Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Review Article

Synthetic Routes to Quinoline-Based Derivatives having Potential Anti-Bacterial and Anti-Fungal Properties

Author(s): Shivangi Sharma and Shivendra Singh*

Volume 26, Issue 15, 2022

Published on: 16 November, 2022

Page: [1453 - 1469] Pages: 17

DOI: 10.2174/1385272827666221021140934

Price: $65

Abstract

Quinoline and its derivatives are part of several natural products. Many of them are active pharmacophores and show enormous biological activities. Owing to their usefulness in drug discovery, we have discussed the plethora of quinoline derivatives showing particularly antibacterial and antifungal activities in this article. Depending upon substitution on the quinoline core, change of functionalities at different positions and change in chain length; unique biological properties are associated with such derivatives of quinolines and in this article, we have delineated the antibacterial and antifungal activities of such activities in detail. In most of the cases, it has been found that substitution at the 5-position leads to enhanced bioactivities. In most cases, 5-halo/5-amino/5-aryl and heteroaryl/5-carbonyl/5-amido show promising antibacterial and antifungal activities. Furthermore, the synthetic aspects of several quinoline derivatives showing antibacterial and antifungal activities are also discussed in this article.

Graphical Abstract

[1]
Kaur, M.; Rai, J.; Randhawa, G.K. Recent advances in antibacterial drugs. Int. J. Appl. Basic Med. Res., 2013, 3(1), 3-10.
[http://dx.doi.org/10.4103/2229-516X.112229] [PMID: 23776832]
[2]
Bergstrom, F.W.; Bergstrom, F.W. Heterocyclic nitrogen compounds. Part IIa. Hexacyclic compounds: Pyridine, quinoline, and isoquinoline. Chem. Rev., 1944, 35(2), 77-277.
[http://dx.doi.org/10.1021/cr60111a001]
[3]
Ferlin, M.G.; Chiarelotto, G.; Gasparotto, V.; Dalla Via, L.; Pezzi, V.; Barzon, L.; Palù, G.; Castagliuolo, I. Synthesis and in vitro and in vivo antitumor activity of 2-phenylpyrroloquinolin-4-ones. J. Med. Chem., 2005, 48(9), 3417-3427.
[http://dx.doi.org/10.1021/jm049387x] [PMID: 15857148]
[4]
Bharate, J.B.; Vishwakarma, R.A.; Bharate, S.B. Metal-free domino one-pot protocols for quinoline synthesis. RSC Advances, 2015, 5(52), 42020-42053.
[http://dx.doi.org/10.1039/C5RA07798B]
[5]
Matada, B.S.; Pattanashettar, R.; Yernale, N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem., 2021, 37(March), 116098.
[http://dx.doi.org/10.1016/j.bmc.2021.116098] [PMID: 33740641]
[6]
Hu, Y.Q.; Gao, C.; Zhang, S.; Xu, L.; Xu, Z.; Feng, L.S.; Wu, X.; Zhao, F. Quinoline hybrids and their antiplasmodial and antimalarial activities. Eur. J. Med. Chem., 2017, 139, 22-47.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.061] [PMID: 28800458]
[7]
Theuretzbacher, U.; Bush, K.; Harbarth, S.; Paul, M.; Rex, J.H.; Tacconelli, E.; Thwaites, G.E. Critical analysis of antibacterial agents in clinical development. Nat. Rev. Microbiol., 2020, 18(5), 286-298.
[http://dx.doi.org/10.1038/s41579-020-0340-0] [PMID: 32152509]
[8]
Gudkov, S.V.; Burmistrov, D.E.; Serov, D.A.; Rebezov, M.B.; Semenova, A.A.; Lisitsyn, A.B. A mini review of antibacterial properties of ZnO nanoparticles. Front. Phys., 2021, 9, 641481.
[http://dx.doi.org/10.3389/fphy.2021.641481]
[9]
Chassagne, F.; Samarakoon, T.; Porras, G.; Lyles, J.T.; Dettweiler, M.; Marquez, L.; Salam, A.M.; Shabih, S.; Farrokhi, D.R.; Quave, C.L. A systematic review of plants with antibacterial activities: A taxonomic and phylogenetic perspective. Front. Pharmacol., 2021, 11, 586548.
[http://dx.doi.org/10.3389/fphar.2020.586548] [PMID: 33488385]
[10]
Albert, A.; Rubro, S.D.; Golda, R.J.; Balfour, B.G. The influence of chemical constitution of antibacterial activity; A study of 8-hydroxyquinolin (oxine) and related compounds. Br. J. Exp. Pathol., 1947, 28(2), 69-87.
[PMID: 20252710]
[11]
Sumangala, V.; Poojary, B.; Chidananda, N.; Fernandes, J.; Kumari, N.S. Synthesis and antimicrobial activity of 1,2,3-triazoles containing quinoline moiety. Arch. Pharm. Res., 2010, 33(12), 1911-1918.
[http://dx.doi.org/10.1007/s12272-010-1204-3] [PMID: 21191754]
[12]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247]
[13]
Eswaran, S.; Adhikari, A.V.; Pal, N.K.; Chowdhury, I.H. Design and synthesis of some new quinoline-3-carbohydrazone derivatives as potential antimycobacterial agents. Bioorg. Med. Chem. Lett., 2010, 20(3), 1040-1044.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.045] [PMID: 20056418]
[14]
Nakamoto, K.; Tsukada, I.; Tanaka, K.; Matsukura, M.; Haneda, T.; Inoue, S.; Murai, N.; Abe, S.; Ueda, N.; Miyazaki, M.; Watanabe, N.; Asada, M.; Yoshimatsu, K.; Hata, K. Synthesis and evaluation of novel antifungal agents-quinoline and pyridine amide derivatives. Bioorg. Med. Chem. Lett., 2010, 20(15), 4624-4626.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.005] [PMID: 20573507]
[15]
Baruah, J.B.; Jali, B.R. Investigation on bindings of a binaphthoquinone derivative with serum albumin proteins by fluorescence spectroscopy. Indian J. Chem., 2021, 60A, 8254-8829.
[16]
Mohanty, P.; Behera, S.; Behura, R.; Shubhadarshinee, L.; Mohapatra, P.; Barick, A.K.; Jali, B.R. Antibacterial activity of thiazole and its derivatives: A review. Biointerface Res. Appl. Chem., 2021, 12(2), 2171-2195.
[http://dx.doi.org/10.33263/BRIAC122.21712195]
[17]
Behera, S.; Behura, R.; Mohanty, M.; Dinda, R.; Mohanty, P.; Verma, A.K.; Sahoo, S.K.; Jali, B.R. Spectroscopic, cytotoxicity and molecular docking studies on the interaction between 2,4-dinitrophenylhydrazine derived Schiff bases with bovine serum albumin. Sen. Int., 2020, 1, 100048.
[http://dx.doi.org/10.1016/j.sintl.2020.100048]
[18]
Behera, S.; Behura, R.; Mohanty, P.; Sahoo, M.; Subrahmanya, R.D.; Verma, A.K.; Jali, B.R. Study of interaction between bovine serum albumin and dolutegravir intermediate: Fluorescence and molecular docking analysis. Biointerface Res. Appl. Chem., 2021, 11(5), 13102-13110.
[http://dx.doi.org/10.33263/BRIAC115.1310213110]
[19]
Desai, N.C.; Rajpara, K.M.; Joshi, V.V. Synthesis and characterization of some new quinoline based derivatives endowed with broad spectrum antimicrobial potency. Bioorg. Med. Chem. Lett., 2012, 22(22), 6871-6875.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.039] [PMID: 23058887]
[20]
Jali, B.R.; Behura, R.; Barik, S.R.; Parveen, S.; Mohanty, S.P.; Das, R. A brief review: Biological implications of naphthoquinone derivatives. Res. J. Pharm. Technol., 2018, 11(8), 3698-3702.
[http://dx.doi.org/10.5958/0974-360X.2018.00679.0]
[21]
Ladani, N.K.; Mungra, D.C.; Patel, M.P.; Patel, R.G. Microwave assisted synthesis of novel Hantzsch 1,4-dihydropyridines, acridine-1,8-diones and polyhydroquinolines bearing the tetrazolo[1,5-a]quinoline moiety and their antimicrobial activity assess. Chin. Chem. Lett., 2011, 22(12), 1407-1410.
[http://dx.doi.org/10.1016/j.cclet.2011.07.009]
[22]
Jali, B.R.; Kuang, Y.; Neamati, N.; Baruah, J.B. Selective binding of naphthoquinone derivatives to serum albumin proteins and their effects on cytotoxicity. Chem. Biol. Interact., 2014, 214(1), 10-17.
[http://dx.doi.org/10.1016/j.cbi.2014.01.014] [PMID: 24560625]
[23]
Jali, B.R.; Baruah, J.B. Quinone tethered silylethers: Protein binding and film forming abilities. ACS Symposium Series, 2013, pp. 177-183.
[http://dx.doi.org/10.1021/bk-2013-1154.ch012]
[24]
Mahajan, A.; Kremer, L.; Louw, S.; Guéradel, Y.; Chibale, K.; Biot, C. Synthesis and in vitro antitubercular activity of ferrocene-based hydrazones. Bioorg. Med. Chem. Lett., 2011, 21(10), 2866-2868.
[http://dx.doi.org/10.1016/j.bmcl.2011.03.082] [PMID: 21507641]
[25]
Juribašić M.; Molčanov, K.; Kojić-Prodić B.; Bellotto, L.; Kralj, M.; Zani, F.; Tušek-Božić L. Palladium(II) complexes of quinolinylaminophosphonates: Synthesis, structural characterization, antitumor and antimicrobial activity. J. Inorg. Biochem., 2011, 105(6), 867-879.
[http://dx.doi.org/10.1016/j.jinorgbio.2011.03.011] [PMID: 21501579]
[26]
Thomas, K.D.; Adhikari, A.V.; Telkar, S.; Chowdhury, I.H.; Mahmood, R.; Pal, N.K.; Row, G.; Sumesh, E. Design, synthesis and docking studies of new quinoline-3-carbohydrazide derivatives as antitubercular agents. Eur. J. Med. Chem., 2011, 46(11), 5283-5292.
[http://dx.doi.org/10.1016/j.ejmech.2011.07.033] [PMID: 21907466]
[27]
Karnakar, K.; Narayana Murthy, S.; Ramesh, K.; Satish, G.; Nanubolu, J.B.; Nageswar, Y.V.D. Polyethylene glycol (PEG-400): An efficient and recyclable reaction medium for the synthesis of pyrazolo[3,4-b]quinoline derivatives. Tetrahedron Lett., 2012, 53(23), 2897-2903.
[http://dx.doi.org/10.1016/j.tetlet.2012.03.135]
[28]
Teng, P.; Li, C.; Peng, Z.; Anne Marie, V.; Nimmagadda, A.; Su, M.; Li, Y.; Sun, X.; Cai, J. Facilely accessible quinoline derivatives as potent antibacterial agents. Bioorg. Med. Chem., 2018, 26(12), 3573-3579.
[http://dx.doi.org/10.1016/j.bmc.2018.05.031] [PMID: 29858158]
[29]
Wang, F.; Xu, P.; Wang, S.Y.; Ji, S.J. Cu(II)/Ag(I)-catalyzed cascade reaction of sulfonylhydrazone with anthranils: Synthesis of 2-aryl-3-sulfonyl substituted quinoline derivatives. Org. Lett., 2018, 20(8), 2204-2207.
[http://dx.doi.org/10.1021/acs.orglett.8b00525] [PMID: 29617145]
[30]
Arasakumar, T.; Mathusalini, S.; Gopalan, S.; Shyamsivappan, S.; Ata, A.; Mohan, P.S. Biologically active perspective synthesis of heteroannulated 8-nitroquinolines with green chemistry approach. Bioorg. Med. Chem. Lett., 2017, 27(7), 1538-1546.
[http://dx.doi.org/10.1016/j.bmcl.2017.02.042] [PMID: 28262524]
[31]
Jimenez, J.; Chakraborty, I.; Rojas-Andrade, M.; Mascharak, P.K. Silver complexes of ligands derived from adamantylamines: Water-soluble silver-donating compounds with antibacterial properties. J. Inorg. Biochem., 2017, 168, 13-17.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.12.009] [PMID: 27997857]
[32]
Challa, C.; Ravindran, J.; Konai, M.M.; Varughese, S.; Jacob, J.; Kumar, B.S.D.; Haldar, J.; Lankalapalli, R.S. Expedient synthesis of indolo[2,3- b]quinolines, chromeno[2,3- b]indoles, and 3-alkenyl-oxindoles from 3,3′-diindolylmethanes and evaluation of their antibiotic activity against methicillin-resistant Staphylococcus aureus. ACS Omega, 2017, 2(8), 5187-5195.
[http://dx.doi.org/10.1021/acsomega.7b00840] [PMID: 30023741]
[33]
Sun, N.; Du, R.L.; Zheng, Y.Y.; Huang, B.H.; Guo, Q.; Zhang, R.F.; Wong, K.Y.; Lu, Y.J. Antibacterial activity of N -methylbenzofuro[3,2- b]quinoline and N -methylbenzoindolo[3,2- b]-quinoline derivatives and study of their mode of action. Eur. J. Med. Chem., 2017, 135, 1-11.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.018] [PMID: 28426995]
[34]
Behera, S.; Mohanty, P.; Behura, R.; Nath, B.; Barick, A.K. Antibacterial properties of quinoline derivatives: A mini review. Biointerface Res. Appl. Chem., 2022, 12(5), 6078-6092.
[http://dx.doi.org/10.33263/BRIAC125.60786092]
[35]
Ben Yaakov, D.; Shadkchan, Y.; Albert, N.; Kontoyiannis, D.P.; Osherov, N. The quinoline bromoquinol exhibits broad-spectrum antifungal activity and induces oxidative stress and apoptosis in Aspergillus fumigatus. J. Antimicrob. Chemother., 2017, 72(8), 2263-2272.
[http://dx.doi.org/10.1093/jac/dkx117] [PMID: 28475687]
[36]
Cretton, S.; Dorsaz, S.; Azzollini, A.; Favre-Godal, Q.; Marcourt, L.; Ebrahimi, S.N.; Voinesco, F.; Michellod, E.; Sanglard, D.; Gindro, K.; Wolfender, J.L.; Cuendet, M.; Christen, P. Antifungal quinoline alkaloids from Waltheria indica. J. Nat. Prod., 2016, 79(2), 300-307.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00896] [PMID: 26848627]
[37]
Gao, W.Y.; Leng, K.; Cash, L.; Chrzanowski, M.; Stackhouse, C.A.; Sun, Y.; Ma, S. Investigation of prototypal MOFs consisting of polyhedral cages with accessible Lewis-acid sites for quinoline synthesis. Chem. Commun., 2015, 51(23), 4827-4829.
[http://dx.doi.org/10.1039/C4CC09410G] [PMID: 25693429]
[38]
Sun, H.; Yin, B.; Ma, H.; Yuan, H.; Fu, B.; Liu, L. Synthesis of a novel quinoline skeleton introduced cationic polyfluorene derivative for multimodal antimicrobial application. ACS Appl. Mater. Interfaces, 2015, 7(45), 25390-25395.
[http://dx.doi.org/10.1021/acsami.5b07890] [PMID: 26492936]
[39]
Anaissie, E.; Bodey, G.P. Nosocomial fungal infections. Old problems and new challenges. Infect. Dis. Clin. North Am., 1989, 3(4), 867-882.
[http://dx.doi.org/10.1016/S0891-5520(20)30311-1] [PMID: 2687366]
[40]
Nucci, M.; Marr, K.A. Emerging fungal diseases. Clin. Infect. Dis., 2005, 41(4), 521-526.
[http://dx.doi.org/10.1086/432060] [PMID: 16028162]
[41]
Sague, C.M.B.; Jarvis, W.R. Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. J. Infect. Dis., 1993, 167(5), 1247-1251.
[http://dx.doi.org/10.1093/infdis/167.5.1247] [PMID: 8486965]
[42]
Wasan, K.M.; Wasan, E.K.; Gershkovich, P.; Zhu, X.; Tidwell, R.R.; Werbovetz, K.A.; Clement, J.G.; Thornton, S.J. Highly effective oral amphotericin B formulation against murine visceral leishmaniasis. J. Infect. Dis., 2009, 200(3), 357-360.
[http://dx.doi.org/10.1086/600105] [PMID: 19545212]
[43]
Ghannoum, M.A.; Rice, L.B. Antifungal agents: Mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev., 1999, 12(4), 501-517.
[http://dx.doi.org/10.1128/CMR.12.4.501] [PMID: 10515900]
[44]
Barrett, J.F. MRSA: Status and prospects for therapy? An evaluation of key papers on the topic of MRSA and antibiotic resistance. Expert Opin. Ther. Targets, 2004, 8(6), 515-519.
[http://dx.doi.org/10.1517/14728222.8.6.515] [PMID: 15584858]
[45]
Aghazadeh, Y.; Martinez-Arguelles, D.B.; Fan, J.; Culty, M.; Papadopoulos, V. Induction of androgen formation in the male by a TAT-VDAC1 fusion peptide blocking 14-3-3ɛ protein adaptor and mitochondrial VDAC1 interactions. Mol. Ther., 2014, 22(10), 1779-1791.
[http://dx.doi.org/10.1038/mt.2014.116] [PMID: 24947306]
[46]
Arshad, M.; Bhat, A.R.; Hoi, K.K.; Choi, I.; Athar, F. Synthesis, characterization and antibacterial screening of some novel 1,2,4-triazine derivatives. Chin. Chem. Lett., 2017, 28(7), 1559-1565.
[http://dx.doi.org/10.1016/j.cclet.2016.12.037]
[47]
Butler, M.S.; Blaskovich, M.A.; Cooper, M.A. Antibiotics in the clinical pipeline in 2013. J. Antibiot., 2013, 66(10), 571-591.
[http://dx.doi.org/10.1038/ja.2013.86] [PMID: 24002361]
[48]
Aghazadeh, Y.; Venugopal, S.; Martinez-Arguelles, D.B.; Boisvert, A.; Blonder, J.; Papadopoulos, V. Identification of Sec23ip, Part of 14-3-3γ protein network, as a regulator of acute steroidogenesis in MA-10 leydig cells. Endocrinology, 2020, 161(2), bqz036.
[http://dx.doi.org/10.1210/endocr/bqz036] [PMID: 31875919]
[49]
Reardon, S. Antibiotic resistance sweeping developing world. Nature, 2014, 509(7499), 141-142.
[http://dx.doi.org/10.1038/509141a] [PMID: 24805322]
[50]
Spellberg, B.; Shlaes, D. Prioritized current unmet needs for antibacterial therapies. Clin. Pharmacol. Ther., 2014, 96(2), 151-153.
[http://dx.doi.org/10.1038/clpt.2014.106] [PMID: 25056396]
[51]
Boucher, H.W.; Talbot, G.H.; Benjamin, D.K., Jr; Bradley, J.; Guidos, R.J.; Jones, R.N.; Murray, B.E.; Bonomo, R.A.; Gilbert, D. 10 x ’20 progress-development of new drugs active against gram-negative bacilli: An update from the Infectious Diseases Society of America. Clin. Infect. Dis., 2013, 56(12), 1685-1694.
[http://dx.doi.org/10.1093/cid/cit152] [PMID: 23599308]
[52]
Fu, H.G.; Li, Z.W.; Hu, X.X.; Si, S.Y.; You, X.F.; Tang, S.; Wang, Y.X.; Song, D.Q. Synthesis and biological evaluation of quinoline derivatives as a novel class of broad-spectrum antibacterial agents. Molecules, 2019, 24(3), 548.
[http://dx.doi.org/10.3390/molecules24030548] [PMID: 30717338]
[53]
Dorababu, A. Recent update on antibacterial and antifungal activity of quinoline scaffolds. Arch. Pharm., 2021, 354(3), 2000232.
[http://dx.doi.org/10.1002/ardp.202000232] [PMID: 33210348]
[54]
Meyers, J.; Chessum, N.E.A.; Ali, S.; Mok, N.Y.; Wilding, B.; Pasqua, A.E.; Rowlands, M.; Tucker, M.J.; Evans, L.E.; Rye, C.S.; O’Fee, L.; Le Bihan, Y.V.; Burke, R.; Carter, M.; Workman, P.; Blagg, J.; Brown, N.; van Montfort, R.L.M.; Jones, K.; Cheeseman, M.D. Privileged structures and polypharmacology within and between protein families. ACS Med. Chem. Lett., 2018, 9(12), 1199-1204.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00364] [PMID: 30613326]
[55]
Raghavendra, N.M.; Pingili, D.; Kadasi, S.; Mettu, A.; Prasad, S.V.U.M. Dual or multi-targeting inhibitors: The next generation anticancer agents. Eur. J. Med. Chem., 2018, 143, 1277-1300.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.021] [PMID: 29126724]
[56]
Sulimov, V.B.; Gribkova, I.V.; Kochugaeva, M.P.; Katkova, E.V.; Sulimov, A.V.; Kutov, D.C.; Shikhaliev, K.S.; Medvedeva, S.M.; Krysin, M.Y.; Sinauridze, E.I.; Ataullakhanov, F.I. Application of molecular modeling to development of new factor Xa inhibitors. BioMed Res. Int., 2015, 2015, 120802.
[http://dx.doi.org/10.1155/2015/120802] [PMID: 26484350]
[57]
Proschak, E.; Stark, H.; Merk, D. Polypharmacology by design: A medicinal chemist’s perspective on multitargeting compounds. J. Med. Chem., 2019, 62(2), 420-444.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00760] [PMID: 30035545]
[58]
Idrees, M.; Bodkhe, Y.G.; Siddiqui, N.J. Synthesis and antimicrobial assay of some novel 4-thiazolidinone derivatives possessing benzofuran, quinoline and pyrazole moieties. Asian J. Chem., 2018, 30(10), 2361-2364.
[http://dx.doi.org/10.14233/ajchem.2018.21522]
[59]
Abouelhassan, Y.; Garrison, A.T.; Burch, G.M.; Wong, W.; Norwood, V.M., IV; Huigens, R.W., III Discovery of quinoline small molecules with potent dispersal activity against methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis biofilms using a scaffold hopping strategy. Bioorg. Med. Chem. Lett., 2014, 24(21), 5076-5080.
[http://dx.doi.org/10.1016/j.bmcl.2014.09.009] [PMID: 25264073]
[60]
Vandekerckhove, S.; Tran, H.G.; Desmet, T.; D’hooghe, M. Evaluation of (4-aminobutyloxy)quinolines as a novel class of antifungal agents. Bioorg. Med. Chem. Lett., 2013, 23(16), 4641-4643.
[http://dx.doi.org/10.1016/j.bmcl.2013.06.014] [PMID: 23838261]
[61]
Zeleke, D.; Eswaramoorthy, R.; Belay, Z.; Melaku, Y. Synthesis and antibacterial, antioxidant, and molecular docking analysis of some novel quinoline derivatives. J. Chem., 2020, 2020, 1324096.
[http://dx.doi.org/10.1155/2020/1324096]
[62]
Bouzian, Y.; Karrouchi, K.; Sert, Y.; Lai, C.H.; Mahi, L.; Ahabchane, N.H.; Talbaoui, A.; Mague, J.T.; Essassi, E.M. Synthesis, spectroscopic characterization, crystal structure, DFT, molecular docking and in vitro antibacterial potential of novel quinoline derivatives. J. Mol. Struct., 2020, 1209, 127940.
[http://dx.doi.org/10.1016/j.molstruc.2020.127940]
[63]
Eissa, S.I.; Farrag, A.M.; Abbas, S.Y.; El Shehry, M.F.; Ragab, A.; Fayed, E.A.; Ammar, Y.A. Novel structural hybrids of quinoline and thiazole moieties: Synthesis and evaluation of antibacterial and antifungal activities with molecular modeling studies. Bioorg. Chem., 2021, 110, 104803.
[http://dx.doi.org/10.1016/j.bioorg.2021.104803] [PMID: 33761314]
[64]
T G. S.; Subramanian, S.; Eswaran, S. Design, synthesis and study of antibacterial and antitubercular activity of quinoline hydrazone hybrids. Heterocycl. Commun., 2020, 26(1), 137-147.
[http://dx.doi.org/10.1515/hc-2020-0109]
[65]
Rathod, S.V.; Shinde, K.W.; Kharkar, P.S.; Shah, C.P. Synthesis, molecular docking, and biological evaluation of novel 2-(3-chlorophenyl) quinoline-4-carboxamide derivatives as potent anti-breast cancer and antibacterial agents. Thaiphesatchasan, 2021, 45, 41-49.
[66]
Moussaoui, O.; Bhadane, R.; Sghyar, R.; El Hadrami, E.M.; El Amrani, S.; Ben Tama, A.; Kandri Rodi, Y.; Chakroune, S.; Salo-Ahen, O.M.H. Novel amino acid derivatives of quinolines as potential antibacterial and fluorophore agents. Sci. Pharm., 2020, 88(4), 57.
[http://dx.doi.org/10.3390/scipharm88040057]
[67]
Bazine, I.; Bendjedid, S.; Boukhari, A. Potential antibacterial and antifungal activities of novel sulfamidophosphonate derivatives bearing the quinoline or quinolone moiety. Arch. Pharm., 2021, 354(3), 2000291.
[http://dx.doi.org/10.1002/ardp.202000291] [PMID: 33283901]
[68]
Jin, G.; Xiao, F.; Li, Z.; Qi, X.; Zhao, L.; Sun, X. Design, synthesis, and dual evaluation of quinoline and quinolinium iodide salt derivatives as potential anticancer and antibacterial agents. ChemMedChem, 2020, 15(7), 600-609.
[http://dx.doi.org/10.1002/cmdc.202000002] [PMID: 32068948]
[69]
Desai, N.C.; Harsora, J.P.; Monapara, J.D.; Khedkar, V.M. Synthesis, antimicrobial capability and molecular docking of heterocyclic scaffolds clubbed by 2-azetidinone, thiazole and quinoline derivatives. Polycycl. Aromat. Compd., 2021, 2021, 2009886.
[http://dx.doi.org/10.1080/10406638.2021.2009886]
[70]
Ökten, S. Aydın, A.; Koçyiğit, Ü.M.; Çakmak, O.; Erkan, S.; Andac, C.A.; Taslimi, P.; Gülçin, İ. Quinoline‐based promising anticancer and antibacterial agents, and some metabolic enzyme inhibitors. Arch. Pharm., 2020, 353(9), 2000086.
[http://dx.doi.org/10.1002/ardp.202000086] [PMID: 32537757]
[71]
Uppar, V.; Mudnakudu-Nagaraju, K.K.; Basarikatti, A.I.; Chougala, M.; Chandrashekharappa, S.; Mohan, M.K.; Banuprakash, G.; Venugopala, K.N.; Ningegowda, R.; Padmashali, B. Microwave induced synthesis, and pharmacological properties of novel 1-benzoyl-4-bromopyrrolo[1,2-a]quinoline-3-carboxylate analogues. Chem. Data Collect., 2020, 25, 100316.
[http://dx.doi.org/10.1016/j.cdc.2019.100316]
[72]
Khan, S.A.; Asiri, A.M.; Basisi, H.M.; Asad, M.; Zayed, M.E.M.; Sharma, K.; Wani, M.Y. Synthesis and evaluation of quinoline-3-carbonitrile derivatives as potential antibacterial agents. Bioorg. Chem., 2019, 88, 102968.
[http://dx.doi.org/10.1016/j.bioorg.2019.102968] [PMID: 31075745]
[73]
Rbaa, M.; Jabli, S.; Lakhrissi, Y.; Ouhssine, M.; Almalki, F.; Ben Hadda, T.; Messgo-Moumene, S.; Zarrouk, A.; Lakhrissi, B. Synthesis, antibacterial properties and bioinformatics computational analyses of novel 8-hydroxyquinoline derivatives. Heliyon, 2019, 5(10), e02689.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02689] [PMID: 31687516]
[74]
dos Santos Chagas, C.; Fonseca, F.L.A.; Bagatin, I.A. Quinoline-derivative coordination compounds as potential applications to antibacterial and antineoplasic drugs. Mater. Sci. Eng. C, 2019, 98, 1043-1052.
[http://dx.doi.org/10.1016/j.msec.2019.01.058] [PMID: 30812988]
[75]
Bai, X.; Chen, Y.; Liu, Z.; Zhang, L.; Zhang, T.; Feng, B. Synthesis, antimicrobial activities, and molecular docking studies of dihydrotriazine derivatives bearing a quinoline moiety. Chem. Biodivers., 2019, 16(6), cbdv.201900056.
[http://dx.doi.org/10.1002/cbdv.201900056] [PMID: 30957398]
[76]
Shabeeb, I.; Al-Essa, L.; Shtaiwi, M.; Al-Shalabi, E.; Younes, E.; Okasha, R.; Abu Sini, M. New hydrazide-hydrazone derivatives of quinoline 3-carboxylic acid hydrazide: Synthesis, theoretical modeling and antibacterial evaluation. Lett. Org. Chem., 2019, 16(5), 430-436.
[http://dx.doi.org/10.2174/1570178616666181227122326]
[77]
Desai, N.C.; Maheta, A.S.; Rajpara, K.M.; Joshi, V.V.; Vaghani, H.V.; Satodiya, H.M. Green synthesis of novel quinoline based imidazole derivatives and evaluation of their antimicrobial activity. J. Saudi Chem. Soc., 2014, 18(6), 963-971.
[http://dx.doi.org/10.1016/j.jscs.2011.11.021]
[78]
Eswaran, S.; Adhikari, A.V.; Chowdhury, I.H.; Pal, N.K.; Thomas, K.D. New quinoline derivatives: Synthesis and investigation of antibacterial and antituberculosis properties. Eur. J. Med. Chem., 2010, 45(8), 3374-3383.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.022] [PMID: 20537437]
[79]
Thakare, P.P.; Shinde, A.D.; Chavan, A.P.; Nyayanit, N.V.; Bobade, V.D.; Mhaske, P.C. Synthesis and biological evaluation of new 1,2,3‐triazolyl‐pyrazolyl‐quinoline derivatives as potential antimicrobial agents. ChemistrySelect, 2020, 5(15), 4722-4727.
[http://dx.doi.org/10.1002/slct.201904455]
[80]
Lilienkampf, A.; Mao, J.; Wan, B.; Wang, Y.; Franzblau, S.G.; Kozikowski, A.P. Structure-activity relationships for a series of quinoline-based compounds active against replicating and nonreplicating Mycobacterium tuberculosis. J. Med. Chem., 2009, 52(7), 2109-2118.
[http://dx.doi.org/10.1021/jm900003c] [PMID: 19271749]
[81]
Chen, Y.L.; Fang, K.C.; Sheu, J.Y.; Hsu, S.L.; Tzeng, C.C. Synthesis and antibacterial evaluation of certain quinolone derivatives. J. Med. Chem., 2001, 44(14), 2374-2377.
[http://dx.doi.org/10.1021/jm0100335] [PMID: 11428933]
[82]
Ragab, A.; Elsisi, D.M.; Abu Ali, O.A.; Abusaif, M.S.; Askar, A.A.; Farag, A.A.; Ammar, Y.A. Design, synthesis of new novel quinoxalin-2(1H)-one derivatives incorporating hydrazone, hydrazine, and pyrazole moieties as antimicrobial potential with in-silico ADME and molecular docking simulation. Arab. J. Chem., 2022, 15(1), 103497.
[http://dx.doi.org/10.1016/j.arabjc.2021.103497]
[83]
Govender, H.; Mocktar, C.; Koorbanally, N.A. Synthesis and bioactivity of quinoline-3-carboxamide derivatives. J. Heterocycl. Chem., 2018, 55(4), 1002-1009.
[http://dx.doi.org/10.1002/jhet.3132]
[84]
Fang, K.C.; Chen, Y.L.; Sheu, J.Y.; Wang, T.C.; Tzeng, C.C. Synthesis, antibacterial, and cytotoxic evaluation of certain 7-substituted norfloxacin derivatives. J. Med. Chem., 2000, 43(20), 3809-3812.
[http://dx.doi.org/10.1021/jm000153x] [PMID: 11020298]
[85]
Miyamoto, T.; Matsumoto, J.; Chiba, K.; Egawa, H.; Shibamori, K.; Minamida, A.; Nishimura, Y.; Okada, H.; Kataoka, M.; Fujita, M. Pyridonecarboxylic acids as antibacterial agents. Part 14. Synthesis and structure-activity relationships of 5-substituted 6,8-difluoroquinolones, including sparfloxacin, a new quinolone antibacterial agent with improved potency. J. Med. Chem., 1990, 33(6), 1645-1656.
[http://dx.doi.org/10.1021/jm00168a018] [PMID: 2342057]
[86]
Garudachari, B.; Satyanarayana, M.N.; Thippeswamy, B.; Shivakumar, C.K.; Shivananda, K.N.; Hegde, G.; Isloor, A.M.; Satyanarayana, M.N.; Thippeswamy, B.; Shivakumar, C.K.; Shivananda, K.N.; Hegde, G.; Isloor, A.M. Synthesis, characterization and antimicrobial studies of some new quinoline incorporated benzimidazole derivatives. Eur. J. Med. Chem., 2012, 54, 900-906.
[http://dx.doi.org/10.1016/j.ejmech.2012.05.027] [PMID: 22732060]
[87]
Manjunatha, J.R.; Bettadaiah, B.K.; Negi, P.S.; Srinivas, P. Synthesis of quinoline derivatives of tetrahydrocurcumin and zingerone and evaluation of their antioxidant and antibacterial attributes. Food Chem., 2013, 136(2), 650-658.
[http://dx.doi.org/10.1016/j.foodchem.2012.08.052] [PMID: 23122110]
[88]
Eswaran, S.; Adhikari, A.V.; Shetty, N.S. Synthesis and antimicrobial activities of novel quinoline derivatives carrying 1,2,4-triazole moiety. Eur. J. Med. Chem., 2009, 44(11), 4637-4647.
[http://dx.doi.org/10.1016/j.ejmech.2009.06.031] [PMID: 19647905]
[89]
Mathew, B.P.; Nath, M. Recent approaches to antifungal therapy for invasive mycoses. ChemMedChem, 2009, 4(3), 310-323.
[http://dx.doi.org/10.1002/cmdc.200800353] [PMID: 19170067]
[90]
Brown, E.D.; Wright, G.D. New targets and screening approaches in antimicrobial drug discovery. Chem. Rev., 2005, 105(2), 759-774.
[http://dx.doi.org/10.1021/cr030116o] [PMID: 15700964]
[91]
Chen, S.C.A.; Playford, E.G.; Sorrell, T.C. Antifungal therapy in invasive fungal infections. Curr. Opin. Pharmacol., 2010, 10(5), 522-530.
[http://dx.doi.org/10.1016/j.coph.2010.06.002] [PMID: 20598943]
[92]
Mukherjee, P.K.; Leidich, S.D.; Isham, N.; Leitner, I.; Ryder, N.S.; Ghannoum, M.A. Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrob. Agents Chemother., 2003, 47(1), 82-86.
[http://dx.doi.org/10.1128/AAC.47.1.82-86.2003] [PMID: 12499173]
[93]
Meléndez Gómez, C.M.; Kouznetsov, V.V.; Sortino, M.A.; Álvarez, S.L.; Zacchino, S.A. In vitro antifungal activity of polyfunctionalized 2-(hetero)arylquinolines prepared through imino Diels–Alder reactions. Bioorg. Med. Chem., 2008, 16(17), 7908-7920.
[http://dx.doi.org/10.1016/j.bmc.2008.07.079] [PMID: 18752959]
[94]
Murugavel, S.; Sundramoorthy, S.; Subashini, R.; Pavan, P. Synthesis, characterization, pharmacological, molecular modeling and antimicrobial activity evaluation of novel isomer quinoline derivatives. Struct. Chem., 2018, 29(6), 1677-1695.
[http://dx.doi.org/10.1007/s11224-018-1149-6]
[95]
Karime, L.; Parada, L.; Yamile, L.; Méndez, V.; Kouznetsov, V.V. Molecules, As promising conjugated hybrids in biomedical research. OMICJ, 2018, 7(2), 1-10.
[http://dx.doi.org/10.19080/OMCIJ.2018.07.555708]
[96]
Abou-Dobara, M.I.; Omar, N.F.; Diab, M.A.; El-Sonbati, A.Z.; Morgan, S.M.; Salem, O.L.; Eldesoky, A.M. Polymer complexes. LXXV. Characterization of quinoline polymer complexes as potential bio-active and anti-corrosion agents. Mater. Sci. Eng. C, 2019, 103, 109727.
[http://dx.doi.org/10.1016/j.msec.2019.05.012] [PMID: 31349456]
[97]
Ali, I.A.I.; El-Sakka, S.S.A.; Soliman, M.H.A.; Mohamed, O.E.A. In silico, in vitro and docking applications for some novel complexes derived from new quinoline derivatives. J. Mol. Struct., 2019, 1196, 8-32.
[http://dx.doi.org/10.1016/j.molstruc.2019.06.053]
[98]
Musiol, R.; Podeszwa, B.; Finster, J.; Niedbala, H.; Polanski, J. An efficient microwave-assisted synthesis of structurally diverse styrylquinolines. Monatsh. Chem., 2006, 137(9), 1211-1217.
[http://dx.doi.org/10.1007/s00706-006-0513-1]
[99]
Jampilek, J.; Musiol, R.; Finster, J.; Pesko, M.; Carroll, J.; Kralova, K.; Vejsova, M.; O’Mahony, J.; Coffey, A.; Dohnal, J.; Polanski, J. Investigating biological activity spectrum for novel styrylquinazoline analogues. Molecules, 2009, 14(10), 4246-4265.
[http://dx.doi.org/10.3390/molecules14104246] [PMID: 19924061]
[100]
Musiol, R.; Serda, M.; Hensel-Bielowka, S.; Polanski, J. Quinoline-based antifungals. Curr. Med. Chem., 2010, 17(18), 1960-1973.
[http://dx.doi.org/10.2174/092986710791163966] [PMID: 20377510]
[101]
Musiol, R.; Jampilek, J.; Podeszwa, B.; Finster, J.; Tabak, D.; Dohnal, J.; Polanski, J. RP-HPLC determination of lipophilicity in series of quinoline derivatives. Open Chem., 2009, 7(3), 586-597.
[http://dx.doi.org/10.2478/s11532-009-0059-2]
[102]
Warnock, D.W. Trends in the epidemiology of invasive fungal infections. Nippon Ishinkin Gakkai Zasshi, 2007, 48(1), 1-12.
[http://dx.doi.org/10.3314/jjmm.48.1] [PMID: 17287717]
[103]
Weinstock, M.A.; Gardstein, B. Twenty-year trends in the reported incidence of mycosis fungoides and associated mortality. Am. J. Public Health, 1999, 89(8), 1240-1244.
[http://dx.doi.org/10.2105/AJPH.89.8.1240] [PMID: 10432915]
[104]
Pfaller, M.A.; Diekema, D.J.; Rinaldi, M.G. Antifungal drugs: Mechanisms of action, drug resistance, susceptibility; The Williams & Wilkins Co.: Baltimore, Md, 1996, pp. 176-211.
[105]
Rex, J.H.; Rinaldi, M.G.; Pfaller, M.A. Resistance of Candida species to fluconazole. Antimicrob. Agents Chemother., 1995, 39(1), 1-8.
[http://dx.doi.org/10.1128/AAC.39.1.1] [PMID: 7695288]
[106]
White, T.C. The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14alpha demethylase in Candida albicans. Antimicrob. Agents Chemother., 1997, 41(7), 1488-1494.
[107]
Sanguinetti, M.; Posteraro, B.; Fiori, B.; Ranno, S.; Torelli, R.; Fadda, G. Mechanisms of azole resistance in clinical isolates of Candida glabrata collected during a hospital survey of antifungal resistance. Antimicrob. Agents Chemother., 2005, 49(2), 668-679.
[http://dx.doi.org/10.1128/AAC.49.2.668-679.2005] [PMID: 15673750]
[108]
Darkes, M.J.M.; Scott, L.J.; Goa, K.L. Terbinafine. Am. J. Clin. Dermatol., 2003, 4(1), 39-65.
[http://dx.doi.org/10.2165/00128071-200304010-00005] [PMID: 12477372]
[109]
Suvire, F.D.; Sortino, M.; Kouznetsov, V.V.; Vargas, M.L.Y.; Zacchino, S.A.; Cruz, U.M.; Enriz, R.D. Structure–activity relationship study of homoallylamines and related derivatives acting as antifungal agents. Bioorg. Med. Chem., 2006, 14(6), 1851-1862.
[http://dx.doi.org/10.1016/j.bmc.2005.10.036] [PMID: 16289857]
[110]
Anderson, L.D. Sitafloxacin hydrate for bacterial infections. Drugs Today, 2008, 44(7), 489-501.
[http://dx.doi.org/10.1358/dot.2008.44.7.1219561] [PMID: 18806900]
[111]
Kharkar, P.S.; Deodhar, M.N.; Kulkarni, V.M. Design, synthesis, antifungal activity, and ADME prediction of functional analogues of terbinafine. Med. Chem. Res., 2009, 18(6), 421-432.
[http://dx.doi.org/10.1007/s00044-008-9138-8]
[112]
Musiol, R.; Jampilek, J.; Buchta, V.; Silva, L.; Niedbala, H.; Podeszwa, B.; Palka, A.; Majerz-Maniecka, K.; Oleksyn, B.; Polanski, J. Antifungal properties of new series of quinoline derivatives. Bioorg. Med. Chem., 2006, 14(10), 3592-3598.
[http://dx.doi.org/10.1016/j.bmc.2006.01.016] [PMID: 16458522]
[113]
Serda, M.; Mrozek-Wilczkiewicz, A.; Jampilek, J.; Pesko, M.; Kralova, K.; Vejsova, M.; Musiol, R.; Ratuszna, A.; Polanski, J. Investigation of the biological properties of (hetero)aromatic thiosemicarbazones. Molecules, 2012, 17(11), 13483-13502.
[http://dx.doi.org/10.3390/molecules171113483] [PMID: 23151918]
[114]
Kouznetsov, V.V.; Meléndez Gómez, C.M.; Derita, M.G.; Svetaz, L.; del Olmo, E.; Zacchino, S.A. Synthesis and antifungal activity of diverse C-2 pyridinyl and pyridinylvinyl substituted quinolines. Bioorg. Med. Chem., 2012, 20(21), 6506-6512.
[http://dx.doi.org/10.1016/j.bmc.2012.08.036] [PMID: 23036332]
[115]
El Shehry, M.F.; Ghorab, M.M.; Abbas, S.Y.; Fayed, E.A.; Shedid, S.A.; Ammar, Y.A. Quinoline derivatives bearing pyrazole moiety: Synthesis and biological evaluation as possible antibacterial and antifungal agents. Eur. J. Med. Chem., 2018, 143, 1463-1473.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.046] [PMID: 29113746]
[116]
Kategaonkar, A.H.; Pokalwar, R.U.; Sonar, S.S.; Gawali, V.U.; Shingate, B.B.; Shingare, M.S. Synthesis, in vitro antibacterial and antifungal evaluations of new α-hydroxyphosphonate and new α-acetoxyphosphonate derivatives of tetrazolo [1, 5-a] quinoline. Eur. J. Med. Chem., 2010, 45(3), 1128-1132.
[http://dx.doi.org/10.1016/j.ejmech.2009.12.013] [PMID: 20036039]
[117]
Fang, Y.M.; Zhang, R.R.; Shen, Z.H.; Wu, H.K.; Tan, C.X.; Weng, J.Q.; Xu, T.M.; Liu, X.H. Synthesis, antifungal activity, and SAR study of some new 6-perfluoropropanyl quinoline derivatives. J. Heterocycl. Chem., 2018, 55(1), 240-245.
[http://dx.doi.org/10.1002/jhet.3031]
[118]
Zhang, Z.; Liu, M.; Liu, W.; Xiang, J.; Li, J.; Li, Z.; Liu, X.; Huang, M.; Liu, A.; Zheng, X. Synthesis and fungicidal activities of perfluoropropan-2-yl-based novel quinoline derivatives. Heterocycl. Commun., 2019, 25(1), 91-97.
[http://dx.doi.org/10.1515/hc-2019-0002]
[119]
Liu, X.H.; Fang, Y.M.; Xie, F.; Zhang, R.R.; Shen, Z.H.; Tan, C.X.; Weng, J.Q.; Xu, T.M.; Huang, H.Y.; Xu, T. Synthesis and in vivo fungicidal activity of some new quinoline derivatives against rice blast. Pest Manag. Sci., 2017, 73(9), 1900-1907.
[http://dx.doi.org/10.1002/ps.4556] [PMID: 28218818]
[120]
Tang, H.; Zheng, C.; Lv, J.; Wu, J.; Li, Y.; Yang, H.; Fu, B.; Li, C.; Zhou, Y.; Zhu, J. Synthesis and antifungal activities in vitro of novel pyrazino [2,1-a] isoquinolin derivatives. Bioorg. Med. Chem. Lett., 2010, 20(3), 979-982.
[http://dx.doi.org/10.1016/j.bmcl.2009.12.050] [PMID: 20036534]
[121]
Tang, H.; Zheng, C.; Zhu, J.; Fu, B.; Zhou, Y.; Lv, J. Design and synthesis of novel pyrazino[2,1-a]isoquinolin derivatives with potent antifungal activity. Arch. Pharm., 2010, 343(6), 360-366.
[http://dx.doi.org/10.1002/ardp.200900279] [PMID: 20232375]
[122]
Uppar, V.; Chandrashekharappa, S.; Shivamallu, C. P, S.; Kollur, S.P.; Ortega-Castro, J.; Frau, J.; Flores-Holguín, N.; Basarikatti, A.I.; Chougala, M.; Mohan M, M.; Banuprakash, G.; Jayadev; Venugopala, K.N.; Nandeshwarappa, B.P.; Veerapur, R.; Al-Kheraif, A.A.; Elgorban, A.M.; Syed, A.; Mudnakudu-Nagaraju, K.K.; Padmashali, B.; Glossman-Mitnik, D. Investigation of antifungal properties of synthetic dimethyl-4-bromo-1-(Substituted benzoyl) pyrrolo[1,2-a] quinoline-2,3-dicarboxylates analogues: Molecular docking studies and conceptual dft-based chemical reactivity descriptors and pharmacokinetics evaluation. Molecules, 2021, 26(9), 2722.
[http://dx.doi.org/10.3390/molecules26092722] [PMID: 34066433]
[123]
da Rosa Monte Machado, G.; Diedrich, D.; Ruaro, T.C.; Zimmer, A.R.; Lettieri Teixeira, M.; de Oliveira, L.F.; Jean, M.; Van de Weghe, P.; de Andrade, S.F.; Baggio Gnoatto, S.C.; Fuentefria, A.M. Quinolines derivatives as promising new antifungal candidates for the treatment of candidiasis and dermatophytosis. Braz. J. Microbiol., 2020, 51(4), 1691-1701.
[http://dx.doi.org/10.1007/s42770-020-00348-4] [PMID: 32737869]
[124]
Salem, M.A.; Abbas, S.Y.; El-Sharief, M.A.M.S.; Helal, M.H.; Gouda, M.A.; Assiri, M.A.; Ali, T.E.; Ali, T.; Ali, T. Novel structural hybrids of pyrrole and thiazole moieties: Synthesis and evaluation of antibacterial and antifungal activities. Acta Chim. Slov., 2021, 68(4), 990-996.
[http://dx.doi.org/10.17344/acsi.2021.6980] [PMID: 34918753]
[125]
Thomas, K.D.; Adhikari, A.V.; Shetty, N.S. Design, synthesis and antimicrobial activities of some new quinoline derivatives carrying 1,2,3-triazole moiety. Eur. J. Med. Chem., 2010, 45(9), 3803-3810.
[http://dx.doi.org/10.1016/j.ejmech.2010.05.030] [PMID: 20542604]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy