Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Research Article

The Metal-Free Regioselective Deuteration of 2-Methylquinolin-8-ol and 2,5-Dimethylquinolin-8-ol, Spectroscopic and Computational Studies

Author(s): Jacek Eugeniusz Nycz*, Marcin Szala, Jan Grzegorz Małecki, Maria Książek and Joachim Kusz

Volume 9, Issue 1, 2022

Published on: 15 November, 2022

Page: [48 - 60] Pages: 13

DOI: 10.2174/2213346110666221019142941

Price: $65

Abstract

Aim and Background: Introducing deuterium to a molecule is of interest to a wide variety of research, including investigation of reaction mechanisms or kinetics, analysis of drug metabolism, structural elucidation of molecules, and syntheses of isotopically labeled materials used for NMR spectroscopy and medicinal research.

Objective: The transition-metal-free regioselective deuteration of 2-methylquinolin-8-ol (1a) and 2,5- dimethylquinolin-8-ol (2a) with ambient reaction conditions and low-cost reagents is described in the paper.

Methods: Regioselective H/D isotope exchange has been presented by combining the following techniques 1H NMR, 13C NMR, GC-MS, and X-ray crystallography. The molecular orbitals of the deuterated molecule 1a have been calculated by density functional theory (DFT) to provide an elucidation of the isotope exchange.

Results: The metal-free regioselective green deuteration based on modified Skraup-Doebner-Von Miller synthesis and water-d2 KOD solution or water-d2 D2SO4 solution of hydroxyquinolines was elaborated.

Conclusion: The metal-free regioselective green deuteration of hydroxyquinoline-type compounds with ambient reaction conditions and low-cost reagents provided valuable tools for isotopic labeling. The modified Skraup-Doebner-Von Miller synthesis of deuterated hydroxyquinolines has the potential to allow higher deuteration capacity. The presented isotopic exchange reactions also possess synthetic values as the source of deuterated compounds for the studies of NMR spectroscopy, medicinal research, and drug discovery processes.

« Previous
Graphical Abstract

[1]
Zhan, M.; Xu, R.; Tian, Y.; Jiang, H.; Zhao, L.; Xie, Y.; Chen, Y. A simple and cost-effective method for the regioselective deuteration of phenols. Eur. J. Org. Chem., 2015, 2015(15), 3370-3373.
[http://dx.doi.org/10.1002/ejoc.201500192]
[2]
Delente, J.J. Perdeuterated chemicals from D2O-grown microalgae. Trends Biotechnol., 1987, 5(6), 159-160.
[http://dx.doi.org/10.1016/0167-7799(87)90088-6]
[3]
Junk, T.; Catallo, W.J. Hydrogen isotope exchange reactions involving C-H (D, T) bonds. Chem. Soc. Rev., 1997, 26(5), 401-406.
[http://dx.doi.org/10.1039/CS9972600401]
[4]
Saljoughian, M.; Williams, P. Recent developments in tritium incorporation for radiotracer studies. Curr. Pharm. Des., 2000, 6(10), 1029-1056.
[http://dx.doi.org/10.2174/1381612003399969] [PMID: 10828300]
[5]
Lockley, W.J.S. 30 Years with ortho-directed hydrogen isotope exchange labelling. J. Labelled Comp. Radiopharm., 2007, 50(9-10), 779-788.
[http://dx.doi.org/10.1002/jlcr.1421]
[6]
Atzrodt, J.; Derdau, V.; Fey, T.; Zimmermann, J. The renaissance of H/D exchange. Angew. Chem. Int. Ed., 2007, 46(41), 7744-7765.
[http://dx.doi.org/10.1002/anie.200700039] [PMID: 17886815]
[7]
Atzrodt, J.; Derdau, V. Pd- and Pt-catalyzed H/D exchange methods and their application for internal MS standard preparation from a Sanofi-Aventis perspective. J. Labelled Comp. Radiopharm., 2010, 53(11-12), 674-685.
[http://dx.doi.org/10.1002/jlcr.1818]
[8]
Sajiki, H.; Sawama, Y.; Monguchi, Y. Efficient H-D exchange reactions using heterogeneous platinum-group metal on carbon-H2-D2O System. Synlett, 2012, 23(7), 959-972.
[http://dx.doi.org/10.1055/s-0031-1289696]
[9]
Martins, A.; Lautens, M. A simple, cost-effective method for the regioselective deuteration of anilines. Org. Lett., 2008, 10(19), 4351-4353.
[http://dx.doi.org/10.1021/ol801763j] [PMID: 18759434]
[10]
Greene, A.K.; Scott, L.T. Rapid, microwave-assisted perdeuteration of polycyclic aromatic hydrocarbons. J. Org. Chem., 2013, 78(5), 2139-2143.
[http://dx.doi.org/10.1021/jo301903m] [PMID: 23121393]
[11]
Prechtl, M.H.G.; Hölscher, M.; Ben, D.Y.; Theyssen, N.; Loschen, R.; Milstein, D.; Leitner, W. H/D exchange at aromatic and heteroaromatic hydrocarbons using D2O as the deuterium source and ruthenium dihydrogen complexes as the catalyst. Angew. Chem. Int. Ed., 2007, 46(13), 2269-2272.
[http://dx.doi.org/10.1002/anie.200603677] [PMID: 17300115]
[12]
Emmert, M.H.; Gary, J.B.; Villalobos, J.M.; Sanford, M.S. Platinum and palladium complexes containing cationic ligands as catalysts for arene H/D exchange and oxidation. Angew. Chem. Int. Ed., 2010, 49(34), 5884-5886.
[http://dx.doi.org/10.1002/anie.201002351] [PMID: 20632426]
[13]
Ma, S.; Villa, G.; Thuy, B.P.S.; Homs, A.; Yu, J.Q. Palladium-catalyzed ortho-selective C-H deuteration of arenes: evidence for superior reactivity of weakly coordinated palladacycles. Angew. Chem. Int. Ed., 2014, 53(3), 734-737.
[http://dx.doi.org/10.1002/anie.201305388] [PMID: 24288176]
[14]
Lehman, M.C.; Gary, J.B.; Boyle, P.D.; Sanford, M.S.; Ison, E.A. Effect of solvent and ancillary ligands on the catalytic H/D exchange reactivity of Cp*IrIII (L) complexes. ACS Catal., 2013, 3(10), 2304-2310.
[http://dx.doi.org/10.1021/cs400420n]
[15]
Ingold, C.K.; Raisin, C.G.; Wilson, C.L.; Bailey, C.R.; Topley, B. 212. Structure of benzene. Part II. Direct introduction of deuterium into benzene and the physical properties of hexadeuterobenzene. J. Chem. Soc., 1936, 915-925.
[http://dx.doi.org/10.1039/jr9360000915]
[16]
Ingold, C.K.; Raisin, C.G.; Wilson, C.L. Direct introduction of deuterium into benzene without heterogeneous catalysis. Nature, 1934, 134(3393), 734.
[http://dx.doi.org/10.1038/134734a0]
[17]
Holden, P.J.; Russell, R.A.; Stone, D.J.M.; Garvey, C.J.; Foster, L.J.R. In vivo deuteration of a native bacterial biopolymer for structural elucidation using SANS. Physica B, 2004, 350(1-3), E643-E646.
[http://dx.doi.org/10.1016/j.physb.2004.03.172]
[18]
Russell, R.A.; Holden, P.J.; Garvey, C.J.; Wilde, K.L.; Hammerton, K.M.; Foster, L.J. Investigation of the phase morphology of bacterial PHA inclusion bodies by contrast variation SANS. Physica B, 2006, 385-386, 859-861.
[http://dx.doi.org/10.1016/j.physb.2006.05.126]
[19]
Russell, R.A.; Holden, P.J.; Wilde, K.L.; Garvey, C.J.; Hammerton, K.M.; Foster, L.J.R. In vivo deuteration strategies for neutron scattering analysis of bacterial polyhydroxyoctanoate. Eur. Biophys. J., 2008, 37(5), 711-715.
[http://dx.doi.org/10.1007/s00249-008-0333-9] [PMID: 18481053]
[20]
Yuan, Y.; Li, H.; Leite, W.; Zhang, Q.; Bonnesen, P.V.; Labbé, J.L.; Weiss, K.L.; Pingali, S.V.; Hong, K.; Urban, V.S.; Salmon, S.; O’Neill, H. Biosynthesis and characterization of deuterated chitosan in filamentous fungus and yeast. Carbohydr. Polym., 2021, 257, 117637.
[http://dx.doi.org/10.1016/j.carbpol.2021.117637] [PMID: 33541662]
[21]
Nycz, J.E.; Szala, M.; Malecki, G.J.; Nowak, M.; Kusz, J. Synthesis, spectroscopy and computational studies of selected hydroxyquinolines and their analogues. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 117, 351-359.
[http://dx.doi.org/10.1016/j.saa.2013.08.031] [PMID: 24001976]
[22]
Malecki, G.; Nycz, J.E.; Ryrych, E.; Ponikiewski, L.; Nowak, M.; Kusz, J.; Pikies, J. Synthesis, spectroscopy and computational studies of some biologically important hydroxyhaloquinolines and their novel derivatives. J. Mol. Struct., 2010, 969(1-3), 130-138.
[http://dx.doi.org/10.1016/j.molstruc.2010.01.054]
[23]
Szala, M.; Nycz, J.E.; Malecki, G.J. New approaches to the synthesis of selected hydroxyquinolines and their hydroxyquinoline carbox-ylic acid analogues. J. Mol. Struct., 2014, 1071, 34-40.
[http://dx.doi.org/10.1016/j.molstruc.2014.04.052]
[24]
Gudat, D.; Nycz, J.E.; Polanski, J. A solid state and solution NMR study of the tautomerism in hydroxyquinoline carboxylic acids. Magn. Reson. Chem., 2008, 46(Suppl. 1), S115-S119.
[http://dx.doi.org/10.1002/mrc.2320] [PMID: 18855329]
[25]
Nycz, J.E.; Malecki, G.J. Synthesis, spectroscopy and computational studies of selected hydroxyquinoline carboxylic acids and their se-lected fluoro-, thio-, and dithioanalogues. J. Mol. Struct., 2013, 1032, 159-168.
[http://dx.doi.org/10.1016/j.molstruc.2012.08.009]
[26]
Wantulok, J.; Szala, M.; Quinto, A.; Nycz, J.E.; Giannarelli, S.; Sokolová, R.; Książek, M.; Kusz, J. Synthesis and electrochemical and spectroscopic characterization of selected quinolinecarbaldehydes and Schiff bases as their derivatives. Molecules, 2020, 25(9), 2053.
[http://dx.doi.org/10.3390/molecules25092053]
[27]
Stevenson, R.L.; Wacks, M.E.; Scott, W.M. The elimination of small neutral molecules and fragments in mass spectra—II: 2-substituted 8-hydroxyquinolines. Org. Mass Spectrom., 1969, 2(3), 261-271.
[http://dx.doi.org/10.1002/oms.1210020305]
[28]
Etter, M.C.; MacDonald, J.C.; Bernstein, J. Graph-set analysis of hydrogen-bond patterns in organic crystals. Acta Crystallogr. B, 1990, 46(2), 256-262.
[http://dx.doi.org/10.1107/S0108768189012929] [PMID: 2344397]
[29]
Jayatilaka, D.; Grimwood, D.J.; Lee, A.; Lemay, A.; Russel, A.J.; Taylo, C.; Wolff, S.K.; Cassam, C.A. Whitton; TONTO—A System for Computational Chemistry, 2005.
[30]
Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Jayatilaka, D.; Spackamn, M.A. Crystal Explorer 3.0; University of Western Australia: Perth, 2007.
[31]
Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. A, 2008, 64(1), 112-122.
[http://dx.doi.org/10.1107/S0108767307043930] [PMID: 18156677]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy