Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

General Review Article

Prediction of Cancer Treatment Using Advancements in Machine Learning

Author(s): Arun Kumar Singh, Jingjing Ling* and Rishabha Malviya*

Volume 18, Issue 3, 2023

Published on: 25 October, 2022

Page: [364 - 378] Pages: 15

DOI: 10.2174/1574892818666221018091415

Price: $65

Abstract

Many cancer patients die due to their treatment failing because of their disease's resistance to chemotherapy and other forms of radiation therapy. Resistance may develop at any stage of therapy, even at the beginning. Several factors influence current therapy, including the type of cancer and the existence of genetic abnormalities. The response to treatment is not always predicted by the existence of a genetic mutation and might vary for various cancer subtypes. It is clear that cancer patients must be assigned a particular treatment or combination of drugs based on prediction models. Preliminary studies utilizing artificial intelligence-based prediction models have shown promising results. Building therapeutically useful models is still difficult despite enormous increases in computer capacity due to the lack of adequate clinically important pharmacogenomics data. Machine learning is the most widely used branch of artificial intelligence. Here, we review the current state in the area of using machine learning to predict treatment response. In addition, examples of machine learning algorithms being employed in clinical practice are offered.

[1]
Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J 2015; 13: 8-17.
[http://dx.doi.org/10.1016/j.csbj.2014.11.005 ] [PMID: 25750696]
[2]
Sharma A, Rani R. A systematic review of applications of machine learning in cancer prediction and diagnosis. Arch Comput Methods Eng 2021; 28(7): 4875-96.
[http://dx.doi.org/10.1007/s11831-021-09556-z]
[3]
Hamamoto R, Suvarna K, Yamada M. et al. Application of artificial intelligence technology in oncology: towards the establishment of precision medicine. Cancers 2020; 12: 3532.
[http://dx.doi.org/10.3390/cancers12123532]
[4]
Putora PM, Baudis M, Beadle R, El Naqa I, Giordano FA, Nicolay NH. Oncology informatics: status quo and outlook. Oncology 2020; 98(S6): 329-1.
[5]
Shimizu H, Nakayama KI. Artificial intelligence in oncology. Cancer Sci 2020; 111(5): 1452-60.
[http://dx.doi.org/10.1111/cas.14377 ] [PMID: 32133724]
[6]
Huang S, Yang J, Fong S, Zhao Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges. Cancer Lett 2020; 471: 61-71.
[http://dx.doi.org/10.1016/j.canlet.2019.12.007 ] [PMID: 31830558]
[7]
Nardini C. Machine learning in oncology: a review. Ecancer Med Sci 2020; 14: 1065.
[http://dx.doi.org/10.3332/ecancer.2020.1065 ] [PMID: 32728381]
[8]
Filipp FV. Opportunities for artificial intelligence in advancing precision medicine. Curr Genet Med Rep 2019; 7(4): 208-13.
[http://dx.doi.org/10.1007/s40142-019-00177-4 ] [PMID: 31871830]
[9]
Azuaje F. Artificial intelligence for precision oncology: beyond patient stratification. NPJ Precis Oncol 2019; 3(1): 6.
[http://dx.doi.org/10.1038/s41698-019-0078-1 ] [PMID: 30820462]
[10]
Patel SK, George B, Rai V. Artificial intelligence to decode cancer mechanism: beyond patient stratification for precision oncology. Front Pharmacol 2020; 11: 1177.
[http://dx.doi.org/10.3389/fphar.2020.01177 ] [PMID: 32903628]
[11]
Singer J, Irmisch A, Ruscheweyh HJ. et al. Bioinformatics for precision oncology. Brief Bioinform 2019; 20(3): 778-88.
[http://dx.doi.org/10.1093/bib/bbx143 ] [PMID: 29272324]
[12]
Nicora G, Vitali F, Dagliati A, Geifman N, Bellazzi R. Integrated multi-omics analyses in oncology: a review of machine learning methods and tools. Front Oncol 2020; 10: 1030.
[http://dx.doi.org/10.3389/fonc.2020.01030 ] [PMID: 32695678]
[13]
Bera K, Schalper KA, Rimm DL, Velcheti V, Madabhushi A. Artificial intelligence in digital pathology — new tools for diagnosis and pre-cision oncology. Nat Rev Clin Oncol 2019; 16(11): 703-15.
[http://dx.doi.org/10.1038/s41571-019-0252-y ] [PMID: 31399699]
[14]
Grothen AE, Tennant B, Wang C. et al. Application of artificial intelligence methods to pharmacy data for cancer surveillance and epide-miology research: a systematic review. JCO Clin Cancer Inform 2020; 4(4): 1051-8.
[http://dx.doi.org/10.1200/CCI.20.00101 ] [PMID: 33197205]
[15]
Biswas N, Chakrabarti S. Artificial Intelligence (AI)-based systems biology approaches in multi-omics data analysis of cancer. Front Oncol 2020; 10: 588221.
[http://dx.doi.org/10.3389/fonc.2020.588221 ] [PMID: 33154949]
[16]
Chiu YC, Chen HIH, Gorthi A. et al. Deep learning of pharmacogenomics resources: moving towards precision oncology. Brief Bioinform 2020; 21(6): 2066-83.
[http://dx.doi.org/10.1093/bib/bbz144 ] [PMID: 31813953]
[17]
Adam G, Rampášek L, Safikhani Z, Smirnov P, Haibe-Kains B, Goldenberg A. Machine learning approaches to drug response prediction: challenges and recent progress. NPJ Precis Oncol 2020; 4(1): 19.
[http://dx.doi.org/10.1038/s41698-020-0122-1 ] [PMID: 32566759]
[18]
Cuocolo R, Caruso M, Perillo T, Ugga L, Petretta M. Machine learning in oncology: A clinical appraisal. Cancer Lett 2020; 481: 55-62.
[http://dx.doi.org/10.1016/j.canlet.2020.03.032 ] [PMID: 32251707]
[19]
Tanoli Z, Vähä-Koskela M, Aittokallio T. Artificial intelligence, machine learning, and drug repurposing in cancer. Expert Opin Drug Discov 2021; 16(9): 977-89.
[http://dx.doi.org/10.1080/17460441.2021.1883585 ] [PMID: 33543671]
[20]
Rauschert S, Raubenheimer K, Melton PE, Huang RC. Machine learning and clinical epigenetics: a review of challenges for diagnosis and classification. Clin Epigenet 2020; 12: 51.
[21]
Li A, Bergan RC. Clinical trial design: past, present, and future in the context of big data and precision medicine. Cancer 2020; 126(22): 4838-46.
[PMID: 32931022]
[22]
Fountzilas E, Tsimberidou AM. Overview of precision oncology trials: challenges and opportunities. Expert Rev Clin Pharmacol 2018; 11(8): 797-804.
[http://dx.doi.org/10.1080/17512433.2018.1504677 ] [PMID: 30044653]
[23]
Li X, Warner JL. A review of precision oncology knowledgebases for determining the clinical actionability of genetic variants. Front Cell Dev Biol 2020; 8: 48.
[http://dx.doi.org/10.3389/fcell.2020.00048 ] [PMID: 32117976]
[24]
Barretina J, Caponigro G, Stransky N. et al. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483(7391): 603-7.
[http://dx.doi.org/10.1038/nature11003 ] [PMID: 22460905]
[25]
Ghandi M, Huang FW, Jané-Valbuena J. et al. Next-generation characterization of the Cancer Cell Line Encyclopedia. Nature 2019; 569(7757): 503-8.
[http://dx.doi.org/10.1038/s41586-019-1186-3 ] [PMID: 31068700]
[26]
Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 2006; 6(10): 813-23.
[http://dx.doi.org/10.1038/nrc1951 ] [PMID: 16990858]
[27]
Iorio F, Knijnenburg TA, Vis DJ. et al. A landscape of pharmacogenomic interactions in cancer. Cell 2016; 166(3): 740-54.
[http://dx.doi.org/10.1016/j.cell.2016.06.017 ] [PMID: 27397505]
[28]
Garnett MJ, Edelman EJ, Heidorn SJ. et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012; 483(7391): 570-5.
[http://dx.doi.org/10.1038/nature11005 ] [PMID: 22460902]
[29]
Haverty PM, Lin E, Tan J. et al. Reproducible pharmacogenomic profiling of cancer cell line panels. Nature 2016; 533(7603): 333-7.
[http://dx.doi.org/10.1038/nature17987 ] [PMID: 27193678]
[30]
Basu A, Bodycombe NE, Cheah JH. et al. An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 2013; 154(5): 1151-61.
[http://dx.doi.org/10.1016/j.cell.2013.08.003 ] [PMID: 23993102]
[31]
Seashore-Ludlow B, Rees MG, Cheah JH. et al. Harnessing connectivity in a large-scale small-molecule sensitivity dataset. Cancer Discov 2015; 5(11): 1210-23.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0235 ] [PMID: 26482930]
[32]
Smirnov P, Kofia V, Maru A. et al. PharmacoDB: an integrative database for mining in vitro anticancer drug screening studies. Nucleic Acids Res 2018; 46(D1): D994-D1002.
[http://dx.doi.org/10.1093/nar/gkx911 ] [PMID: 30053271]
[33]
Rajapakse VN, Luna A, Yamade M. et al. CellMinerCDB for integrative cross-database genomics and pharmacogenomics analyses of cancer cell lines. iScience 2018; 10: 247-64.
[http://dx.doi.org/10.1016/j.isci.2018.11.029 ] [PMID: 30553813]
[34]
Luna A, Elloumi F, Varma S. et al. CellMiner Cross-Database (CellMinerCDB) version 1.2: Exploration of patient-derived cancer cell line pharmacogenomics. Nucleic Acids Res 2021; 49(D1): D1083-93.
[http://dx.doi.org/10.1093/nar/gkaa968 ] [PMID: 33196823]
[35]
Zagidullin B, Aldahdooh J, Zheng S. et al. DrugComb: an integrative cancer drug combination data portal. Nucleic Acids Res 2019; 47(W1): W43.-51.
[http://dx.doi.org/10.1093/nar/gkz337 ] [PMID: 31066443]
[36]
Liu H, Zhang W, Zou B, Wang J, Deng Y, Deng L. DrugCombDB: a comprehensive database of drug combinations toward the discovery of combinatorial therapy. Nucleic Acids Res 2020; 48(D1): D871-81.
[PMID: 31665429]
[37]
Conte N, Mason JC, Halmagyi C. et al. PDX Finder: A portal for patient-derived tumor xenograft model discovery. Nucleic Acids Res 2019; 47(D1): D1073-9.
[http://dx.doi.org/10.1093/nar/gky984 ] [PMID: 30535239]
[38]
Townsend EC, Murakami MA, Christodoulou A. et al. The public repository of xenografts enables discovery and randomized phase II-like trials in mice. Cancer Cell 2016; 29(4): 574-86.
[http://dx.doi.org/10.1016/j.ccell.2016.03.008 ] [PMID: 27070704]
[39]
PDMR. NCI’s patient-derived models repository. 2021. Available from: https://pdmr.cancer.gov/
[40]
Hidalgo M, Amant F, Biankin AV. et al. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 2014; 4(9): 998-1013.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0001 ] [PMID: 25185190]
[41]
Gao H, Korn JM, Ferretti S. et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med 2015; 21(11): 1318-25.
[http://dx.doi.org/10.1038/nm.3954 ] [PMID: 26479923]
[42]
Mer AS, Ba-Alawi W, Smirnov P. et al. Integrative pharmacogenomics analysis of patient-derived xenografts. Cancer Res 2019; 79(17): 4539-50.
[43]
Klijn C, Durinck S, Stawiski EW. et al. A comprehensive transcriptional portrait of human cancer cell lines. Nat Biotechnol 2015; 33(3): 306-12.
[http://dx.doi.org/10.1038/nbt.3080 ] [PMID: 25485619]
[44]
Greshock J, Bachman KE, Degenhardt YY. et al. Molecular target class is predictive of in vitro response profile. Cancer Res 2010; 70(9): 3677-86.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3788 ] [PMID: 20406975]
[45]
Mpindi JP, Yadav B, Östling P. et al. Consistency in drug response profiling. Nature 2016; 540(7631): E5-6.
[http://dx.doi.org/10.1038/nature20171 ] [PMID: 27905421]
[46]
Haibe-Kains B, El-Hachem N, Birkbak NJ. et al. Inconsistency in large pharmacogenomic studies. Nature 2013; 504(7480): 389-93.
[http://dx.doi.org/10.1038/nature12831 ] [PMID: 24284626]
[47]
Cancer Cell Line Encyclopedia Consortium; Genomics of Drug Sensitivity in Cancer Consortium. Pharmacogenomic agreement between two cancer cell line data sets. Nature 2015; 528(7580): 84-7.
[http://dx.doi.org/10.1038/nature15736 ] [PMID: 26570998]
[48]
Safikhani Z, Smirnov P, Thu KL. et al. Gene isoforms as expression-based biomarkers predictive of drug response in vitro. Nat Commun 2017; 8(1): 1126.
[http://dx.doi.org/10.1038/s41467-017-01153-8 ] [PMID: 29066719]
[49]
Costello JC, Heiser LM, Georgii E. et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol 2014; 32(12): 1202-12.
[http://dx.doi.org/10.1038/nbt.2877 ] [PMID: 24880487]
[50]
Jang IS, Neto EC, Guinney J, Friend SH, Margolin AA. Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. Pac Symp Biocomput 2014; 2014: 63-74.
[PMID: 24297534]
[51]
Ali M, Aittokallio T. Machine learning and feature selection for drug response prediction in precision oncology applications. Biophys Rev 2019; 11(1): 31-9.
[http://dx.doi.org/10.1007/s12551-018-0446-z ] [PMID: 30097794]
[52]
Koras K, Juraeva D, Kreis J, Mazur J, Staub E, Szczurek E. Feature selection strategies for drug sensitivity prediction. Sci Rep 2020; 10(1): 9377.
[http://dx.doi.org/10.1038/s41598-020-65927-9 ] [PMID: 32523056]
[53]
Ali M, Khan SA, Wennerberg K, Aittokallio T. Global proteomics profiling improves drug sensitivity prediction: results from a multi-omics, pan-cancer modeling approach. Bioinformatics 2018; 34(8): 1353-62.
[http://dx.doi.org/10.1093/bioinformatics/btx766 ] [PMID: 29186355]
[54]
Papillon-Cavanagh S, De Jay N, Hachem N. et al. Comparison and validation of genomic predictors for anticancer drug sensitivity. J Am Med Inform Assoc 2013; 20(4): 597-602.
[http://dx.doi.org/10.1136/amiajnl-2012-001442 ] [PMID: 23355484]
[55]
Stetson LC, Pearl T, Chen Y, Barnholtz-Sloan JS. Computational identification of multi-omic correlates of anticancer therapeutic response. BMC Genomics 2014; 15(S7): S2.
[http://dx.doi.org/10.1186/1471-2164-15-S7-S2 ] [PMID: 25573145]
[56]
Ding C, Peng H. Minimum redundancy feature selection from microarray gene expression data. J Bioinform Comput Biol 2005; 3(2): 185-205.
[http://dx.doi.org/10.1142/S0219720005001004 ] [PMID: 15852500]
[57]
Lin TH, Li HT, Tsai KC. Implementing the Fisher’s discriminant ratio in a k-means clustering algorithm for feature selection and data set trimming. J Chem Inf Comput Sci 2004; 44(1): 76-87.
[http://dx.doi.org/10.1021/ci030295a ] [PMID: 14741013]
[58]
Nakajo M, Jinguji M, Tani A. et al. Application of a machine learning approach to characterization of liver function using 99mTc-GSA SPECT/CT. Abdom Radiol 2021; 46(7): 3184-92.
[http://dx.doi.org/10.1007/s00261-021-02985-1 ] [PMID: 33675380]
[59]
Rampášek L, Hidru D, Smirnov P, Haibe-Kains B, Goldenberg A. Dr.VAE: improving drug response prediction via modeling of drug per-turbation effects. Bioinformatics 2019; 35(19): 3743-51.
[http://dx.doi.org/10.1093/bioinformatics/btz158 ] [PMID: 30850846]
[60]
Chiu YC, Chen HIH, Zhang T. et al. Predicting drug response of tumors from integrated genomic profiles by deep neural networks. BMC Med Genomics 2019; 12(S1): 18.
[http://dx.doi.org/10.1186/s12920-018-0460-9 ] [PMID: 30704458]
[61]
Li M, Wang Y, Zheng R. et al. DeepDSC: a deep learning method to predict drug sensitivity of cancer cell lines. IEEE/ACM Trans. IEEE/ACM Trans Comput Biol Bioinformatics 2021; 18(2): 575-82.
[http://dx.doi.org/10.1109/TCBB.2019.2919581 ] [PMID: 31150344]
[62]
Kuenzi BM, Park J, Fong SH, Sanchez KS, Lee J, Kreisberg JF. et al. Predicting drug response and synergy using a deep learning model of human cancer cells. Cancer Cell 2020; 38(672-684): e676.
[http://dx.doi.org/10.1016/j.ccell.2020.09.014]
[63]
Liu X, Li N, Liu S. et al. Normalization methods for the analysis of unbalanced transcriptome data: a review. Front Bioeng Biotechnol 2019; 7: 358.
[http://dx.doi.org/10.3389/fbioe.2019.00358 ] [PMID: 32039167]
[64]
Reinders C, Ackermann H, Yang MY, Rosenhahn B. Learning convolutional neural networks for object detection with very little training data.In: Multimodal Scene UnderstandingMassachusetts. Academic Press 2019; pp. 65-100.
[http://dx.doi.org/10.1016/B978-0-12-817358-9.00010-X]]
[65]
Jonsson A. Deep reinforcement learning in medicine. Kidney Dis 2019; 5(1): 18-22.
[http://dx.doi.org/10.1159/000492670 ] [PMID: 30815460]
[66]
Triguero I, García S, Herrera F. Self-labeled techniques for semi-supervised learning: taxonomy, software and empirical study. Knowl Inf Syst 2015; 42(2): 245-84.
[http://dx.doi.org/10.1007/s10115-013-0706-y]
[67]
Podgorelec V, Kokol P, Stiglic B, Rozman I. Decision trees: an overview and their use in medicine. J Med Syst 2002; 26(5): 445-63.
[http://dx.doi.org/10.1023/A:1016409317640 ] [PMID: 12182209]
[68]
Breiman L. Random forests. Mach Learn 2001; 45(1): 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[69]
Freund Y, Schapire RE. A desicion-theoretic generalization of online learning and an application to boosting. Computational Learning Theory. EuroCOLT 1995; 904: 23-37.
[70]
Friedman J, Hastie T, Tibshirani R. Special invited paper. Additive logistic regression: a statistical view of boosting. Ann Stat 2000; 28: 337-74.
[http://dx.doi.org/10.1214/aos/1016218223]
[71]
Chen T, Guestrin C. XGBoost: A scalable tree boosting system. arXiv 2016.1603.02754v3, 2016.
[http://dx.doi.org/10.1145/2939672.2939785]
[72]
Müller KR, Mika S, Rätsch G, Tsuda K, Schölkopf B. An introduction to kernel-based learning algorithms. IEEE Trans Neural Netw 2001; 12(2): 181-201.
[http://dx.doi.org/10.1109/72.914517 ] [PMID: 18244377]
[73]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436-44.
[http://dx.doi.org/10.1038/nature14539 ] [PMID: 26017442]
[74]
Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv 2017; 1609.02907v4.
[75]
Sun M, Zhao S, Gilvary C, Elemento O, Zhou J, Wang F. Graph convolutional networks for computational drug development and discovery. Brief Bioinform 2020; 21(3): 919-35.
[http://dx.doi.org/10.1093/bib/bbz042 ] [PMID: 31155636]
[76]
van ’t Veer LJ, Dai H, van de Vijver MJ. et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415(6871): 530-6.
[77]
Kaklamani V. A genetic signature can predict prognosis and response to therapy in breast cancer: oncotype DX. Expert Rev Mol Diagn 2006; 6(6): 803-9.
[PMID: 17140367]
[78]
Parker JS, Mullins M, Cheang MCU. et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009; 27(8): 1160-7.
[http://dx.doi.org/10.1200/JCO.2008.18.1370 ] [PMID: 19204204]
[79]
Geeleher P, Cox NJ, Huang RS. Clinical drug response can be predicted using baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol 2014; 15(3): R47.
[http://dx.doi.org/10.1186/gb-2014-15-3-r47 ] [PMID: 24580837]
[80]
Menden MP, Iorio F, Garnett M. et al. Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS One 2013; 8(4): e61318.
[http://dx.doi.org/10.1371/journal.pone.0061318 ] [PMID: 23646105]
[81]
Cortés-Ciriano I, van Westen GJ, Bouvier G. et al. Improved large-scale prediction of growth inhibition patterns using the NCI60 cancer cell line panel. Bioinformatics 2016; 32(1): 85-95.
[PMID: 26351271]
[82]
Zhang N, Wang H, Fang Y. et al. Predicting anticancer drug responses using a dual-layer integrated cell line-drug network model. PLoS Comput Biol 2015; 11(9): e1004498.
[83]
Zhang F, Wang M, Xi J, Yang J, Li A. A novel heterogeneous network-based method for drug response prediction in cancer cell lines. Sci Rep 2018; 8(1): 3355.
[http://dx.doi.org/10.1038/s41598-018-21622-4 ] [PMID: 29463808]
[84]
Gönen M, Margolin AA. Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning. Bioinformatics 2014; 30(17): i556-63.
[http://dx.doi.org/10.1093/bioinformatics/btu464 ] [PMID: 25161247]
[85]
Ammad-ud-din M, Khan SA, Wennerberg K, Aittokallio T. Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression. Bioinformatics 2017; 33(14): i359-68.
[http://dx.doi.org/10.1093/bioinformatics/btx266 ] [PMID: 28881998]
[86]
Ammad-ud-din M, Georgii E, Gönen M. et al. Integrative and personalized QSAR analysis in cancer by kernelized Bayesian matrix factor-ization. J Chem Inf Model 2014; 54(8): 2347-59.
[http://dx.doi.org/10.1021/ci500152b ] [PMID: 25046554]
[87]
Lee SI, Celik S, Logsdon BA. et al. A machine learning approach to integrate big data for precision medicine in acute myeloid leukemia. Nat Commun 2018; 9(1): 42.
[http://dx.doi.org/10.1038/s41467-017-02465-5 ] [PMID: 29298978]
[88]
Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep learning applications for predicting pharmacological proper-ties of drugs and drug repurposing using transcriptomic data. Mol Pharm 2016; 13(7): 2524-30.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00248 ] [PMID: 27200455]
[89]
Deng L, Cai Y, Zhang W, Yang W, Gao B, Liu H. Pathway-guided deep neural network toward interpretable and predictive modeling of drug sensitivity. J Chem Inf Model 2020; 60(10): 4497-505.
[http://dx.doi.org/10.1021/acs.jcim.0c00331 ] [PMID: 32804489]
[90]
Sakellaropoulos T, Vougas K, Narang S. et al. A deep learning framework for predicting response to therapy in cancer. Cell Rep 2019; 29(11): 3367-3373.e4.
[http://dx.doi.org/10.1016/j.celrep.2019.11.017 ] [PMID: 31825821]
[91]
Chang Y, Park H, Yang HJ. et al. Cancer Drug Response Profile scan (CDRscan): A deep learning model that predicts drug effectiveness from cancer genomic signature. Sci Rep 2018; 8(1): 8857.
[http://dx.doi.org/10.1038/s41598-018-27214-6 ] [PMID: 29891981]
[92]
Sharifi-Noghabi H, Zolotareva O, Collins CC, Ester M. MOLI: multi-omics late integration with deep neural networks for drug response prediction. Bioinformatics 2019; 35(14): i501-9.
[http://dx.doi.org/10.1093/bioinformatics/btz318 ] [PMID: 31510700]
[93]
Koren Y, Bell R, Volinsky C. Matrix factorization techniques for recommender systems. Computer 2009; 42(8): 30-7.
[http://dx.doi.org/10.1109/MC.2009.263]
[94]
Suphavilai C, Bertrand D, Nagarajan N. Predicting cancer drug response using a recommender system. Bioinformatics 2018; 34(22): 3907-14.
[http://dx.doi.org/10.1093/bioinformatics/bty452 ] [PMID: 29868820]
[95]
Rendle S. Factorization machines. IEEE 2010 International Conference on Data Mining IEEE. 995-1000.
[http://dx.doi.org/10.1109/ICDM.2010.127]
[96]
Blondel M, Fujino A, Ueda N, Ishihata M. Higher-order factorization machines. NIPS’16: Proceedings of the 30th International Confer-ence on Neural Information Processing Systems. 2016 Red Hook, NY, United States. 3351-9.
[97]
Way GP, Greene CS. Extracting a biologically relevant latent space from cancer transcriptomes with variational autoencoders. Pac Symp Biocomput 2018; 23: 80-91.
[http://dx.doi.org/10.1142/9789813235533_0008 ] [PMID: 29218871]
[98]
Kingma DP, Welling M. Auto-encoding variational bayes. arXiv 2014; 1312.6114, 2014.
[99]
Dincer AV, Celik S, Hiranuma N. LeeDeepProfile SI. Deep learning of cancer molecular profiles for precision medicine. bioRxiv 278739.2018;
[http://dx.doi.org/10.1101/278739]]
[100]
Shah K, Ahmed M, Kazi JU. The Aurora kinase/β-catenin axis contributes to dexamethasone resistance in leukemia. NPJ Precis Oncol 2021; 5(1): 13.
[http://dx.doi.org/10.1038/s41698-021-00148-5 ] [PMID: 33597638]
[101]
Nachman B, Shih D. Anomaly detection with density estimation. Phys Rev D 2020; 101(7): 075042.
[http://dx.doi.org/10.1103/PhysRevD.101.075042]
[102]
Rogers D, Hahn M. Extended-connectivity fingerprints. J Chem Inf Model 2010; 50(5): 742-54.
[http://dx.doi.org/10.1021/ci100050t ] [PMID: 20426451]
[103]
Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Model 1988; 28(1): 31-6.
[http://dx.doi.org/10.1021/ci00057a005]
[104]
Nguyen TT, Nguyen GTT, Nguyen T, Le DH. Graph convolutional networks for drug response prediction. IEEE/ACM Trans Compu Biol Bioinform 2021; 19(1): 146-54.
[http://dx.doi.org/10.1109/TCBB.2021.3060430]
[105]
Liu P, Li H, Li S, Leung KS. Improving prediction of phenotypic drug response on cancer cell lines using deep convolutional network. BMC Bioinformatics 2019; 20(1): 408.
[http://dx.doi.org/10.1186/s12859-019-2910-6 ] [PMID: 31357929]
[106]
Kim Y, Kim D, Cao B, Carvajal R, Kim M. PDXGEM: patient-derived tumor xenograft-based gene expression model for predicting clinical response to anticancer therapy in cancer patients. BMC Bioinformatics 2020; 21(1): 288.
[http://dx.doi.org/10.1186/s12859-020-03633-z ] [PMID: 32631229]
[107]
Kong J, Lee H, Kim D. et al. Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun 2020; 11(1): 5485.
[http://dx.doi.org/10.1038/s41467-020-19313-8 ] [PMID: 33127883]
[108]
van de Wetering M, Francies HE, Francis JM. et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 2015; 161(4): 933-45.
[http://dx.doi.org/10.1016/j.cell.2015.03.053 ] [PMID: 25957691]
[109]
Lee SH, Hu W, Matulay JT. et al. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 2018; 173(2): 515-528.e17.
[http://dx.doi.org/10.1016/j.cell.2018.03.017 ] [PMID: 29625057]
[110]
He L, Kulesskiy E, Saarela J. et al. Methods for high-throughput drug combination screening and synergy scoring. Methods Mol Biol 2018; 1711: 351-98.
[http://dx.doi.org/10.1007/978-1-4939-7493-1_17 ] [PMID: 29344898]
[111]
Bliss CI. The toxicity of poisons applied jointly. Ann Appl Biol 1939; 26(3): 585-615.
[http://dx.doi.org/10.1111/j.1744-7348.1939.tb06990.x]
[112]
Loewe S. The problem of synergism and antagonism of combined drugs. Arzneimittelforschung 1953; 3(6): 285-90.
[PMID: 13081480]
[113]
Tan X, Hu L, Luquette LJ III. et al. Systematic identification of synergistic drug pairs targeting HIV. Nat Biotechnol 2012; 30(11): 1125-30.
[http://dx.doi.org/10.1038/nbt.2391 ] [PMID: 23064238]
[114]
Yadav B, Wennerberg K, Aittokallio T, Tang J. Searching for drug synergy in complex dose–response landscapes using an interaction potency model. Comput Struct Biotechnol J 2015; 13: 504-13.
[http://dx.doi.org/10.1016/j.csbj.2015.09.001 ] [PMID: 26949479]
[115]
Malyutina A, Majumder MM, Wang W, Pessia A, Heckman CA, Tang J. Drug combination sensitivity scoring facilitates the discovery of synergistic and efficacious drug combinations in cancer. PLOS Comput Biol 2019; 15(5): e1006752.
[http://dx.doi.org/10.1371/journal.pcbi.1006752 ] [PMID: 31107860]
[116]
Di Veroli GY, Fornari C, Wang D. et al. Combenefit: an interactive platform for the analysis and visualization of drug combinations. Bioinformatics 2016; 32(18): 2866-8.
[http://dx.doi.org/10.1093/bioinformatics/btw230 ] [PMID: 27153664]
[117]
Menden MP, Wang D, Mason MJ. et al. Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen. Nat Commun 2019; 10(1): 2674.
[http://dx.doi.org/10.1038/s41467-019-09799-2 ] [PMID: 31209238]
[118]
Sun Y, Sheng Z, Ma C. et al. Combining genomic and network characteristics for extended capability in predicting synergistic drugs for cancer. Nat Commun 2015; 6(1): 8481.
[http://dx.doi.org/10.1038/ncomms9481 ] [PMID: 26412466]
[119]
Roller DG, Axelrod M, Capaldo BJ. et al. Synthetic lethal screening with small-molecule inhibitors provides a pathway to rational combi-nation therapies for melanoma. Mol Cancer Ther 2012; 11(11): 2505-15.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0461 ] [PMID: 22962324]
[120]
Held MA, Langdon CG, Platt JT. et al. Genotype-selective combination therapies for melanoma identified by high-throughput drug screen-ing. Cancer Discov 2013; 3(1): 52-67.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0408 ] [PMID: 23239741]
[121]
Kang Y, Hodges A, Ong E, Roberts W, Piermarocchi C, Paternostro G. Identification of drug combinations containing imatinib for treat-ment of BCR-ABL+ leukemias. PLoS One 2014; 9(7): e102221.
[http://dx.doi.org/10.1371/journal.pone.0102221 ] [PMID: 25029499]
[122]
O’Neil J, Benita Y, Feldman I. et al. An unbiased oncology compound screen to identify novel combination strategies. Mol Cancer Ther 2016; 15(6): 1155-62.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0843 ] [PMID: 26983881]
[123]
Chan GKY, Wilson S, Schmidt S, Moffat JG. Unlocking the potential of high-throughput drug combination assays using acoustic dispens-ing. SLAS Technol 2016; 21(1): 125-32.
[http://dx.doi.org/10.1177/2211068215593759 ] [PMID: 26160862]
[124]
Zhao XM, Iskar M, Zeller G, Kuhn M, van Noort V, Bork P. et al. Prediction of drug combinations by integrating molecular and pharma-cological data. PLoS Comput Biol 2011; 7(12): e1002323.
[125]
Cheng F, Zhao Z. Machine learning-based prediction of drug–drug interactions by integrating drug phenotypic, therapeutic, chemical, and genomic properties. J Am Med Inform Assoc 2014; 21(e2): e278-86.
[http://dx.doi.org/10.1136/amiajnl-2013-002512 ] [PMID: 24644270]
[126]
Yan C, Duan G, Pan Y, Wu FX, Wang J. DDIGIP: predicting drug-drug interactions based on Gaussian interaction profile kernels. BMC Bioinformatics 2019; 20(S15): 538.
[http://dx.doi.org/10.1186/s12859-019-3093-x ] [PMID: 31874609]
[127]
Jin G, Zhao H, Zhou X, Wong STC. An enhanced Petri-net model to predict synergistic effects of pairwise drug combinations from gene microarray data. Bioinformatics 2011; 27(13): i310-6.
[http://dx.doi.org/10.1093/bioinformatics/btr202 ] [PMID: 21685086]
[128]
Bansal M, Yang J, Karan C. et al. A community computational challenge to predict the activity of pairs of compounds. Nat Biotechnol 2014; 32(12): 1213-22.
[http://dx.doi.org/10.1038/nbt.3052 ] [PMID: 25419740]
[129]
Goswami CP, Cheng L, Alexander PS, Singal A, Li L. A new drug combinatory effect prediction algorithm on the cancer cell based on gene expression and dose–response curve. CPT Pharmacometrics Syst Pharmacol 2015; 4(2): 80-90.
[http://dx.doi.org/10.1002/psp4.9 ] [PMID: 26225234]
[130]
Li X, Xu Y, Cui H. et al. Prediction of synergistic anti-cancer drug combinations based on drug target network and drug induced gene expression profiles. Artif Intell Med 2017; 83: 35-43.
[http://dx.doi.org/10.1016/j.artmed.2017.05.008 ] [PMID: 28583437]
[131]
Lamb J. The connectivity Map: a new tool for biomedical research. Nat Rev Cancer 2007; 7(1): 54-60.
[http://dx.doi.org/10.1038/nrc2044 ] [PMID: 17186018]
[132]
Cuvitoglu A, Zhou JX, Huang S, Isik Z. Predicting drug synergy for precision medicine using network biology and machine learning. J Bioinform Comput Biol 2019; 17(2): 1950012.
[http://dx.doi.org/10.1142/S0219720019500124 ] [PMID: 31057072]
[133]
Yuan B, Shen C, Luna A, Korkut A, Marks DS, Ingraham J. et al. Cell Box: Interpretable machine learning for perturbation biology with application to the design of cancer combination therapy. Cell Syst 2021; 12(128-140): e124.
[134]
Korkut A, Wang W, Demir E. et al. Perturbation biology nominates upstream–downstream drug combinations in RAF inhibitor resistant melanoma cells. eLife 2015; 4: e04640.
[http://dx.doi.org/10.7554/eLife.04640 ] [PMID: 26284497]
[135]
Morris MK, Clarke DC, Osimiri LC, Lauffenburger DA. Systematic analysis of quantitative logic model ensembles predicts drug combina-tion effects on cell signaling networks. CPT Pharmacometrics Syst Pharmacol 2016; 5(10): 544-53.
[http://dx.doi.org/10.1002/psp4.12104 ] [PMID: 27567007]
[136]
Regan KE, Payne PRO, Li F. Integrative network and transcriptomics-based approach predicts genotype- specific drug combinations for melanoma. AMIA Jt Summits Transl Sci Proc 2017; 2017: 247-56.
[PMID: 28815138]
[137]
Regan-Fendt KE, Xu J, DiVincenzo M. et al. Synergy from gene expression and network mining (SynGeNet) method predicts synergistic drug combinations for diverse melanoma genomic subtypes. NPJ Syst Biol Appl 2019; 5(1): 6.
[http://dx.doi.org/10.1038/s41540-019-0085-4 ] [PMID: 30820351]
[138]
Li P, Huang C, Fu Y. et al. Large-scale exploration and analysis of drug combinations. Bioinformatics 2015; 31(12): 2007-16.
[http://dx.doi.org/10.1093/bioinformatics/btv080 ] [PMID: 25667546]
[139]
Wildenhain J, Spitzer M, Dolma S. et al. Prediction of synergism from chemical-genetic interactions by machine learning. Cell Syst 2015; 1(6): 383-95.
[http://dx.doi.org/10.1016/j.cels.2015.12.003 ] [PMID: 27136353]
[140]
Gayvert KM, Aly O, Platt J. et al. A computational approach for identifying synergistic drug combinations. PLoS Comput Biol 2017; 13(1): e1005308.
[141]
Holbeck SL, Camalier R, Crowell JA. et al. The National Cancer Institute ALMANAC: A comprehensive screening resource for the detec-tion of anticancer drug pairs with enhanced therapeutic activity. Cancer Res 2017; 77(13): 3564-76.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-0489 ] [PMID: 28446463]
[142]
Xia F, Shukla M, Brettin T. et al. Predicting tumor cell line response to drug pairs with deep learning. BMC Bioinformatics 2018; 19(S18): 486.
[http://dx.doi.org/10.1186/s12859-018-2509-3 ] [PMID: 30577754]
[143]
Preuer K, Lewis RPI, Hochreiter S, Bender A, Bulusu KC, Klambauer G. DeepSynergy: predicting anti-cancer drug synergy with deep learning. Bioinformatics 2018; 34(9): 1538-46.
[http://dx.doi.org/10.1093/bioinformatics/btx806 ] [PMID: 29253077]
[144]
Liu Q, Xie L. TranSynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolu-tion of drug combinations. PLOS Comput Biol 2021; 17(2): e1008653.
[http://dx.doi.org/10.1371/journal.pcbi.1008653 ] [PMID: 33577560]
[145]
Julkunen H, Cichonska A, Gautam P. et al. Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects. Nat Commun 2020; 11(1): 6136.
[http://dx.doi.org/10.1038/s41467-020-19950-z ] [PMID: 33262326]
[146]
Zhang T, Zhang L, Payne PRO, Li F. Synergistic drug combination prediction by integrating multiomics data in deep learning models. Methods Mol Biol 2021; 2194: 223-38.
[http://dx.doi.org/10.1007/978-1-0716-0849-4_12 ] [PMID: 32926369]
[147]
Jiang P, Huang S, Fu Z, Sun Z, Lakowski TM, Hu P. Deep graph embedding for prioritizing synergistic anticancer drug combinations. Comput Struct Biotechnol J 2020; 18: 427-38.
[http://dx.doi.org/10.1016/j.csbj.2020.02.006 ] [PMID: 32153729]
[148]
Larochelle H, Mandel M, Pascanu Y, Bengio Y. Learning algorithms for the classification restricted boltzmann machine. J Mach Learn Res 2012; 12: 643-69.
[149]
Jin T, Nguyen ND, Talos F, Wang D. ECMarker: interpretable machine learning model identifies gene expression biomarkers predicting clinical outcomes and reveals molecular mechanisms of human disease in early stages. Bioinformatics 2021; 37(8): 1115-24.
[PMID: 33305308]
[150]
Chen G, Tsoi A, Xu H, Zheng WJ. Predict effective drug combination by deep belief network and ontology fingerprints. J Biomed Inform 2018; 85: 149-54.
[http://dx.doi.org/10.1016/j.jbi.2018.07.024 ] [PMID: 30081101]
[151]
Liu Y, Wei Q, Yu G, Gai W, Li Y, Chen X. DCDB 2.0: a major update of the drug combination database. Database 2014; 2014(0): bau124.
[http://dx.doi.org/10.1093/database/bau124 ] [PMID: 25539768]
[152]
Huang H, Zhang P, Qu XA, Sanseau P, Yang L. Systematic prediction of drug combinations based on clinical side-effects. Sci Rep 2015; 4(1): 7160.
[http://dx.doi.org/10.1038/srep07160 ] [PMID: 25418113]
[153]
Torres NB, Altafini C. Drug combinatorics and side effect estimation on the signed human drug-target network. BMC Syst Biol 2016; 10(1): 74.
[http://dx.doi.org/10.1186/s12918-016-0326-8 ] [PMID: 27526853]
[154]
Gardiner LJ, Carrieri AP, Wilshaw J, Checkley S, Pyzer-Knapp EO, Krishna R. Using human in vitro transcriptome analysis to build trust-worthy machine learning models for prediction of animal drug toxicity. Sci Rep 2020; 10(1): 9522.
[http://dx.doi.org/10.1038/s41598-020-66481-0 ] [PMID: 32533004]
[155]
Afzal M, Islam SMR, Hussain M, Lee S. Precision medicine informatics: principles, prospects, and challenges. IEEE Access 2020; 8: 13593-612.
[156]
Ding Y, Tang J, Guo F. Identification of drug-side effect association via multiple information integration with centered kernel alignment. Neurocomputing 2019; 325: 211-24.
[http://dx.doi.org/10.1016/j.neucom.2018.10.028]
[157]
Liu LJ, Lu L, Zhong HJ. et al. An iridium (III) complex inhibits JMJD2 activities and acts as a potential epigenetic modulator. J Med Chem 2015; 58(16): 6697-703.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00375 ] [PMID: 26225543]
[158]
Kang TS, Mao Z, Ng CT. et al. Identification of an iridium (III)-based inhibitor of tumor necrosis factor-α. J Med Chem 2016; 59(8): 4026-31.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00112 ] [PMID: 27054262]
[159]
Liu LJ, He B, Miles JA. et al. Inhibition of the p53/hDM2 protein-protein interaction by cyclometallated iridium(III) compounds. Oncotarget 2016; 7(12): 13965-75.
[http://dx.doi.org/10.18632/oncotarget.7369 ] [PMID: 26883110]
[160]
Yang C, Wang W, Li GD. et al. Anticancer osmium complex inhibitors of the HIF-1α and p300 protein-protein interaction. Sci Rep 2017; 7(1): 42860.
[http://dx.doi.org/10.1038/srep42860 ] [PMID: 28225008]
[161]
Ullrich K, Mack J, Welke P. Ligand affinity prediction with multi-pattern kernels. International Conference on Discovery Science Springer, Cham 474-89.
[162]
(a) Kaur S, Singla J, Nkenyereye L. et al. Medical diagnostic systems using Artificial Intelligence (AI) algorithms: principles and perspectives. IEEE Access 2020; 8: 228049-69.;
(b) Zhu W, Xie L, Han J, Guo X. The application of deep learning in cancer prognosis prediction. Cancers 2020; 12(3): 603.
[http://dx.doi.org/10.3390/cancers12030603 ] [PMID: 32150991]
[163]
Yu KH, Fitzpatrick MR, Pappas L, Chan W, Kung J, Snyder M. Omics AnalySIs System for PRecision Oncology (OASISPRO): a web-based omics analysis tool for clinical phenotype prediction. Bioinformatics 2018; 34(2): 319-20.
[http://dx.doi.org/10.1093/bioinformatics/btx572 ] [PMID: 28968749]
[164]
Sathyanarayanan A, Gupta R, Thompson EW, Nyholt DR, Bauer DC, Nagaraj SH. A comparative study of multi-omics integration tools for cancer driver gene identification and tumour subtyping. Brief Bioinform 2020; 21(6): 1920-36.
[http://dx.doi.org/10.1093/bib/bbz121 ] [PMID: 31774481]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy