Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Research Article

Efficacy Screening of Prospective Anti-allergic Drug Candidates: An In silico Study

Author(s): Anubhab Laha, Aniket Sarkar, Priyanka Chakraborty, Anindya Sundar Panja and Rajib Bandopadhyay*

Volume 18, Issue 2, 2023

Published on: 21 November, 2022

Page: [143 - 153] Pages: 11

DOI: 10.2174/1574893618666221019092212

Price: $65

Abstract

Background: Due to the rapid rise of allergies, anti-allergy medications are commonly being utilised to reduce inflammation; however, allergen-specific inhibitors may also be utilised.

Objective: Our in silico study is aimed at finding out a promising anti-allergic compound that can act against a wide range of allergens.

Methods: The inhibitory efficacies of potential anti-allergic compounds were investigated by ADMET studies and were followed by high throughput molecular docking. Binding energy was calculated by AUTODOCK, which led to the identification of binding sites between the allergens and antiallergic compounds. Each of the five anti-allergic compounds interacted with allergens at various levels. The docked poses showing significant binding energy were subjected to molecular docking simulation.

Results: Marrubiin exhibits higher binding affinities to the catalytic pocket against allergens from chicken, European white birch plant, bacteria, fungus, and numerous food allergens.

Conclusion: We propose Marrubiin, which appears to be a promising anti-allergic candidate and antiinflammatory agent against a wide spectrum of allergens. The future directions of this research are to analyze the effects of anti-allergic mechanisms in vivo.

Graphical Abstract

[1]
Sicherer SH, Sampson HA. Food allergy: A review and update on epidemiology, pathogenesis, diagnosis, prevention, and management. J Allergy Clin Immunol 2018; 141(1): 41-58.
[http://dx.doi.org/10.1016/j.jaci.2017.11.003] [PMID: 29157945]
[2]
Dong X, Wang J, Raghavan V. Critical reviews and recent advances of novel non-thermal processing techniques on the modification of food allergens. Crit Rev Food Sci Nutr 2021; 61(2): 196-210.
[http://dx.doi.org/10.1080/10408398.2020.1722942] [PMID: 32048519]
[3]
Cosme-Blanco W, Arroyo-Flores E, Ale H. Food allergies. Pediatr Rev 2020; 41(8): 403-15.
[http://dx.doi.org/10.1542/pir.2019-0037] [PMID: 32737253]
[4]
Bilaver LA, Chadha AS, Doshi P, O’Dwyer L, Gupta RS. Economic burden of food allergy. Ann Allergy Asthma Immunol 2019; 122(4): 373-380.e1.
[http://dx.doi.org/10.1016/j.anai.2019.01.014] [PMID: 30703439]
[5]
Pamuk G, Le Bourgeois M, Abou Taam R, et al. The economic burden of allergic comorbidities in pediatric severe asthma. Pediatr Allergy Immunol 2021; 32(7): 1559-65.
[http://dx.doi.org/10.1111/pai.13532] [PMID: 33955086]
[6]
Pamuk G, Le Bourgeois M, Abou Taam R, de Blic J, Delacourt C, Lezmi G. The economic burden of severe asthma in children: A comprehensive study. J Asthma 2021; 58(11): 1467-77.
[http://dx.doi.org/10.1080/02770903.2020.1802747] [PMID: 32820695]
[7]
Finkelstein EA, Lau E, Doble B, Ong B, Koh MS. Economic burden of asthma in Singapore. BMJ Open Respir Res 2021; 8(1): e000654.
[http://dx.doi.org/10.1136/bmjresp-2020-000654] [PMID: 33737309]
[8]
Julia V, Macia L, Dombrowicz D. The impact of diet on asthma and allergic diseases. Nat Rev Immunol 2015; 15(5): 308-22.
[http://dx.doi.org/10.1038/nri3830] [PMID: 25907459]
[9]
Abramson J, Pecht I. Regulation of the mast cell response to the type 1 Fc? receptor. Immunol Rev 2007; 217(1): 231-54.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00518.x] [PMID: 17498063]
[10]
Ogulur I, Pat Y, Ardicli O, et al. Advances and highlights in biomarkers of allergic diseases. Allergy 2021; 76(12): 3659-86.
[http://dx.doi.org/10.1111/all.15089] [PMID: 34519063]
[11]
Chinthrajah RS, Hernandez JD, Boyd SD, Galli SJ, Nadeau KC. Molecular and cellular mechanisms of food allergy and food tolerance. J Allergy Clin Immunol 2016; 137(4): 984-97.
[http://dx.doi.org/10.1016/j.jaci.2016.02.004] [PMID: 27059726]
[12]
De Martinis M, Sirufo MM, Suppa M, Ginaldi L. New perspectives in food allergy. Int J Mol Sci 2020; 21(4): 1474.
[http://dx.doi.org/10.3390/ijms21041474] [PMID: 32098244]
[13]
Tordesillas L, Berin MC, Sampson HA. Immunology of food allergy. Immunity 2017; 47(1): 32-50.
[http://dx.doi.org/10.1016/j.immuni.2017.07.004] [PMID: 28723552]
[14]
Yu W, Freeland DMH, Nadeau KC. Food allergy: Immune mechanisms, diagnosis and immunotherapy. Nat Rev Immunol 2016; 16(12): 751-65.
[http://dx.doi.org/10.1038/nri.2016.111] [PMID: 27795547]
[15]
Ayoub IM, Korinek M, Hwang TL, et al. Probing the antiallergic and anti-inflammatory activity of biflavonoids and dihydroflavonols from dietes bicolour. J Nat Prod 2018; 81: 243-53.
[16]
Burks AW, Sampson HA, Plaut M, Lack G, Akdis CA. Treatment for food allergy. J Allergy Clin Immunol 2018; 141(1): 1-9.
[http://dx.doi.org/10.1016/j.jaci.2017.11.004] [PMID: 29307409]
[17]
Heine RG. Food allergy prevention and treatment by targeted nutrition. Ann Nutr Metab 2018; 72 (Suppl. 3): 33-45.
[http://dx.doi.org/10.1159/000487380] [PMID: 29631274]
[18]
Devdas JM, Mckie C, Fox AT, Ratageri VH. Food allergy in children: An overview. Indian J Pediatr 2018; 85(5): 369-74.
[http://dx.doi.org/10.1007/s12098-017-2535-6] [PMID: 29147890]
[19]
Lifschitz C, Szajewska H. Cow’s milk allergy: Evidence-based diagnosis and management for the practitioner. Eur J Pediatr 2015; 174(2): 141-50.
[http://dx.doi.org/10.1007/s00431-014-2422-3] [PMID: 25257836]
[20]
Costa C, Coimbra A, Vítor A, Aguiar R, Ferreira AL, Todo-Bom A. Food allergy—From food avoidance to active treatment. Scand J Immunol 2020; 91(1): e12824.
[http://dx.doi.org/10.1111/sji.12824] [PMID: 31486118]
[21]
Anvari S, Miller J, Yeh CY, Davis CM. IgE-mediated food allergy. Clin Rev Allergy Immunol 2019; 57(2): 244-60.
[http://dx.doi.org/10.1007/s12016-018-8710-3] [PMID: 30370459]
[22]
Pratap K, Taki AC, Johnston EB, Lopata AL, Kamath SD. A comprehensive review on natural bioactive compounds and probiotics as potential therapeutics in food allergy treatment. Front Immunol 2020; 11: 996.
[http://dx.doi.org/10.3389/fimmu.2020.00996] [PMID: 32670266]
[23]
Campbell RL, Manivannan V, Hartz MF, Sadosty AT. Epinephrine auto-injector pandemic. Pediatr Emerg Care 2012; 28(9): 938-42.
[http://dx.doi.org/10.1097/PEC.0b013e318267f689] [PMID: 22940899]
[24]
Kessler C, Edwards E, Dissinger E, Sye S, Visich T, Grant E. Usability and preference of epinephrine auto-injectors. Ann Allergy Asthma Immunol 2019; 123(3): 256-62.
[http://dx.doi.org/10.1016/j.anai.2019.06.005] [PMID: 31228629]
[25]
Edwards ES, Gunn R, Simons ER, et al. Bioavailability of epinephrine from Auvi-Q compared with EpiPen. Ann Allergy Asthma Immunol 2013; 111(2): 132-7.
[http://dx.doi.org/10.1016/j.anai.2013.06.002] [PMID: 23886232]
[26]
Ungprasert P, Cheungpasitporn W, Crowson CS, Matteson EL. Individual non-steroidal anti-inflammatory drugs and risk of acute kidney injury: A systematic review and meta-analysis of observational studies. Eur J Intern Med 2015; 26(4): 285-91.
[http://dx.doi.org/10.1016/j.ejim.2015.03.008] [PMID: 25862494]
[27]
Nagai H, Teramachi H, Tuchiya T. Recent advances in the development of anti-allergic drugs. Allergol Int 2006; 55(1): 35-42.
[http://dx.doi.org/10.2332/allergolint.55.35] [PMID: 17075284]
[28]
Brown TJ, Hooper L, Elliott RA, et al. A comparison of the cost-effectiveness of five strategies for the prevention of non-steroidal anti-inflammatory drug-induced gastrointestinal toxicity: A systematic review with economic modelling. Health Technol Assess 2006; 10(38): iii-iv, xi-xiii, 1-.
[http://dx.doi.org/10.3310/hta10380]
[29]
Shakouri AA, Bahna SL. Hypersensitivity to antihistamines. Allergy Asthma Proc 2013; 34(6): 488-96.
[http://dx.doi.org/10.2500/aap.2013.34.3699] [PMID: 24169055]
[30]
Chen S. Natural products triggering biological targets--a review of the anti-inflammatory phytochemicals targeting the arachidonic acid pathway in allergy asthma and rheumatoid arthritis. Curr Drug Targets 2011; 12(3): 288-301.
[http://dx.doi.org/10.2174/138945011794815347] [PMID: 20955151]
[31]
Vo TS. Natural products targeting FcεRI receptor for anti‐allergic therapeutics. J Food Biochem 2020; 44(8): e13335.
[http://dx.doi.org/10.1111/jfbc.13335] [PMID: 32588463]
[32]
Beg S, Hasan H, Hussain MS, Swain S, Barkat MA. Systematic review of herbals as potential anti-inflammatory agents: Recent advances, current clinical status and future perspectives. Pharmacogn Rev 2011; 5(10): 120-37.
[http://dx.doi.org/10.4103/0973-7847.91102] [PMID: 22279370]
[33]
Peterson CT, Denniston K, Chopra D. Therapeutic Uses of Triphala in Ayurvedic Medicine. J Altern Complement Med 2017; 23(8): 607-14.
[http://dx.doi.org/10.1089/acm.2017.0083] [PMID: 28696777]
[34]
Cota BB, Bertollo CM, de Oliveira DM. Anti-allergic potential of herbs and herbal natural products - activities and patents. Recent Pat Endocr Metab Immune Drug Discov 2013; 7(1): 26-56.
[http://dx.doi.org/10.2174/187221413804660935] [PMID: 22946460]
[35]
Pipatrattanaseree W, Itharat A, Mukkasombut N, Saesiw U. Potential in vitro anti-allergic, anti-inflammatory and cytotoxic activities of ethanolic extract of Baliospermum montanum root, its major components and a validated HPLC method. BMC Complement Altern Med 2019; 19(1): 45.
[http://dx.doi.org/10.1186/s12906-019-2449-0] [PMID: 30755219]
[36]
Korinek M, Chen KM, Jiang YH, et al. Anti-allergic potential of Typhonium blumei: Inhibition of degranulation via suppression of PI3K/PLCγ2 phosphorylation and calcium influx. Phytomedicine 2016; 23(14): 1706-15.
[http://dx.doi.org/10.1016/j.phymed.2016.10.011] [PMID: 27912872]
[37]
Gangwar V, Garg A, Lomore K, et al. Immunomodulatory effects of a concoction of natural bioactive compounds—mechanistic insights. Biomedicines 2021; 9(11): 1522.
[http://dx.doi.org/10.3390/biomedicines9111522] [PMID: 34829751]
[38]
Choudhury H, Pandey M, Hua CK, et al. An update on natural compounds in the remedy of diabetes mellitus: A systematic review. J Tradit Complement Med 2018; 8(3): 361-76.
[http://dx.doi.org/10.1016/j.jtcme.2017.08.012] [PMID: 29992107]
[39]
Kim C, Kim B. Anti-cancer natural products and their bioactive compounds inducing er stress-mediated apoptosis: A review. Nutrients 2018; 10(8): 1021.
[http://dx.doi.org/10.3390/nu10081021] [PMID: 30081573]
[40]
Huntley A, Ernst E. Herbal medicines for asthma: A systematic review. Thorax 2000; 55(11): 925-9.
[http://dx.doi.org/10.1136/thorax.55.11.925] [PMID: 11050261]
[41]
Hong M, Song Y, Li X. Effects and mechanisms of actions of Chinese herbal medicines for asthma. Chin J Integr Med 2011; 17(7): 483-91.
[http://dx.doi.org/10.1007/s11655-011-0780-5] [PMID: 21725872]
[42]
Shergis JL, Wu L, Zhang AL, Guo X, Lu C, Xue CC. Herbal medicine for adults with asthma: A systematic review. J Asthma 2016; 53(6): 650-9.
[http://dx.doi.org/10.3109/02770903.2015.1101473] [PMID: 27172294]
[43]
Liu F, Xuan NX, Ying SM, Li W, Chen ZH, Shen HH. Herbal medicines for asthmatic inflammation: From basic researches to clinical applications. Mediators Inflamm 2016; 2016: 1-12.
[http://dx.doi.org/10.1155/2016/6943135] [PMID: 27478309]
[44]
Guo R, Pittler MH, Ernst E. Herbal medicines for the treatment of allergic rhinitis: A systematic review. Ann Allergy Asthma Immunol 2007; 99(6): 483-95.
[http://dx.doi.org/10.1016/S1081-1206(10)60375-4] [PMID: 18219828]
[45]
Singh BB, Khorsan R, Vinjamury SP, Der-Martirosian C, Kizhakkeveettil A, Anderson TM. Herbal treatments of asthma: A systematic review. J Asthma 2007; 44(9): 685-98.
[http://dx.doi.org/10.1080/02770900701247202] [PMID: 17994396]
[46]
Patrignani F, Prasad S, Novakovic M, Marin PD, Bukvicki D. Lamiaceae in the treatment of cardiovascular diseases. Front Biosci 2021; 26(4): 612-43.
[http://dx.doi.org/10.2741/4909] [PMID: 33049685]
[47]
Newman DJ, Cragg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012; 75(3): 311-35.
[http://dx.doi.org/10.1021/np200906s] [PMID: 22316239]
[48]
Sim LY, Abd Rani NZ, Husain K. Lamiaceae: An Insight on Their Anti-Allergic Potential and Its Mechanisms of Action. Front Pharmacol 2019; 10: 677.
[http://dx.doi.org/10.3389/fphar.2019.00677] [PMID: 31275149]
[49]
He J, Hu XP, Zeng Y, et al. Advanced research on acteoside for chemistry and bioactivities. J Asian Nat Prod Res 2011; 13(5): 449-64.
[http://dx.doi.org/10.1080/10286020.2011.568940] [PMID: 21534045]
[50]
Lee JH, Lee JY, Kang HS, et al. The effect of acteoside on histamine release and arachidonic acid release in RBL-2H3 mast cells. Arch Pharm Res 2006; 29(6): 508-13.
[http://dx.doi.org/10.1007/BF02969425] [PMID: 16833020]
[51]
Hayashi K, Nagamatsu T, Ito M, Hattori T, Suzuki Y. Acteoside, a component of Stachys sieboldii MIQ, may be a promising antinephritic agent (2): Effect of acteoside on leukocyte accumulation in the glomeruli of nephritic rats. Jpn J Pharmacol 1994; 66(1): 47-52.
[http://dx.doi.org/10.1254/jjp.66.47] [PMID: 7532244]
[52]
Murata T, Sasaki K, Sato K, et al. Matrix Metalloproteinase-2 Inhibitors from Clinopodium chinense var. parviflorum. J Nat Prod 2009; 72(8): 1379-84.
[http://dx.doi.org/10.1021/np800781t] [PMID: 19711986]
[53]
Murata T, Watahiki M, Tanaka Y, Miyase T, Yoshizaki F. Hyaluronidase inhibitors from Takuran, Lycopus lucidus. Chem Pharm Bull (Tokyo) 2010; 58(3): 394-7.
[http://dx.doi.org/10.1248/cpb.58.394] [PMID: 20190448]
[54]
Popoola O, Elbagory A, Ameer F, Hussein A. Marrubiin. Molecules 2013; 18(8): 9049-60.
[http://dx.doi.org/10.3390/molecules18089049] [PMID: 23899837]
[55]
Stulzer HK, Tagliari MP, Zampirolo JA, Cechinel-Filho V, Schlemper V. Antioedematogenic effect of marrubiin obtained from Marrubium vulgare. J Ethnopharmacol 2006; 108(3): 379-84.
[http://dx.doi.org/10.1016/j.jep.2006.05.023] [PMID: 16846706]
[56]
Braunersreuther V, Pellieux C, Pelli G, et al. Chemokine CCL5/RANTES inhibition reduces myocardial reperfusion injury in atherosclerotic mice. J Mol Cell Cardiol 2010; 48(4): 789-98.
[http://dx.doi.org/10.1016/j.yjmcc.2009.07.029] [PMID: 19665464]
[57]
Mnonopi N, Levendal RA, Davies-Coleman MT, Frost CL. The cardioprotective effects of marrubiin, a diterpenoid found in Leonotis leonurus extracts. J Ethnopharmacol 2011; 138(1): 67-75.
[http://dx.doi.org/10.1016/j.jep.2011.08.041] [PMID: 21893184]
[58]
Mnonopi N, Levendal RA, Mzilikazi N, Frost CL. Marrubiin, a constituent of Leonotis leonurus, alleviates diabetic symptoms. Phytomedicine 2012; 19(6): 488-93.
[http://dx.doi.org/10.1016/j.phymed.2011.12.008] [PMID: 22326550]
[59]
Aćimović M, Jeremić K, Salaj N, et al. Marrubium vulgare L.: A Phytochemical and pharmacological overview. Molecule 2020; 25: 2898.
[60]
Hitl M, Kladar N. Gavarić N, Božin B. Rosmarinic acid–human pharmacokinetics and health benefits. Planta Med 2021; 87(4): 273-82.
[http://dx.doi.org/10.1055/a-1301-8648] [PMID: 33285594]
[61]
Colica C, Di Renzo L, Aiello V, De Lorenzo A, Abenavoli L. Rosmarinic acid as potential anti-inflammatory agent. Rev Recent Clin Trials 2018; 13(4): 240-2.
[http://dx.doi.org/10.2174/157488711304180911095818] [PMID: 30328397]
[62]
Scheckel KA, Degner SC, Romagnolo DF. Rosmarinic acid antagonizes activator protein-1-dependent activation of cyclooxygenase-2 expression in human cancer and nonmalignant cell lines. J Nutr 2008; 138(11): 2098-105.
[http://dx.doi.org/10.3945/jn.108.090431] [PMID: 18936204]
[63]
Gamaro GD, Suyenaga E, Borsoi M, Lermen J, Pereira P, Ardenghi P. Effect of rosmarinic and caffeic acids on inflammatory and nociception process in rats. ISRN Pharmacol 2011; 2011: 1-6.
[http://dx.doi.org/10.5402/2011/451682] [PMID: 22084714]
[64]
Kapoor Y, Kumar K. Structural and clinical impact of anti-allergy agents: An overview. Bioorg Chem 2020; 94: 103351.
[http://dx.doi.org/10.1016/j.bioorg.2019.103351] [PMID: 31668464]
[65]
Laha A, Bandopadhyay R, Panja AS. Structural phylogeny of different allergens may reveal common epitopic footprint. Protein Pept Lett 2021; 28(10): 1099-107.
[http://dx.doi.org/10.2174/0929866528666210622145710] [PMID: 34161203]
[66]
Burley SK, Bhikadiya C, Bi C, et al. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res 2021; 49(D1): D437-51.
[http://dx.doi.org/10.1093/nar/gkaa1038] [PMID: 33211854]
[67]
Kurisu G. Fifty years of protein data bank in the journal of biochemistry. J Biochem 2022; 171(1): 3-11.
[http://dx.doi.org/10.1093/jb/mvab133] [PMID: 34865074]
[68]
Mari A, Rasi C, Palazzo P, Scala E. Allergen databases: Current status and perspectives. Curr Allergy Asthma Rep 2009; 9(5): 376-83.
[http://dx.doi.org/10.1007/s11882-009-0055-9] [PMID: 19671381]
[69]
Kim S, Shoemaker BA, Bolton EE, Bryant SH. Finding potential multitarget ligands using PubChem. Methods Mol Biol 2018; 1825: 63-91.
[http://dx.doi.org/10.1007/978-1-4939-8639-2_2] [PMID: 30334203]
[70]
Xiong G, Wu Z, Yi J, et al. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic Acids Res 2021; 49(W1): W5-W14.
[http://dx.doi.org/10.1093/nar/gkab255] [PMID: 33893803]
[71]
Dong J, Wang NN, Yao ZJ, et al. ADMETlab: A platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminform 2018; 10(1): 29.
[http://dx.doi.org/10.1186/s13321-018-0283-x] [PMID: 29943074]
[72]
Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comput Chem 2009; 30(16): 2785-91.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[73]
Morris GM, Huey R, Olson AJ. Using AutoDock for ligand-receptor docking. Curr Protoc Bioinformatics 2008.
[http://dx.doi.org/10.1002/0471250953.bi0814s24]
[74]
Ahmad MI, Potshangbam AM, Javed M, Ahmad M. Studies on conformational changes induced by binding of pendimethalin with human serum albumin. Chemosphere 2020; 243: 125270.
[http://dx.doi.org/10.1016/j.chemosphere.2019.125270] [PMID: 31726261]
[75]
Bjelkmar P, Larsson P, Cuendet MA, Hess B, Lindahl E. Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J Chem Theory Comput 2010; 6(2): 459-66.
[http://dx.doi.org/10.1021/ct900549r] [PMID: 26617301]
[76]
GROMACS development team. Gromacs documentation release 2021.
[77]
Sinelnikova A, Spoel D. NMR refinement and peptide folding using the GROMACS software. J Biomol NMR 2021; 75(4-5): 143-9.
[http://dx.doi.org/10.1007/s10858-021-00363-z] [PMID: 33778935]
[78]
Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: Fast, flexible, and free. J Comput Chem 2005; 26(16): 1701-18.
[http://dx.doi.org/10.1002/jcc.20291] [PMID: 16211538]
[79]
Grace Development Team. GRACE. 2008. Available from: https://plasma-gate.weizmann.ac.il/Grace/
[80]
Attique S, Hassan M, Usman M, et al. A molecular docking approach to evaluate the pharmacological properties of natural and synthetic treatment candidates for use against hypertension. Int J Environ Res Public Health 2019; 16(6): 923.
[http://dx.doi.org/10.3390/ijerph16060923] [PMID: 30875817]
[81]
Abdullahi M, Adeniji SE. In-silico molecular docking and ADME/pharmacokinetic prediction studies of some novel carboxamide derivatives as anti-tubercular agents. Chem Africa 2020; 3: 989-1000.
[82]
Umar AB, Uzairu A, Shallangwa GA, Uba S. Design of potential anti-melanoma agents against SK-MEL-5 cell line using QSAR modeling and molecular docking methods. SN Appl Sci 2020; 2: 815.
[83]
Yang ZY, Yang ZJ, Lu AP, Hou TJ, Cao DS. Scopy: An integrated negative design python library for desirable HTS/VS database design. Brief Bioinform 2021; 22: bbaa194.
[84]
Papadatos G, Davies M, Dedman N, et al. SureChEMBL: A large-scale, chemically annotated patent document database. Nucleic Acids Res 2016; 44(D1): D1220-8.
[http://dx.doi.org/10.1093/nar/gkv1253] [PMID: 26582922]
[85]
Bickerton GR, Paolini GV, Besnard J, Muresan S, Hopkins AL. Quantifying the chemical beauty of drugs. Nat Chem 2012; 4(2): 90-8.
[http://dx.doi.org/10.1038/nchem.1243] [PMID: 22270643]
[86]
Baell JB, Holloway GA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 2010; 53(7): 2719-40.
[http://dx.doi.org/10.1021/jm901137j] [PMID: 20131845]
[87]
Dhorajiwala T, Halder S, Samant L. Comparative in silico molecular docking analysis of l-threonine-3-dehydrogenase, a protein target against african trypanosomiasis using selected phytochemicals. Journal of Applied Biotechnology Reports 2019; 6(3): 101-8.
[http://dx.doi.org/10.29252/JABR.06.03.04]
[88]
Bilò MB, Martini M, Tontini C, Corsi A, Antonicelli L. Anaphylaxis. Eur Ann Allergy Clin Immunol 2020; 53(1): 4-17.
[http://dx.doi.org/10.23822/EurAnnACI.1764-1489.158] [PMID: 32550734]
[89]
Kanagaratham C, El Ansari YS, Lewis OL, Oettgen HC. IgE and IgG antibodies as regulators of mast cell and basophil functions in food allergy. Front Immunol 2020; 11: 603050.
[http://dx.doi.org/10.3389/fimmu.2020.603050] [PMID: 33362785]
[90]
Rida T, Ahmad S, Ullah A, et al. Pan-genome analysis of oral bacterial pathogens to predict a potential novel multi-epitopes vaccine candidate. Int J Environ Res Public Health 2022; 19(14): 8408.
[http://dx.doi.org/10.3390/ijerph19148408] [PMID: 35886259]
[91]
Basu A, Basak P, Sarkar A. Molecular-docking-based anti-allergic drug design. In: Dastmalchi S, Hamzeh-Mivehroud M, Sokouti B, Eds. applied case studies and solutions in molecular docking-based drug design IGI Global. 2016; pp. 232-48.
[http://dx.doi.org/10.4018/978-1-5225-0362-0.ch009]
[92]
Alshabrmi FM, Alrumaihi F, Alrasheedi SF, Al-Megrin WAI, Almatroudi A, Allemailem KS. An in-silico investigation to design a multi-epitopes vaccine against multi-drug resistant Hafnia alvei. Vaccines (Basel) 2022; 10(7): 1127.
[http://dx.doi.org/10.3390/vaccines10071127] [PMID: 35891291]
[93]
Chebib S, Schwab W. Microscale thermophoresis reveals oxidized glutathione as high-affinity ligand of Mal d 1. Foods 2021; 10(11): 2771.
[http://dx.doi.org/10.3390/foods10112771] [PMID: 34829051]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy