatic stress and substance use disorders during the COVID-19 pandemic. Psychol. Trauma, 2020, 12(S1), S113-S114.
[http://dx.doi.org/10.1037/tra0000824] [PMID: 32525388]
[7]
Ornell, F.; Moura, H.F.; Scherer, J.N.; Pechansky, F.; Kessler, F.H.P.; von Diemen, L. The COVID-19 pandemic and its impact on substance use: Implications for prevention and treatment. Psychiatry Res., 2020, 289, 113096.
[http://dx.doi.org/10.1016/j.psychres.2020.113096] [PMID: 32405115]
[8]
Baillargeon, J.; Polychronopoulou, E.; Kuo, Y.F.; Raji, M.A. The impact of substance use disorder on COVID-19 outcomes. Psychiatr. Serv., 2021, 72(5), 578-581.
[http://dx.doi.org/10.1176/appi.ps.202000534] [PMID: 33138712]
[9]
Esposito, M.; Salerno, M.; Scoto, E.; Di Nunno, N.; Sessa, F. The impact of the COVID-19 pandemic on the practice of forensic medicine: An overview. Healthcare (Basel), 2022, 10(2), 319.
[http://dx.doi.org/10.3390/healthcare10020319] [PMID: 35206933]
[10]
Farhoudian, A.; Radfar, S.R.; Mohaddes Ardabili, H.; Rafei, P.; Ebrahimi, M.; Khojasteh Zonoozi, A.; De Jong, C.A.J.; Vahidi, M.; Yunesian, M.; Kouimtsidis, C.; Arunogiri, S.; Hansen, H.; Brady, K.T.; Potenza, M.N.; Baldacchino, A.M.; Ekhtiari, H. A global survey on changes in the supply, price, and use of illicit drugs and alcohol, and related complications during the 2020 COVID-19 pandemic. Front. Psychiatry, 2021, 12, 646206.
[http://dx.doi.org/10.3389/fpsyt.2021.646206] [PMID: 34421664]
[11]
Goldstein, R.A.; DesLauriers, C.; Burda, A.; Johnson-Arbor, K. Cocaine: History, social implications, and toxicity: A review. Semin. Diagn. Pathol., 2009, 26(1), 10-17.
[http://dx.doi.org/10.1053/j.semdp.2008.12.001] [PMID: 19292024]
[12]
Warner, E.A. Cocaine abuse. Ann. Intern. Med., 1993, 119(3), 226-235.
[http://dx.doi.org/10.7326/0003-4819-119-3-199308010-00009] [PMID: 8323092]
[13]
Broséus, J.; Gentile, N.; Esseiva, P. The cutting of cocaine and heroin: A critical review. Forensic Sci. Int., 2016, 262, 73-83.
[http://dx.doi.org/10.1016/j.forsciint.2016.02.033] [PMID: 26974713]
[14]
Roque Bravo, R.; Faria, A.C.; Brito-da-Costa, A.M.; Carmo, H.; Mladěnka, P.; Dias da Silva, D.; Remião, F.; Researchers, O.B.O.T.O. Cocaine: An updated overview on chemistry, detection, biokinetics, and pharmacotoxicological aspects including abuse pattern. Toxins (Basel), 2022, 14(4), 278.
[http://dx.doi.org/10.3390/toxins14040278] [PMID: 35448887]
[15]
Espinoza, L.R.; Perez Alamino, R. Cocaine-induced vasculitis: Clinical and immunological spectrum. Curr. Rheumatol. Rep., 2012, 14(6), 532-538.
[http://dx.doi.org/10.1007/s11926-012-0283-1] [PMID: 22875288]
[16]
Lee, K.C.; Ladizinski, B.; Federman, D.G. Complications associated with use of levamisole-contaminated cocaine: An emerging public health challenge. Mayo Clin. Proc., 2012, 87(6), 581-586.
[http://dx.doi.org/10.1016/j.mayocp.2012.03.010] [PMID: 22677078]
[17]
Singh, S. Chemistry, design, and structure-activity relationship of cocaine antagonists. Chem. Rev., 2000, 100(3), 925-1024.
[http://dx.doi.org/10.1021/cr9700538] [PMID: 11749256]
[18]
Shanti, C.M.; Lucas, C.E. Cocaine and the critical care challenge. Crit. Care Med., 2003, 31(6), 1851-1859.
[http://dx.doi.org/10.1097/01.CCM.0000063258.68159.71] [PMID: 12794430]
[19]
Mallette, J.R.; Casale, J.F.; Colley, V.L.; Morello, D.R.; Jordan, J. Changes in illicit cocaine hydrochloride processing identified and revealed through multivariate analysis of cocaine signature data. Sci. Justice, 2018, 58(2), 90-97.
[http://dx.doi.org/10.1016/j.scijus.2017.12.003] [PMID: 29526270]
[20]
Alballa, T.; Boone, E.L.; Ma, L.; Snyder, A.; Moeller, F.G. Exploring the relationship between white matter integrity, cocaine use and GAD polymorphisms using Bayesian Model Averaging. PLoS One, 2021, 16(7), e0254776.
[http://dx.doi.org/10.1371/journal.pone.0254776] [PMID: 34310624]
[21]
Oliveira, K.D.; Fraga, G.P.; Baracat, E.C.E.; Morcillo, A.M.; Lanaro, R.; Costa, J.L.; Capitani, E.M.; Bucaretchi, F.; Ferreira Filho, A.I.; Gimenes, V.C.; de Azevedo, R.C.S. Prevalence of cocaine and derivatives in blood and urine samples of trauma patients and correlation with injury severity: A prospective observational study. Eur. J. Trauma Emerg. Surg., 2019, 45(1), 159-165.
[http://dx.doi.org/10.1007/s00068-017-0868-5] [PMID: 29116350]
[22]
Strzelecki, A.; Weafer, J.; Stoops, W.W. Human behavioral pharmacology of stimulant drugs: An update and narrative review. Adv. Pharmacol., 2022, 93, 77-103.
[http://dx.doi.org/10.1016/bs.apha.2021.07.001] [PMID: 35341574]
[23]
Menzies, E.L.; Archer, J.R.H.; Dargan, P.I.; Parkin, M.C.; Yamamoto, T.; Wood, D.M.; Braithwaite, R.A.; Elliott, S.P.; Kicman, A.T. Detection of cocaine and its metabolites in whole blood and plasma following a single dose, controlled administration of intranasal cocaine. Drug Test. Anal., 2019, 11(9), 1419-1430.
[http://dx.doi.org/10.1002/dta.2657] [PMID: 31150569]
[24]
Knuepfer, M.M. Cardiovascular disorders associated with cocaine use: Myths and truths. Pharmacol. Ther., 2003, 97(3), 181-222.
[http://dx.doi.org/10.1016/S0163-7258(02)00329-7] [PMID: 12576134]
[25]
O’Dell, L.E.; George, F.R.; Ritz, M.C. Antidepressant drugs appear to enhance cocaine-induced toxicity. Exp. Clin. Psychopharmacol., 2000, 8(1), 133-141.
[http://dx.doi.org/10.1037/1064-1297.8.1.133] [PMID: 10743914]
[26]
Volkow, N.D.; Wang, G.J.; Fischman, M.W.; Foltin, R.W.; Fowler, J.S.; Abumrad, N.N.; Vitkun, S.; Logan, J.; Gatley, S.J.; Pappas, N.; Hitzemann, R.; Shea, C.E. Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature, 1997, 386(6627), 827-830.
[http://dx.doi.org/10.1038/386827a0] [PMID: 9126740]
[27]
Puig, S.; Noble, F.; Benturquia, N. Short- and long-lasting behavioral and neurochemical adaptations: Relationship with patterns of cocaine administration and expectation of drug effects in rats. Transl. Psychiatry, 2012, 2(10), e175-e175.
[http://dx.doi.org/10.1038/tp.2012.103] [PMID: 23092979]
[28]
Patanè, F.G.; Liberto, A.; Maria Maglitto, A.N.; Malandrino, P.; Esposito, M.; Amico, F.; Cocimano, G.; Rosi, G.L.; Condorelli, D.; Nunno, N.D.; Montana, A. Nandrolone decanoate: Use, abuse and side effects. Medicina (Kaunas), 2020, 56(11), 606.
[http://dx.doi.org/10.3390/medicina56110606] [PMID: 33187340]
[29]
Cerretani, D.; Bello, S.; Cantatore, S.; Fiaschi, A.I.; Montefrancesco, G.; Neri, M.; Pomara, C.; Riezzo, I.; Fiore, C.; Bonsignore, A.; Turillazzi, E.; Fineschi, V. Acute administration of 3,4-methylenedioxymethamphetamine (MDMA) induces oxidative stress, lipoperoxidation and TNFα-mediated apoptosis in rat liver. Pharmacol. Res., 2011, 64(5), 517-527.
[http://dx.doi.org/10.1016/j.phrs.2011.08.002] [PMID: 21864684]
[30]
Volkow, N.D.; Wang, G.J.; Fischman, M.W.; Foltin, R.; Fowler, J.S.; Franceschi, D.; Franceschi, M.; Logan, J.; Gatley, S.J.; Wong, C.; Ding, Y.S.; Hitzemann, R.; Pappas, N. Effects of route of administration on cocaine induced dopamine transporter blockade in the human brain. Life Sci., 2000, 67(12), 1507-1515.
[http://dx.doi.org/10.1016/S0024-3205(00)00731-1] [PMID: 10983846]
[31]
Thomas, M.J.; Kalivas, P.W.; Shaham, Y. Neuroplasticity in the mesolimbic dopamine system and cocaine addiction. Br. J. Pharmacol., 2008, 154(2), 327-342.
[http://dx.doi.org/10.1038/bjp.2008.77] [PMID: 18345022]
[32]
Gu, H.; Salmeron, B.J.; Ross, T.J.; Geng, X.; Zhan, W.; Stein, E.A.; Yang, Y. Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. Neuroimage, 2010, 53(2), 593-601.
[http://dx.doi.org/10.1016/j.neuroimage.2010.06.066] [PMID: 20603217]
[33]
Georgieva, E.; Karamalakova, Y.; Miteva, R.; Abrashev, H.; Nikolova, G. Oxidative stress and cocaine intoxication as start points in the pathology of cocaine-induced cardiotoxicity. Toxics, 2021, 9(12), 317.
[http://dx.doi.org/10.3390/toxics9120317] [PMID: 34941752]
[34]
Hayase, T.; Yamamoto, Y.; Yamamoto, K.; Muso, E.; Shiota, K. Stressor-like effects of cocaine on heat shock protein and stress-activated protein kinase expression in the rat hippocampus: Interaction with ethanol and anti-toxicity drugs. Leg. Med. (Tokyo), 2003, 5(Suppl. 1), S87-S90.
[http://dx.doi.org/10.1016/S1344-6223(02)00093-7] [PMID: 12935560]
[35]
Pomara, C.; D’Errico, S.; Zummo, L.; Cappello, F.; Li Volti, G. MDMA administration and heat shock proteins response: Foreseeing a molecular link. Curr. Pharm. Biotechnol., 2010, 11(5), 496-499.
[http://dx.doi.org/10.2174/138920110791591445] [PMID: 20420569]
[36]
Riezzo, I.; Cerretani, D.; Fiore, C.; Bello, S.; Centini, F.; D’Errico, S.; Fiaschi, A.I.; Giorgi, G.; Neri, M.; Pomara, C.; Turillazzi, E.; Fineschi, V. Enzymatic-nonenzymatic cellular antioxidant defense systems response and immunohistochemical detection of MDMA, VMAT2, HSP70, and apoptosis as biomarkers for MDMA (Ecstasy) neurotoxicity. J. Neurosci. Res., 2009, 88(4), 22245.
[http://dx.doi.org/10.1002/jnr.22245] [PMID: 19798748]
[37]
Mash, D.C.; Duque, L.; Pablo, J.; Qin, Y.; Adi, N.; Hearn, W.L.; Hyma, B.A.; Karch, S.B.; Druid, H.; Wetli, C.V. Brain biomarkers for identifying excited delirium as a cause of sudden death. Forensic Sci. Int., 2009, 190(1-3), e13-e19.
[http://dx.doi.org/10.1016/j.forsciint.2009.05.012] [PMID: 19541436]
[38]
Shields, L.B.E.; Rolf, C.M.; Hunsaker, J.C., III Sudden death due to acute cocaine toxicity-excited delirium in a body packer. J. Forensic Sci., 2015, 60(6), 1647-1651.
[http://dx.doi.org/10.1111/1556-4029.12860] [PMID: 26294349]
[39]
Gonin, P.; Beysard, N.; Yersin, B.; Carron, P.N. Excited delirium: A systematic review. Acad. Emerg. Med., 2018, 25(5), 552-565.
[http://dx.doi.org/10.1111/acem.13330] [PMID: 28990246]
[40]
Gill, J.R. The syndrome of excited delirium. Forensic Sci. Med. Pathol., 2014, 10(2), 223-228.
[http://dx.doi.org/10.1007/s12024-014-9530-2] [PMID: 24526411]
[41]
Morton, W.A. Cocaine and psychiatric symptoms. Prim. Care Companion J. Clin. Psychiatry, 1999, 1(4), 109-113.
[http://dx.doi.org/10.4088/PCC.v01n0403] [PMID: 15014683]
[42]
Broderick, P.; Rosenbaum, T. Sex-specific brain deficits in auditory processing in an animal model of cocaine-related schizophrenic disorders. Brain Sci., 2013, 3(4), 504-520.
[http://dx.doi.org/10.3390/brainsci3020504] [PMID: 24961412]
[43]
McKee, S.A.; McRae-Clark, A.L. Consideration of sex and gender differences in addiction medication response. Biol. Sex Differ., 2022, 13(1), 34.
[http://dx.doi.org/10.1186/s13293-022-00441-3] [PMID: 35761351]
[44]
Jacobsen, L.K.; Staley, J.K.; Malison, R.T.; Zoghbi, S.S.; Seibyl, J.P.; Kosten, T.R.; Innis, R.B. Elevated central serotonin transporter binding availability in acutely abstinent cocaine-dependent patients. Am. J. Psychiatry, 2000, 157(7), 1134-1140.
[http://dx.doi.org/10.1176/appi.ajp.157.7.1134] [PMID: 10873923]
[45]
Sessa, F.; Maglietta, F.; Bertozzi, G.; Salerno, M.; Di Mizio, G.; Messina, G.; Montana, A.; Ricci, P.; Pomara, C. Human brain injury and miRNAs: An experimental study. Int. J. Mol. Sci., 2019, 20(7), 1546.
[http://dx.doi.org/10.3390/ijms20071546] [PMID: 30934805]
[46]
Sessa, F.; Salerno, M.; Cipolloni, L.; Bertozzi, G.; Messina, G.; Mizio, G.D.; Asmundo, A.; Pomara, C. Anabolic-androgenic steroids and brain injury: miRNA evaluation in users compared to cocaine abusers and elderly people. Aging (Albany NY), 2020, 12(15), 15314-15327.
[http://dx.doi.org/10.18632/aging.103512] [PMID: 32756006]
[47]
Maraj, S.; Figueredo, V.M.; Lynn Morris, D. Cocaine and the heart. Clin. Cardiol., 2010, 33(5), 264-269.
[http://dx.doi.org/10.1002/clc.20746] [PMID: 20513064]
[48]
Phillips, K.; Luk, A.; Soor, G.S.; Abraham, J.R.; Leong, S.; Butany, J. Cocaine cardiotoxicity. Am. J. Cardiovasc. Drugs, 2009, 9(3), 177-196.
[http://dx.doi.org/10.1007/BF03256574] [PMID: 19463023]
[49]
Cerretani, D.; Riezzo, I.; Fiaschi, A.I.; Centini, F.; Giorgi, G.; D’Errico, S.; Fiore, C.; Karch, S.B.; Neri, M.; Pomara, C.; Turillazzi, E.; Fineschi, V. Cardiac oxidative stress determination and myocardial morphology after a single ecstasy (MDMA) administration in a rat model. Int. J. Legal Med., 2008, 122(6), 461-469.
[http://dx.doi.org/10.1007/s00414-008-0262-2] [PMID: 18594849]
[50]
Kim, S.; Park, T. Acute and chronic effects of cocaine on cardiovascular health. Int. J. Mol. Sci., 2019, 20(3), 584.
[http://dx.doi.org/10.3390/ijms20030584] [PMID: 30700023]
[51]
Terra Filho, M.; Yen, C.C.; Santos, U.P.; Muñoz, D.R. Pulmonary alterations in cocaine users. Sao Paulo Med. J., 2004, 122(1), 26-31.
[http://dx.doi.org/10.1590/S1516-31802004000100007] [PMID: 15160524]
[52]
Lim, K.O.; Choi, S.J.; Pomara, N.; Wolkin, A.; Rotrosen, J.P. Reduced frontal white matter integrity in cocaine dependence: A controlled diffusion tensor imaging study. Biol. Psychiatry, 2002, 51(11), 890-895.
[http://dx.doi.org/10.1016/S0006-3223(01)01355-5] [PMID: 12022962]
[53]
Turillazzi, E.; Bello, S.; Neri, M.; Pomara, C.; Riezzo, I.; Fineschi, V. Cardiovascular effects of cocaine: Cellular, ionic and molecular mechanisms. Curr. Med. Chem., 2012, 19(33), 5664-5676.
[http://dx.doi.org/10.2174/092986712803988848] [PMID: 22856657]
[54]
Fineschi, V.; Silver, M.D.; Karch, S.B.; Parolini, M.; Turillazzi, E.; Pomara, C.; Baroldi, G. Myocardial disarray: An architectural disorganization linked with adrenergic stress? Int. J. Cardiol., 2005, 99(2), 277-282.
[http://dx.doi.org/10.1016/j.ijcard.2004.01.022] [PMID: 15749187]
[55]
Esposito, M.; Liberto, A.; Zuccarello, P.; Ministeri, F.; Licciardello, G.; Barbera, N.; Sessa, F.; Salerno, M. Heart rupture as an acute complication of cocaine abuse: A case report. Leg. Med. (Tokyo), 2022, 58, 102084.
[http://dx.doi.org/10.1016/j.legalmed.2022.102084] [PMID: 35561504]
[56]
Oyesiku, N.M.; Colohan, A.R.T.; Barrow, D.L.; Reisner, A. Cocaine-induced aneurysmal rupture: An emergent negative factor in the natural history of intracranial aneurysms? Neurosurgery, 1993, 32(4), 518-526.
[http://dx.doi.org/10.1097/00006123-199304000-00005] [PMID: 8474641]
[57]
Nanda, A.; Vannemreddy, P.S.S.V.; Polin, R.S.; Willis, B.K. Intracranial aneurysms and cocaine abuse: Analysis of prognostic indicators. Neurosurgery, 2000, 46(5), 1063-1069.
[http://dx.doi.org/10.1097/00006123-200005000-00006] [PMID: 10807237]
[58]
Nanda, A.; Vannemreddy, P.; Willis, B.; Kelley, R. Stroke in the young: Relationship of active cocaine use with stroke mechanism and outcome. Acta Neurochir. Suppl. (Wien), 2006, 96, 91-96.
[http://dx.doi.org/10.1007/3-211-30714-1_22] [PMID: 16671433]
[59]
Frazer, K.M.; Richards, Q.; Keith, D.R. The long-term effects of cocaine use on cognitive functioning: A systematic critical review. Behav. Brain Res., 2018, 348, 241-262.
[http://dx.doi.org/10.1016/j.bbr.2018.04.005] [PMID: 29673580]
[60]
Puet, B.L.; Claussen, K.; Hild, C.; Heltsley, R.; Schwope, D.M. Presence of parent cocaine in the absence of benzoylecgonine in urine. J. Anal. Toxicol., 2018, 42(8), 512-517.
[http://dx.doi.org/10.1093/jat/bky057] [PMID: 30371845]
[61]
Fernández, N.; Cabanillas, L.M.; Olivera, N.M.; Quiroga, P.N. Optimization and validation of simultaneous analyses of ecgonine, cocaine, and seven metabolites in human urine by gas chromatography-mass spectrometry using a one-step solid-phase extraction. Drug Test. Anal., 2019, 11(2), 361-373.
[http://dx.doi.org/10.1002/dta.2547] [PMID: 30468698]
[62]
Pennings, E.J.M.; Leccese, A.P.; Wolff, F.A. Effects of concurrent use of alcohol and cocaine. Addiction, 2002, 97(7), 773-783.
[http://dx.doi.org/10.1046/j.1360-0443.2002.00158.x] [PMID: 12133112]
[63]
Pergolizzi, J.; Breve, F.; Magnusson, P.; LeQuang, J.A.K.; Varrassi, G. Cocaethylene: When cocaine and alcohol are taken together. Cureus, 2022, 14(2), e22498.
[http://dx.doi.org/10.7759/cureus.22498] [PMID: 35345678]
[64]
Sanchez-Garcia, M.; de la Rosa-Cáceres, A.; Díaz-Batanero, C.; Fernández-Calderón, F.; Lozano, O.M. Cocaine use disorder criteria in a clinical sample: An analysis using Item Response Theory, factor analysis, and network analysis. Am. J. Drug Alcohol Abuse, 2022, 48(3), 284-292.
[http://dx.doi.org/10.1080/00952990.2021.2012185] [PMID: 35100067]
[65]
Gili, A.; Lancia, M.; Mercurio, I.; Bacci, M.; Nicoletti, A.; Pelliccia, C.; Gambelunghe, C. Patterns of prescription medicine, illicit drugs, and alcohol misuse among high-risk population: A factor analysis to delineate profiles of polydrug users. Healthcare (Basel), 2022, 10(4), 710.
[http://dx.doi.org/10.3390/healthcare10040710] [PMID: 35455887]
[66]
Jufer, R.A.; Wstadik, A.; Walsh, S.L.; Levine, B.S.; Cone, E.J. Elimination of cocaine and metabolites in plasma, saliva, and urine following repeated oral administration to human volunteers. J. Anal. Toxicol., 2000, 24(7), 467-77.
[http://dx.doi.org/10.1093/jat/24.7.467]
[67]
Coe, M.A.; Jufer Phipps, R.A.; Cone, E.J.; Walsh, S.L. Bioavailability and pharmacokinetics of oral cocaine in humans. J. Anal. Toxicol., 2018, 42(5), 285-292.
[http://dx.doi.org/10.1093/jat/bky007] [PMID: 29462364]
[68]
Zhu, J.; Beechinor, R.J.; Thompson, T.; Schorzman, A.N.; Zamboni, W.; Crona, D.J.; Weiner, D.L.; Tarantino, L.M. Pharmacokinetic and pharmacodynamic analyses of cocaine and its metabolites in behaviorally divergent inbred mouse strains. Genes Brain Behav., 2021, 20(2), e12666.
[http://dx.doi.org/10.1111/gbb.12666] [PMID: 32383297]
[69]
Kwiatkowska, D.; Banyte, R.; Grucza, K.; Drapała, A.; Wicka, M. Cocaine abuse out of competition: Occasional or chronic user in sport-Case report. Drug Test. Anal., 2022, 14(4), 762-767.
[http://dx.doi.org/10.1002/dta.3177] [PMID: 34697915]
[70]
Bush, D.M. The U.S. mandatory guidelines for federal workplace drug testing programs: Current status and future considerations. Forensic Sci. Int., 2008, 174(2-3), 111-119.
[http://dx.doi.org/10.1016/j.forsciint.2007.03.008] [PMID: 17434274]
[71]
Wagner, R.; Moses, L. Validation of two methods for the quantitative analysis of cocaine and opioids in biological matrices using LCMSMS. J. Forensic Sci., 2021, 66(3), 1124-1135.
[http://dx.doi.org/10.1111/1556-4029.14647] [PMID: 33275283]
[72]
Mata, D.C.; Davis, J.F. Simultaneous quantitative analysis of 39 common toxicological drugs for increased efficiency in an ante- and postmortem laboratory. Forensic Sci. Int., 2022, 334, 111246.
[http://dx.doi.org/10.1016/j.forsciint.2022.111246] [PMID: 35276541]
[73]
Polettini, A.; Groppi, A.; Vignali, C.; Montagna, M. Fully-automated systematic toxicological analysis of drugs, poisons, and metabolites in whole blood, urine, and plasma by gas chromatography–full scan mass spectrometry. J. Chromatogr., Biomed. Appl., 1998, 713(1), 265-279.
[http://dx.doi.org/10.1016/S0378-4347(98)00062-0] [PMID: 9700563]
[74]
de Paula Meirelles, G.; Fabris, A.L.; Ferreira dos Santos, K.; Costa, J.L.; Yonamine, M. Green analytical toxicology for the determination of cocaine metabolites. J. Anal. Toxicol., 2022, 2022, bkac005.
[http://dx.doi.org/10.1093/jat/bkac005] [PMID: 35022727]
[75]
Gaillard, Y.; Pépin, G. Use of high-performance liquid chromatography with photodiode-array UV detection for the creation of a 600-compound library application to forensic toxicology. J. Chromatogr. A, 1997, 763(1-2), 149-163.
[http://dx.doi.org/10.1016/S0021-9673(96)00706-6] [PMID: 9129320]
[76]
Pragst, F.; Herzler, M.; Erxleben, B.T. Systematic toxicological analysis by high-performance liquid chromatography with diode array detection (HPLC-DAD). Clin. Chem. Laboratory Med. (CCLM), 2004, 42(11), 1325-1340.
[http://dx.doi.org/10.1515/CCLM.2004.251] [PMID: 15576293]
[77]
Miller, E.I.; Wylie, F.M.; Oliver, J.S. Simultaneous detection and quantification of amphetamines, diazepam and its metabolites, cocaine and its metabolites, and opiates in hair by LC-ESI-MS-MS using a single extraction method. J. Anal. Toxicol., 2008, 32(7), 457-469.
[http://dx.doi.org/10.1093/jat/32.7.457] [PMID: 18713513]
[78]
Hoffmann, W.D.; Jackson, G.P. Forensic mass spectrometry. Annu. Rev. Anal. Chem., 2015, 8(1), 419-440.
[http://dx.doi.org/10.1146/annurev-anchem-071114-040335] [PMID: 26070716]
[79]
Gupta, S.; Samal, N. Application of direct analysis in real- time mass spectrometry (DART-MS) in forensic science: A comprehensive review. Egypt. J. Forensic Sci., 2022, 12(1), 17.
[http://dx.doi.org/10.1186/s41935-022-00276-4]
[80]
Johansen, S.S.; Bhatia, H.M. Quantitative analysis of cocaine and its metabolites in whole blood and urine by high-performance liquid chromatography coupled with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2007, 852(1-2), 338-344.
[http://dx.doi.org/10.1016/j.jchromb.2007.01.033] [PMID: 17301000]
[81]
Zheng, Z.J.; Croft, J.B.; Giles, W.H.; Mensah, G.A. Sudden cardiac death in the United States, 1989 to 1998. Circulation, 2001, 104(18), 2158-2163.
[http://dx.doi.org/10.1161/hc4301.098254] [PMID: 11684624]
[82]
Alsaif, D.; Almoghannam, S.A.; Almadani, O.M.; Kharoshah, M. Fatality in a body packer: The first reported case in Saudi Arabia. Egypt. J. Forensic Sci., 2021, 11(1), 43.
[http://dx.doi.org/10.1186/s41935-021-00257-z]
[83]
Nunno, N.; Di; Esposito, M.; Argo, A.; Salerno, M.; Sessa, F. Pharmacogenetics and forensic toxicology: A new step towards a multidisciplinary approach. Toxics, 2021, 9(11), 292.
[http://dx.doi.org/10.3390/toxics9110292]
[84]
Havakuk, O.; Rezkalla, S.H.; Kloner, R.A. The cardiovascular effects of cocaine. J. Am. Coll. Cardiol., 2017, 70(1), 101-113.
[http://dx.doi.org/10.1016/j.jacc.2017.05.014] [PMID: 28662796]
[85]
Fernàndez-Castillo, N.; Cabana-Domínguez, J.; Corominas, R.; Cormand, B. Molecular genetics of cocaine use disorders in humans. Mol. Psychiatry, 2022, 27(1), 624-639.
[http://dx.doi.org/10.1038/s41380-021-01256-1] [PMID: 34453125]
[86]
Tomasetti, C.; Iasevoli, F.; Buonaguro, E.; De Berardis, D.; Fornaro, M.; Fiengo, A.; Martinotti, G.; Orsolini, L.; Valchera, A.; Di Giannantonio, M.; de Bartolomeis, A. Treating the synapse in major psychiatric disorders: The role of postsynaptic density network in dopamine-glutamate interplay and psychopharmacologic drugs molecular actions. Int. J. Mol. Sci., 2017, 18(1), 135.
[http://dx.doi.org/10.3390/ijms18010135] [PMID: 28085108]
[87]
Johnson, M.M.; David, J.A.; Michelhaugh, S.K.; Schmidt, C.J.; Bannon, M.J. Increased heat shock protein 70 gene expression in the brains of cocaine-related fatalities may be reflective of postdrug survival and intervention rather than excited delirium. J. Forensic Sci., 2012, 57(6), 1519-1523.
[http://dx.doi.org/10.1111/j.1556-4029.2012.02212.x] [PMID: 22803793]
[88]
Esposito, M.; Cocimano, G.; Ministrieri, F.; Rosi, G.L.; Nunno, N.D.; Messina, G.; Sessa, F.; Salerno, M. Smart drugs and neuroenhancement: What do we know? Front. Biosci.-Landmark, 2021, 26(8), 347-359.
[http://dx.doi.org/10.52586/4948] [PMID: 34455764]
[89]
Siniscalchi, A.; Bonci, A.; Mercuri, N.; Siena, A.; Sarro, G.; Malferrari, G.; Diana, M.; Gallelli, L. Cocaine dependence and stroke: Pathogenesis and management. Curr. Neurovasc. Res., 2015, 12(2), 163-172.
[http://dx.doi.org/10.2174/1567202612666150305110144] [PMID: 25742568]
[90]
Toossi, S.; Hess, C.P.; Hills, N.K.; Josephson, S.A. Neurovascular complications of cocaine use at a tertiary stroke center. J. Stroke Cerebrovasc. Dis., 2010, 19(4), 273-278.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2009.05.002] [PMID: 20444626]
[91]
Plush, T.; Shakespeare, W.; Jacobs, D.; Ladi, L.; Sethi, S.; Gasperino, J. Cocaine-induced agitated delirium: A case report and review. J. Intensive Care Med., 2015, 30(1), 49-57.
[http://dx.doi.org/10.1177/0885066613507420] [PMID: 24212597]
[92]
Schiavone, S.; Neri, M.; Mhillaj, E.; Pomara, C.; Trabace, L.; Turillazzi, E. The role of the NADPH oxidase derived brain oxidative stress in the cocaine-related death associated with excited delirium: A literature review. Toxicol. Lett., 2016, 258, 29-35.
[http://dx.doi.org/10.1016/j.toxlet.2016.06.002] [PMID: 27265246]
[93]
Zhong, S.; Yu, R.; Fazel, S. Drug use disorders and violence: Associations with individual drug categories. Epidemiol. Rev., 2020, 42(1), 103-116.
[http://dx.doi.org/10.1093/epirev/mxaa006] [PMID: 33005950]
[94]
Zhang, A.; Balles, J.A.; Nyland, J.E.; Nguyen, T.H.; White, V.M.; Zgierska, A.E. The relationship between police contacts for drug use-related crime and future arrests, incarceration, and overdoses: A retrospective observational study highlighting the need to break the vicious cycle. Harm. Reduct. J., 2022, 19(1), 67.
[http://dx.doi.org/10.1186/s12954-022-00652-2] [PMID: 35761290]
[95]
Fischbach, P. The role of illicit drug use in sudden death in the young. Cardiol. Young, 2017, 27(S1), S75-S79.
[http://dx.doi.org/10.1017/S1047951116002274] [PMID: 28084963]
[96]
Traub, S.J.; Hoffman, R.S.; Nelson, L.S. Body packing--the internal concealment of illicit drugs. N. Engl. J. Med., 2003, 349(26), 2519-2526.
[http://dx.doi.org/10.1056/NEJMra022719] [PMID: 14695412]
[97]
de Prost, N.; Lefebvre, A.; Questel, F.; Roche, N.; Pourriat, J.L.; Huchon, G.; Rabbat, A. Prognosis of cocaine body-packers. Intensive Care Med., 2005, 31(7), 955-958.
[http://dx.doi.org/10.1007/s00134-005-2660-y] [PMID: 15909167]
[98]
Tanna, R.; Bostina, R.; Lloyd, G.; Patel, N.M.; Bastianpillai, J. Cocaine body packing: A new record. Cureus, 2020, 12(11), e11728.
[http://dx.doi.org/10.7759/cureus.11728] [PMID: 33269176]
[99]
Arora, A.; Jain, S.; Srivastava, A.; Mehta, M.; Pancholy, K. Body packer syndrome. J. Emerg. Trauma Shock, 2021, 14(1), 51-52.
[http://dx.doi.org/10.4103/JETS.JETS_41_20] [PMID: 33911438]
[100]
Alvear, E.; von Baer, D.; Mardones, C.; Hitschfeld, A. Determination of cocaine and its major metabolite benzoylecgonine in several matrices obtained from deceased individuals with presumed drug consumption prior to death. J. Forensic Leg. Med., 2014, 23, 37-43.
[http://dx.doi.org/10.1016/j.jflm.2014.01.003] [PMID: 24661704]
[101]
Ceelen, M.; Dorn, T.; Buster, M.; Stomp, J.; Zweipfenning, P.; Das, K. Post-mortem toxicological urine screening in cause of death determination. Hum. Exp. Toxicol., 2011, 30(9), 1165-1173.
[http://dx.doi.org/10.1177/0960327110390063] [PMID: 21084528]
[102]
Iskierka, M.; Zawadzki, M.; Szpot, P.; Jurek, T. Detection of drugs in postmortem specimens of blood, vitreous humor and bone marrow aspirate. J. Anal. Toxicol., 2021, 45(4), 348-355.
[http://dx.doi.org/10.1093/jat/bkaa083] [PMID: 32672811]
[103]
Nedahl, M.; Johansen, S.S.; Linnet, K. Postmortem brain–blood ratios of amphetamine, cocaine, ephedrine, MDMA and methylphenidate. J. Anal. Toxicol., 2019, 43(5), 378-384.
[http://dx.doi.org/10.1093/jat/bky110] [PMID: 30668752]
[104]
Carvalho, V.M.; Fukushima, A.R.; Fontes, L.R.; Fuzinato, D.V.; Florio, J.C.; Chasin, A.A.M. Cocaine postmortem distribution in three brain structures: A comparison with whole blood and vitreous humour. J. Forensic Leg. Med., 2013, 20(3), 143-145.
[http://dx.doi.org/10.1016/j.jflm.2012.06.006] [PMID: 23472791]
[105]
Methling, M.; Krumbiegel, F.; Alameri, A.; Hartwig, S.; Parr, M.K.; Tsokos, M. Concentrations of antidepressants, antipsychotics, and benzodiazepines in hair samples from postmortem cases. SN Compr. Clin. Med., 2020, 2(3), 284-300.
[http://dx.doi.org/10.1007/s42399-020-00235-x]
[106]
Ropero-Miller, J.D.; Huestis, M.A.; Stout, P.R. Cocaine analytes in human hair: Evaluation of concentration ratios in different cocaine sources, drug-user populations and surface-contaminated specimens. J. Anal. Toxicol., 2012, 36(6), 390-398.
[http://dx.doi.org/10.1093/jat/bks050] [PMID: 22593566]
[107]
Cordero, R.; Lee, S.; Paterson, S. Distribution of concentrations of cocaine and its metabolites in hair collected postmortem from cases with diverse causes/circumstances of death. J. Anal. Toxicol., 2010, 34(9), 543-548.
[http://dx.doi.org/10.1093/jat/34.9.543] [PMID: 21073806]
[108]
Dana, K.; Shende, C.; Huang, H.; Farquharson, S. Rapid analysis of cocaine in saliva by surface-enhanced Raman spectroscopy. J. Anal. Bioanal. Tech., 2015, 6(6), 1-5.
[http://dx.doi.org/10.4172/2155-9872.1000289] [PMID: 26819811]
[109]
Scherer, J.N.; Fiorentin, T.R.; Sousa, T.R.V.; Limberger, R.P.; Pechansky, F. Oral fluid testing for cocaine: Analytical evaluation of two point-of-collection drug screening devices. J. Anal. Toxicol., 2017, 41(5), 392-398.
[http://dx.doi.org/10.1093/jat/bkx018] [PMID: 28334841]
[110]
Kidwell, D.A.; Kidwell, J.D.; Shinohara, F.; Harper, C.; Roarty, K.; Bernadt, K.; McCaulley, R.A.; Smith, F.P. Comparison of daily urine, sweat, and skin swabs among cocaine users. Forensic Sci. Int., 2003, 133(1-2), 63-78.
[http://dx.doi.org/10.1016/S0379-0738(03)00051-3] [PMID: 12742691]
[111]
Luque de Castro, M.D. Sweat as a clinical sample: What is done and what should be done. Bioanalysis, 2016, 8(2), 85-88.
[http://dx.doi.org/10.4155/bio.15.229] [PMID: 26652242]
[112]
D’Aurelio, R.; Chianella, I.; Goode, J.A.; Tothill, I.E. Molecularly imprinted nanoparticles based sensor for cocaine detection. Biosensors (Basel), 2020, 10(3), 22.
[http://dx.doi.org/10.3390/bios10030022] [PMID: 32143406]
[113]
Kranenburg, R.F.; Verduin, J.; Weesepoel, Y.; Alewijn, M.; Heerschop, M.; Koomen, G.; Keizers, P.; Bakker, F.; Wallace, F.; Esch, A.; Hulsbergen, A.; Asten, A.C. Rapid and robust on-scene detection of cocaine in street samples using a handheld near-infrared spectrometer and machine learning algorithms. Drug Test. Anal., 2020, 12(10), 1404-1418.
[http://dx.doi.org/10.1002/dta.2895] [PMID: 32638519]
[114]
Kenny, P.J. Epigenetics, microRNA, and addiction. Dialogues Clin. Neurosci., 2014, 16(3), 335-344.
[http://dx.doi.org/10.31887/DCNS.2014.16.3/pkenny] [PMID: 25364284]
[115]
Cabana-Domínguez, J.; Arenas, C.; Cormand, B.; Fernàndez-Castillo, N. MiR-9, miR-153 and miR-124 are down-regulated by acute exposure to cocaine in a dopaminergic cell model and may contribute to cocaine dependence. Transl. Psychiatry, 2018, 8(1), 173.
[http://dx.doi.org/10.1038/s41398-018-0224-5] [PMID: 30166527]
[116]
Smith, A.C.W.; Kenny, P.J. MicroRNAs regulate synaptic plasticity underlying drug addiction. Genes Brain Behav., 2018, 17(3), e12424.
[http://dx.doi.org/10.1111/gbb.12424] [PMID: 28873276]
[117]
Dash, S.; Balasubramaniam, M.; Martínez-Rivera, F.J.; Godino, A.; Peck, E.G.; Patnaik, S.; Suar, M.; Calipari, E.S.; Nestler, E.J.; Villalta, F.; Dash, C.; Pandhare, J. Cocaine-regulated microRNA miR-124 controls poly (ADP-ribose) polymerase-1 expression in neuronal cells. Sci. Rep., 2020, 10(1), 11197.
[http://dx.doi.org/10.1038/s41598-020-68144-6] [PMID: 32641757]
[118]
Chivero, E.T.; Liao, K.; Niu, F.; Tripathi, A.; Tian, C.; Buch, S.; Hu, G. Engineered extracellular vesicles loaded with miR-124 attenuate cocaine-mediated activation of microglia. Front. Cell Dev. Biol., 2020, 8, 573.
[http://dx.doi.org/10.3389/fcell.2020.00573] [PMID: 32850781]
[119]
Sanli, S.; Moulahoum, H.; Ghorbanizamani, F.; Celik, E.G.; Timur, S. Ultrasensitive covalently-linked Aptasensor for cocaine detection based on electrolytes-induced repulsion/attraction of colloids. Biomed. Microdevices, 2020, 22(3), 51.
[http://dx.doi.org/10.1007/s10544-020-00507-2] [PMID: 32748213]
[120]
Azimi, S.; Docoslis, A. Recent advances in the use of surface-enhanced raman scattering for illicit drug detection. Sensors (Basel), 2022, 22(10), 3877.
[http://dx.doi.org/10.3390/s22103877] [PMID: 35632286]
[121]
Nakao, K.; Tatara, Y.; Kibayashi, K. Detection of cocaine and metabolites from mouse femur buried in soil. Leg. Med. (Tokyo), 2019, 37, 1-6.
[http://dx.doi.org/10.1016/j.legalmed.2018.11.005] [PMID: 30502554]
[122]
Jang, M.; Costa, C.; Bunch, J.; Gibson, B.; Ismail, M.; Palitsin, V.; Webb, R.; Hudson, M.; Bailey, M.J. On the relevance of cocaine detection in a fingerprint. Sci. Rep., 2020, 10(1), 1974.
[http://dx.doi.org/10.1038/s41598-020-58856-0] [PMID: 32029797]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy