Abstract
Background: At present, all or the majority of published databases report metastasis genes based on the concept of using cancer types or hallmarks of cancer/metastasis. Since tumor metastasis is a dynamic process involving many cellular and molecular processes, those databases cannot provide information on the sequential relations and cellular and molecular mechanisms among different metastasis stages.
Objective: We incorporate the concept of tumor metastasis mechanism to construct a tumor metastasis mechanism-associated gene (TMMG) database based on using the metastasis mechanism concept.
Methods: We utilized the text mining tool, BioBERT to mine the titles and abstracts of the papers and identify TMMGs.
Results: This tumor metastasis mechanism-associated gene database (TMMGdb) contains a wealth of annotations. To check the reliability of TMMGdb, we compared the proportions of housekeeping genes (HKGs) in TMMGdb, HCMDB, and CMgene, the results showed that around 20% of the TMMGs are HKGs, and the proportions are highly consistent among the three databases. Compared with the HCMDB and CMgene databases, TMMGdb is able to find a more recent (on or after 2017) collection of publications and TMMGs. We provided six case studies to illustrate the uniqueness of the TMMGdb database.
Conclusion: TMMGdb is a comprehensive resource for the biomedical community to understand the dynamic process, molecular features, and cellular processes involved in tumor metastasis. TMMGdb provides four interfaces; ‘Browse’, ‘Search’, ‘DEG Search’ and ‘Download’, for users to investigate the causal effects among different metastasis stages; the database is freely accessible at http://hmg.asia.edu.tw/ TMMGdb.
Graphical Abstract
[http://dx.doi.org/10.1007/978-1-59259-125-1_4]
[http://dx.doi.org/10.1615/CritRevOncog.v18.i1-2.40] [PMID: 23237552]
[http://dx.doi.org/10.1038/s41392-020-0134-x] [PMID: 32296047]
[http://dx.doi.org/10.1016/j.cels.2015.12.004] [PMID: 26771021]
[http://dx.doi.org/10.2307/2529743] [PMID: 963169]
[http://dx.doi.org/10.1016/0895-7177(89)90230-6]
[PMID: 21340907]
[http://dx.doi.org/10.1080/10273660008833042]
[http://dx.doi.org/10.1186/2043-9113-2-11] [PMID: 22548735]
[http://dx.doi.org/10.1007/s11538-019-00597-x] [PMID: 30903592]
[http://dx.doi.org/10.1371/journal.pcbi.1002132] [PMID: 21998558]
[http://dx.doi.org/10.1016/j.cell.2016.11.037] [PMID: 28187288]
[http://dx.doi.org/10.3390/cancers12082315] [PMID: 32824479]
[http://dx.doi.org/10.1016/j.tranon.2020.100909] [PMID: 33049522]
[http://dx.doi.org/10.1093/bioinformatics/btz682] [PMID: 31501885]
[http://dx.doi.org/10.1126/science.1151526] [PMID: 18029452]
[PMID: 33125081]
[PMID: 31691815]
[http://dx.doi.org/10.1093/nar/gkx1141] [PMID: 29156006]
[http://dx.doi.org/10.1093/nar/gkw1121] [PMID: 27899578]
[http://dx.doi.org/10.1093/nar/gky1079] [PMID: 30476227]
[http://dx.doi.org/10.1093/nar/gkx1013] [PMID: 29087512]
[http://dx.doi.org/10.2144/05385ST04] [PMID: 15948292]
[http://dx.doi.org/10.1186/s12864-016-2946-1] [PMID: 27526934]
[http://dx.doi.org/10.1016/j.tig.2013.05.010] [PMID: 23810203]
[http://dx.doi.org/10.1093/nar/gkaa609] [PMID: 32663312]
[http://dx.doi.org/10.1186/s13059-014-0550-8] [PMID: 25516281]
[http://dx.doi.org/10.1007/978-1-4757-3294-8_3]
[http://dx.doi.org/10.1093/nar/gkx1008] [PMID: 29088455]
[http://dx.doi.org/10.1093/nar/gkx964] [PMID: 29069402]
[http://dx.doi.org/10.1093/nar/gkz715] [PMID: 31428785]
[http://dx.doi.org/10.1093/nar/gkaa1006] [PMID: 33219685]
[http://dx.doi.org/10.1093/nar/gkaa1017] [PMID: 33219686]
[http://dx.doi.org/10.1038/onc.2017.143] [PMID: 28534510]
[http://dx.doi.org/10.1016/j.ijbiomac.2013.03.010] [PMID: 23500436]
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[http://dx.doi.org/10.1158/2159-8290.CD-21-1059] [PMID: 35022204]
[http://dx.doi.org/10.3892/mmr.2015.3732] [PMID: 25955084]
[http://dx.doi.org/10.1038/nature17038] [PMID: 26791720]
[http://dx.doi.org/10.1016/j.csbj.2021.05.015] [PMID: 34136095]
[http://dx.doi.org/10.1186/s13058-022-01503-5] [PMID: 35093137]