Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

Nutraceuticals: A Promising Approach Towards Diabetic Neuropathy

Author(s): Sakshi Bajaj and Sumeet Gupta*

Volume 23, Issue 5, 2023

Published on: 30 December, 2022

Page: [581 - 595] Pages: 15

DOI: 10.2174/1871530323666221018090024

Price: $65

Abstract

Background: Various nutraceuticals from different sources have various beneficial actions and have been reported for many years. The important findings from the research conducted using various nutraceuticals exhibiting significant physiological and pharmacological activities have been summarized.

Methods: An extensive investigation of literature was done using several worldwide electronic scientific databases like PUBMED, SCOPUS, Science Direct, Google Scholar, etc. The entire manuscript is available in the English language that is used for our various compounds of interest. These databases were thoroughly reviewed and summarized.

Results: Nutraceuticals obtained from various sources play a vital role in the management of peripheral neuropathy associated with diabetes. Treatment with nutraceuticals has been beneficial as an alternative in preventing the progression. In particular, in vitro and in vivo studies have revealed that a variety of nutraceuticals have significant antioxidant and anti-inflammatory properties that may inhibit the early diabetes-driven molecular mechanisms that induce DPN.

Conclusion: Nutraceuticals obtained from different sources like a plant, an animal, and marine have been properly utilized for the safety of health. In our opinion, this review could be of great interest to clinicians, as it offers a complementary perspective on the management of DPN. Trials with a well-defined patient and symptom selection have shown robust pharmacological design as pivotal points to let these promising compounds become better accepted by the medical community.

Next »
Graphical Abstract

[1]
Sharma, A.; Gupta, S.; Sharma, S.; Dhanawat, M.; Munjal, K. Combination effect of Spirulina fusiformis with rutin or chlorogenic acidin lipopolysaccharide induced septic cardiac inflammation in the experimental diabetic rat model. Pharmacogn. Mag., 2021, 17(S2), 57-67.
[2]
Feldman, E.L.; Callaghan, B.C.; Pop-Busui, R.; Zochodne, D.W.; Bennett, D.L.; Bril, V.; Russell, J.W.; Viswanathan, V. Diabetic neuropathy. Nat. Rev. Dis. Primers, 2019, 5(1), 41.
[http://dx.doi.org/10.1038/s41572-019-0092-1]
[3]
Chakraborty, T.; Gupta, S.; Nair, A.; Chauhan, S.; Saini, V. Wound healing potential of insulin-loaded nanoemulsion with Aloe vera gel in diabetic rats. J. Drug Deliv. Sci. Technol., 2021, 64, 102601.
[http://dx.doi.org/10.1016/j.jddst.2021.102601]
[4]
Unnikrishnan, R.; Anjana, R.M.; Mohan, V. Diabetes mellitus and its complications in India. Nat. Rev. Endocrinol., 2016, 12(6), 357-370.
[http://dx.doi.org/10.1038/nrendo.2016.53] [PMID: 27080137]
[5]
Ko, S.H.; Cha, B.Y. Diabetic peripheral neuropathy in type 2 diabetes mellitus in Korea. Diabetes Metab. J., 2012, 36(1), 6-12.
[http://dx.doi.org/10.4093/dmj.2012.36.1.6] [PMID: 22363916]
[6]
Veves, A.; Backonja, M.; Malik, R.A. Painful diabetic neuropathy: Epidemiology, natural history, early diagnosis, and treatment options. Pain Med., 2008, 9(6), 660-674.
[http://dx.doi.org/10.1111/j.1526-4637.2007.00347.x] [PMID: 18828198]
[7]
Tesfaye, S.; Selvarajah, D. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab. Res. Rev., 2012, 28(Suppl. 1), 8-14.
[http://dx.doi.org/10.1002/dmrr.2239] [PMID: 22271716]
[8]
Azmi, S.; ElHadd, K.T.; Nelson, A.; Chapman, A.; Bowling, F.L.; Perumbalath, A.; Lim, J.; Marshall, A.; Malik, R.A.; Alam, U. Pregabalin in the management of painful diabetic neuropathy: A narrative review. Diabetes Ther., 2019, 10(1), 35-56.
[http://dx.doi.org/10.1007/s13300-018-0550-x] [PMID: 30565054]
[9]
Yang, H.; Sloan, G.; Ye, Y.; Wang, S.; Duan, B.; Tesfaye, S.; Gao, L. New perspective in diabetic neuropathy: From the periphery to the brain, a call for early detection, and precision medicine. Front. Endocrinol. (Lausanne), 2020, 10, 929.
[http://dx.doi.org/10.3389/fendo.2019.00929] [PMID: 32010062]
[10]
Baldi, A.; Choudhary, N.; Kumar, S. Nutraceuticals as therapeutic agents for holistic treatment of diabetes. Int. J. Green Pharm., 2013, 7(4), 278-287.
[http://dx.doi.org/10.4103/0973-8258.122050]
[11]
Williamson, E.M.; Liu, X.; Izzo, A.A. Trends in use, pharmacology, and clinical applications of emerging herbal nutraceuticals. Br. J. Pharmacol., 2020, 177(6), 1227-1240.
[http://dx.doi.org/10.1111/bph.14943] [PMID: 31799702]
[12]
Zhou, J.; Zhou, S. Inflammation: Therapeutic targets for diabetic neuropathy. Mol. Neurobiol., 2014, 49(1), 536-546.
[http://dx.doi.org/10.1007/s12035-013-8537-0] [PMID: 23990376]
[13]
Dehdashtian, E.; Pourhanifeh, M.H.; Hemati, K.; Mehrzadi, S.; Hosseinzadeh, A. Therapeutic application of nutraceuticals in diabetic nephropathy: Current evidence and future implications. Diabetes Metab. Res. Rev., 2020, 36(8), e3336.
[http://dx.doi.org/10.1002/dmrr.3336] [PMID: 32415805]
[14]
Sugimoto, K.; Yasujima, M.; Yagihashi, S. Role of advanced glycation end products in diabetic neuropathy. Curr. Pharm. Des., 2008, 14(10), 953-961.
[http://dx.doi.org/10.2174/138161208784139774] [PMID: 18473845]
[15]
Sloan, G.; Shillo, P.; Selvarajah, D.; Wu, J.; Wilkinson, I.D.; Tracey, I.; Anand, P.; Tesfaye, S. A new look at painful diabetic neuropathy. Diabetes Res. Clin. Pract., 2018, 144, 177-191.
[http://dx.doi.org/10.1016/j.diabres.2018.08.020] [PMID: 30201394]
[16]
Ristikj-Stomnaroska, D.; Risteska-Nejashmikj, V.; Papazova, M. Role of inflammation in the pathogenesis of diabetic peripheral neuropathy. Open Access Maced. J. Med. Sci., 2019, 7(14), 2267-2270.
[http://dx.doi.org/10.3889/oamjms.2019.646] [PMID: 31592273]
[17]
Fernyhough, P. Mitochondrial dysfunction in diabetic neuropathy: A series of unfortunate metabolic events. Curr. Diab. Rep., 2015, 15(11), 89.
[http://dx.doi.org/10.1007/s11892-015-0671-9] [PMID: 26370700]
[18]
Naruse, K. Schwann cells as crucial players in diabetic neuropathy. Adv. Exp. Med. Biol., 2019, 1190, 345-356.
[http://dx.doi.org/10.1007/978-981-32-9636-7_22] [PMID: 31760655]
[19]
Zhang, Q.; Liang, X.C. Effects of mitochondrial dysfunction via AMPK/PGC-1 α signal pathway on pathogenic mechanism of diabetic peripheral neuropathy and the protective effects of Chinese medicine. Chin. J. Integr. Med., 2019, 25(5), 386-394.
[http://dx.doi.org/10.1007/s11655-018-2579-0] [PMID: 30656599]
[20]
Pang, L.; Lian, X.; Liu, H.; Zhang, Y.; Li, Q.; Cai, Y.; Ma, H.; Yu, X. Understanding diabetic neuropathy: Focus on oxidative stress. Oxid. Med. Cell. Longev., 2020, 1-13.
[21]
Kumar, A.; Mittal, R. Nrf2: A potential therapeutic target for diabetic neuropathy. Inflammopharmacol., 2017, 25(4), 393-402.
[http://dx.doi.org/10.1007/s10787-017-0339-y] [PMID: 28353124]
[22]
Suryavanshi, S.V. Kulkarni, Y.A. NF-κβ A potential target in the management of vascular complications of diabetes. Front. Pharmacol., 2017, 8, 798.
[http://dx.doi.org/10.3389/fphar.2017.00798] [PMID: 29163178]
[23]
Sandireddy, R.; Yerra, V.; Areti, A.; Komirishetty, P.; Kumar, A. Neuroinflammation and oxidative stress in diabetic neuropathy: Futuristic strategies based on these targets. Int. J. Endocrinol., 2014, 674987, 1-10.
[http://dx.doi.org/10.1155/2014/674987]
[24]
Dewanjee, S.; Das, S.; Das, A.K.; Bhattacharjee, N.; Dihingia, A.; Dua, T.K.; Kalita, J.; Manna, P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur. J. Pharmacol., 2018, 833, 472-523.
[http://dx.doi.org/10.1016/j.ejphar.2018.06.034] [PMID: 29966615]
[25]
Oyenihi, O.R.; Oyenihi, A.B.; Adeyanju, A.A.; Oguntibeju, O.O. Antidiabetic effects of resveratrol: The way forward in its clinical utility. J. Diabetes Res., 2016, 2016, 9737483.
[http://dx.doi.org/10.1155/2016/9737483] [PMID: 28050570]
[26]
Huang, D.D.; Shi, G.; Jiang, Y.; Yao, C.; Zhu, C. A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed. Pharmacother., 2020, 125(5), 109767.
[http://dx.doi.org/10.1016/j.biopha.2019.109767] [PMID: 32058210]
[27]
Koushki, M.; Amiri-Dashatan, N.; Ahmadi, N.; Abbaszadeh, H.A.; Rezaei-Tavirani, M. Resveratrol: A miraculous natural compound for diseases treatment. Food Sci. Nutr., 2018, 6(8), 2473-2490.
[http://dx.doi.org/10.1002/fsn3.855] [PMID: 30510749]
[28]
Zhang, W.; Yu, H.; Lin, Q.; Liu, X.; Cheng, Y.; Deng, B. Anti-inflammatory effect of resveratrol attenuates the severity of diabetic neuropathy by activating the Nrf2 pathway. Aging (Albany NY), 2021, 13(7), 10659-10671.
[http://dx.doi.org/10.18632/aging.202830] [PMID: 33770763]
[29]
Kabir, T.; Tabassum, N.; Uddin, S.; Aziz, F.; Behl, T.; Bijo, M.; Rahman, H.; Akter, R.; Aleya, L. Therapeutic potential of polyphenols in the management of diabetic neuropathy. Evid. Based Complement. Alternat. Med., 2021, 20.
[30]
Kong, M.; Xie, K.; Lv, M.; Li, J.; Yao, J.; Yan, K.; Wu, X.; Xu, Y.; Ye, D. Anti-inflammatory phytochemicals for the treatment of diabetes and its complications: Lessons learned and future promise. Biomed. Pharmacother., 2021, 133.
[31]
Szkudelski, T.; Szkudelska, K. Resveratrol and diabetes: From animal to human studies. Biochim. Biophys. Acta, 2015, 1852(6), 1145-1154.
[http://dx.doi.org/10.1016/j.bbadis.2014.10.013] [PMID: 25445538]
[32]
Mu, X.; Cheng, Z.; Zhuofeng, D.; Wang, Y.; Guo, Q.; Huang, C. Resveratrol enhances IL-4 receptor mediated anti-inflammatory effects in spinal cord and attenuates neuropathic pain following sciatic nerve injury. Mol. Pain, 2018, 14, 1-11.
[33]
Öztürk, E.; Arslan, A.K.K.; Yerer, M.B.; Bishayee, A. Resveratrol and diabetes: A critical review of clinical studies. Biomed. Pharmacother., 2017, 95, 230-234.
[http://dx.doi.org/10.1016/j.biopha.2017.08.070] [PMID: 28843911]
[34]
Shi, G.J.; Li, Y.; Cao, Q.H.; Wu, H.X.; Tang, X.Y.; Gao, X.H.; Yu, J.Q.; Chen, Z.; Yang, Y. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed. Pharmacother., 2019, 109, 1085-1099.
[http://dx.doi.org/10.1016/j.biopha.2018.10.130] [PMID: 30551359]
[35]
Iskender, H.; Dokumacioglu, E.; Mazlum Sen, T.; Ince, I.; Kanbay, Y.; Saral, S. The effect of hesperidin and quercetin on oxidative stress, NF-kB and SIRT1 levels in a STZ-induced experimental diabetes model. Biomed. Pharmacother., 2017, 90, 500-508.
[http://dx.doi.org/10.1016/j.biopha.2017.03.102] [PMID: 28395272]
[36]
Zhang, Q.; Song, W.; Zhao, B.; Xie, J.; Sun, Q.; Shi, X.; Yan, B.; Tian, G.; Liang, X. Quercetin attenuates diabetic peripheral neuropathy by correcting mitochondrial abnormality via activation of AMPK/PGC-1a pathway in vivo and in vitro. Front. Neurosci., 2021, 15, 636172.
[http://dx.doi.org/10.3389/fnins.2021.636172] [PMID: 33746703]
[37]
Wang, R.; Qiu, Z.; Wang, G.; Hu, Q.; Shi, N.; Zhang, Z.; Wu, Y.; Zhou, C. Quercetin attenuates diabetic neuropathic pain by inhibiting mTOR/p70S6K pathway-mediated changes of synaptic morphology and synaptic protein levels in spinal dorsal horn of db/db mice. Eur. J. Pharmacol., 2020, 882, 173266.
[http://dx.doi.org/10.1016/j.ejphar.2020.173266] [PMID: 32553736]
[38]
Yang, R.; Li, L.; Yuan, H.; Liu, H.; Gong, Y.; Zou, L.; Li, S.; Wang, Z.; Shi, L.; Jia, T.; Zhao, S.; Wu, B.; Yi, Z.; Gao, Y.; Li, G.; Xu, H.; Liu, S.; Zhang, C.; Li, G.; Liang, S. Quercetin relieved diabetic neuropathic pain by inhibiting upregulated P2X4 receptor in dorsal root ganglia. J. Cell. Physiol., 2019, 234(3), 2756-2764.
[http://dx.doi.org/10.1002/jcp.27091] [PMID: 30145789]
[39]
Sharma, B.; Mittal, A.; Dabur, R. Mechanistic approach of anti-diabetic compounds identified from natural sources. Chem. Biol. Lett., 2018, 5(2), 63-99.
[40]
Xie, J.; Song, W.; Liang, X.; Zhang, Q.; Shi, Y.; Liu, W.; Shi, X. Protective effect of quercetin on streptozotocin-induced diabetic peripheral neuropathy rats through modulating gut microbiota and reactive oxygen species level. Biomed. Pharmacother., 2020, 127, 110147.
[http://dx.doi.org/10.1016/j.biopha.2020.110147] [PMID: 32559841]
[41]
Gallelli, G.; Cione, E.; Serra, R.; Leo, A.; Citraro, R.; Matricardi, P.; Di Meo, C.; Bisceglia, F.; Caroleo, M.C.; Basile, S.; Gallelli, L. Nano-hydrogel embedded with quercetin and oleic acid as a new formulation in the treatment of diabetic foot ulcer: A pilot study. Int. Wound J., 2020, 17(2), 485-490.
[http://dx.doi.org/10.1111/iwj.13299] [PMID: 31876118]
[42]
Sharma, A.; Gupta, S.; Chauhan, S.; Nair, A.; Sharma, P. Astilbin: A promising unexplored compound with multidimensional medicinal and health benefits. Pharmacol. Res., 2020, 158, 104894.
[http://dx.doi.org/10.1016/j.phrs.2020.104894] [PMID: 32407960]
[43]
Oh, Y.S. Bioactive compounds and their neuroprotective effects in diabetic complications. Nutrients, 2016, 8(8), 472.
[http://dx.doi.org/10.3390/nu8080472] [PMID: 27483315]
[44]
Testa, R.; Bonfigli, A.R.; Genovese, S.; De Nigris, V.; Ceriello, A. The possible role of flavonoids in the prevention of diabetic complications. Nutrients, 2016, 8(5), 310.
[http://dx.doi.org/10.3390/nu8050310] [PMID: 27213445]
[45]
Thipkaew, C.; Wattanathorn, J.; Muchimapura, S. Electrospun nanofibers loaded with quercetin promote the recovery of focal entrapment neuropathy in a rat model of streptozotocin-induced diabetes. BioMed Res. Int., 2017, 2017, 2017493.
[http://dx.doi.org/10.1155/2017/2017493] [PMID: 28251151]
[46]
Prasath, G.S.; Subramanian, S.P. Modulatory effects of fisetin, a bioflavonoid, on hyperglycemia by attenuating the key enzymes of carbohydrate metabolism in hepatic and renal tissues in streptozotocin-induced diabetic rats. Eur. J. Pharmacol., 2011, 668(3), 492-496.
[http://dx.doi.org/10.1016/j.ejphar.2011.07.021] [PMID: 21816145]
[47]
Prasath, G.S.; Sundaram, C.S.; Subramanian, S.P. Fisetin averts oxidative stress in pancreatic tissues of streptozotocin-induced diabetic rats. Endocrine, 2013, 44(2), 359-368.
[http://dx.doi.org/10.1007/s12020-012-9866-x] [PMID: 23277230]
[48]
Kim, A.; Lee, W.; Yun, J.M. Luteolin and fisetin suppress oxidative stress by modulating sirtuins and forkhead box O3a expression under in vitro diabetic conditions. Nutr. Res. Pract., 2017, 11(5), 430-434.
[http://dx.doi.org/10.4162/nrp.2017.11.5.430] [PMID: 28989580]
[49]
Hussain, T.; Tan, B.; Murtaza, G.; Liu, G.; Rahu, N.; Saleem Kalhoro, M.; Hussain Kalhoro, D.; Adebowale, T.O.; Usman Mazhar, M.; Rehman, Z.U.; Martínez, Y.; Akber Khan, S.; Yin, Y. Flavonoids and type 2 diabetes: Evidence of efficacy in clinical and animal studies and delivery strategies to enhance their therapeutic efficacy. Pharmacol. Res., 2020, 152, 104629.
[http://dx.doi.org/10.1016/j.phrs.2020.104629] [PMID: 31918019]
[50]
Chiruta, C.; Schubert, D.; Dargusch, R.; Maher, P. Chemical modification of the multitarget neuroprotective compound fisetin. J. Med. Chem., 2012, 55(1), 378-389.
[http://dx.doi.org/10.1021/jm2012563] [PMID: 22192055]
[51]
Naeimi, A.F.; Alizadeh, M. Antioxidant properties of the flavonoid fisetin: An updated review of in vivo and in vitro studies. Trends Food Sci. Technol., 2017, 70, 34-44.
[http://dx.doi.org/10.1016/j.tifs.2017.10.003]
[52]
Zhang, S.; Xue, R.; Geng, Y.; Wang, H.; Li, W. Fisetin prevents HT22 cells from high glucose-induced neurotoxicity via PI3K/Akt/CREB signaling pathway. Front. Neurosci., 2020, 14, 241.
[http://dx.doi.org/10.3389/fnins.2020.00241] [PMID: 32265642]
[53]
Ravula, A.R.; Teegala, S.B.; Kalakotla, S.; Pasangulapati, J.P.; Perumal, V.; Boyina, H.K. Fisetin, potential flavonoid with multifarious targets for treating neurological disorders: An updated review. Eur. J. Pharmacol., 2021, 910, 174492.
[http://dx.doi.org/10.1016/j.ejphar.2021.174492] [PMID: 34516952]
[54]
Sandireddy, R.; Yerra, V.G.; Komirishetii, P.; Areti, P.; Kumar, A. Fisetin imparts neuroprotection in experimental diabetic neuropathy by modulating Nrf2 and NF-kB pathways. Cell. Mol. Neurobiol., 2016, 36(6), 883-892.
[http://dx.doi.org/10.1007/s10571-015-0272-9] [PMID: 26399251]
[55]
Zang, Y.; Igarashi, K.; Li, Y. Anti-diabetic effects of luteolin and luteolin-7-O-glucoside on KK-A(y) mice. Biosci. Biotechnol. Biochem., 2016, 80(8), 1580-1586.
[http://dx.doi.org/10.1080/09168451.2015.1116928] [PMID: 27170065]
[56]
Sangeetha, R. Luteolin in the management of type 2 diabetes mellitus. Curr. Res. Nutr. Food Sci., 2019, 7(2), 393-398.
[http://dx.doi.org/10.12944/CRNFSJ.7.2.09]
[57]
Daily, J.W.; Kang, K.; Park, S. Protection against Alzheimer’s disease by luteolin: Role of brain glucose regulation, anti-inflammatory activity, and the gut microbiota-liver-brain axis. Biofactors, 2020, 1-14.
[PMID: 33347668]
[58]
Li, M.; Li, Q.; Zhao, Q.; Zhang, J.; Lin, J. Luteolin improves the impaired nerve functions in diabetic neuropathy: Behavioral and biochemical evidences. Int. J. Clin. Exp. Pathol., 2015, 8(9), 10112-10120.
[PMID: 26617718]
[59]
Cordaro, M.; Cuzzocrea, S.; Crupi, R. An update of palmitoylethanolamide and luteolin effects in preclinical and clinical studies of neuroinflammatory events. Antioxidants, 2020, 9(3), 216.
[http://dx.doi.org/10.3390/antiox9030216]
[60]
Liu, Y.; Tian, X.; Gou, L.; Sun, L.; Ling, X.; Yin, X. Luteolin attenuates diabetes-associated cognitive decline in rats. Brain Res. Bull., 2013, 94, 23-29.
[http://dx.doi.org/10.1016/j.brainresbull.2013.02.001] [PMID: 23415807]
[61]
Hara, K.; Haranishi, Y.; Terada, T.; Takahashi, Y.; Nakamura, M.; Sata, T. Effects of intrathecal and intracerebroventricular administration of luteolin in a rat neuropathic pain model. Pharmacol. Biochem. Behav., 2014, 125, 78-84.
[http://dx.doi.org/10.1016/j.pbb.2014.08.011] [PMID: 25196931]
[62]
Khursheed, R.; Singh, S.K.; Wadhwa, S.; Gulati, M.; Kapoor, B.; Awasthi, A.; Kr, A.; Kumar, R.; Pottoo, F.H.; Kumar, V.; Dureja, H.; Anand, K.; Chellappan, D.K.; Dua, K.; Gowthamarajan, K. Opening eyes to therapeutic perspectives of bioactive polyphenols and their nanoformulations against diabetic neuropathy and related complications. Expert Opin. Drug Deliv., 2021, 18(4), 427-448.
[http://dx.doi.org/10.1080/17425247.2021.1846517] [PMID: 33356647]
[63]
Visnagri, A.; Kandhare, A.D.; Chakravarty, S.; Ghosh, P.; Bodhankar, S.L. Hesperidin, a flavanoglycone attenuates experimental diabetic neuropathy via modulation of cellular and biochemical marker to improve nerve functions. Pharm. Biol., 2014, 52(7), 814-828.
[http://dx.doi.org/10.3109/13880209.2013.870584] [PMID: 24559476]
[64]
Li, C.; Schluesener, H. Health-promoting effects of the citrus flavanone hesperidin. Crit. Rev. Food Sci. Nutr., 2017, 57(3), 613-631.
[http://dx.doi.org/10.1080/10408398.2014.906382] [PMID: 25675136]
[65]
Ganeshpurkar, A.; Saluja, A. The pharmalogical potential of hesperidin. Indian J. Biochem. Biophys., 2019, 56, 287-300.
[66]
Hajialyani, M.; Farzaei, M.; Echeverría, J.; Nabavi, S.M.; Uriarte, E.; Sánchez, E.S. Hesperidin as a neuroprotective agent: A review of animal and clinical evidence. Molecules, 2019, 24(3), 648.
[http://dx.doi.org/10.3390/molecules24030648]
[67]
Zhu, X.; Liu, H.; Liu, Y.; Chen, Y.; Liu, Y.; Yin, X. The antidepressant-like effects of hesperidin in streptozotocin-induced diabetic rats by activating Nrf2/ARE/Glyoxalase 1 pathway. Front. Pharmacol., 2020, 11, 1325.
[http://dx.doi.org/10.3389/fphar.2020.01325] [PMID: 32982741]
[68]
Kim, J.; Wie, M.B.; Ahn, M.; Tanaka, A.; Matsuda, H.; Shin, T. Benefits of hesperidin in central nervous system disorders: A review. Anat. Cell Biol., 2019, 52(4), 369-377.
[http://dx.doi.org/10.5115/acb.19.119] [PMID: 31949974]
[69]
Carballo-Villalobos, A.I.; Gonzalez-Trujano, M.E. Pro-inflammatory cytokines involvement in the hesperidin anti-hyperalgesia effects at peripheral and central levels in a neuropathic pain model. Inflammopharmacol, 2017, 25, 265-269.
[http://dx.doi.org/10.1007/s10787-017-0326-3] [PMID: 28265836]
[70]
Rao, P.N.; Mainkar, O.; Bansal, N.; Rakesh, N.; Haffey, P.; Urits, I.; Orhurhu, V.; Kaye, A.D.; Urman, R.D.; Gulati, A.; Jones, M. Flavonoids in the treatment of neuropathic pain. Curr. Pain Headache Rep., 2021, 25(7), 43.
[http://dx.doi.org/10.1007/s11916-021-00959-y] [PMID: 33961144]
[71]
Gandhi, G.R.; Vasconcelos, A.B.S.; Wu, D.T.; Li, H.B.; Antony, P.J.; Li, H.; Geng, F.; Gurgel, R.Q.; Narain, N.; Gan, R.Y. Citrus flavonoids as promising phytochemicals targeting diabetes and related complications: A systematic review of in vitro and in vivo studies. Nutrients, 2020, 12(10), 2907.
[http://dx.doi.org/10.3390/nu12102907] [PMID: 32977511]
[72]
Tao, J.; Liu, L.; Fan, Y.; Wang, M.; Li, L.; Zou, L.; Yuan, H.; Shi, L.; Yang, R.; Liang, S.; Liu, S. Role of hesperidin in P2X3 receptor-mediated neuropathic pain in the dorsal root ganglia. Int. J. Neurosci., 2019, 129(8), 784-793.
[http://dx.doi.org/10.1080/00207454.2019.1567512] [PMID: 30621504]
[73]
Tian, M-M.; Li, Y-X.; Liu, S.; Zhu, C.H.; Lan, X.B.; Du, J.; Ma, L.; Yang, J.M.; Zheng, P.; Yu, J.Q.; Liu, N. Glycosides for peripheral neuropathic pain: A potential medicinal components. Molecules, 2021, 27(1), 255.
[http://dx.doi.org/10.3390/molecules27010255] [PMID: 35011486]
[74]
Dhaliwal, J.; Dhaliwal, N.; Akhtar, A.; Kuhad, A.; Chopra, K. Beneficial effects of ferulic acid alone and in combination with insulin in streptozotocin induced diabetic neuropathy in Sprague Dawley rats. Life Sci., 2020, 255, 117856255.
[http://dx.doi.org/10.1016/j.lfs.2020.117856]
[75]
Kumar, N.; Pruthi, V. Potential applications of ferulic acid from natural sources. Biotechnol. Rep. (Amst.), 2014, 4, 86-93.
[http://dx.doi.org/10.1016/j.btre.2014.09.002] [PMID: 28626667]
[76]
Ghosh, S.; Basak, P.; Dutta, S.; Chowdhury, S.; Sil, P.C. New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem. Toxicol., 2017, 103, 41-55.
[http://dx.doi.org/10.1016/j.fct.2017.02.028] [PMID: 28237775]
[77]
Aswar, M.; Patil, V. Ferulic acid ameliorates chronic constriction injury induced painful neuropathy in rats. Inflammopharmacol., 2016, 24(4), 181-188.
[http://dx.doi.org/10.1007/s10787-016-0272-5] [PMID: 27372349]
[78]
Chaudhary, A.; Jaswal, V.S.; Choudhary, S. Sonika; Sharma, A.; Beniwal, V.; Tuli, H.S.; Sharma, S. Ferulic acid: A promising therapeutic phytochemical and recent patents advances. Recent Pat. Inflamm. Allergy Drug Discov., 2019, 13(2), 115-123.
[http://dx.doi.org/10.2174/1872213X13666190621125048] [PMID: 31223096]
[79]
Rehman, S.U.; Ali, T.; Alam, S.I.; Ullah, R.; Zeb, A.; Lee, K.W.; Rutten, B.P.F.; Kim, M.O. Ferulic acid rescues LPS-induced neurotoxicity via modulation of the TLR4 receptor in the mouse hippocampus. Mol. Neurobiol., 2019, 56(4), 2774-2790.
[http://dx.doi.org/10.1007/s12035-018-1280-9] [PMID: 30058023]
[80]
Rodick, T.C.; Seibels, D.R.; Babu, J.R.; Huggins, K.W.; Ren, G.; Mathews, S.T. Potential role of coenzyme Q10 in health and disease conditions. Nutr. Diet. Suppl., 2018, 10, 1-11.
[http://dx.doi.org/10.2147/NDS.S112119]
[81]
Zhang, Y.P.; Eber, A.; Yuan, Y.; Yang, Z.; Rodriguez, Y.; Levitt, R.C.; Takacs, P.; Candiotti, K.A. Prophylactic and antinociceptive effects of coenzyme Q10 on diabetic neuropathic pain in a mouse model of type 1 diabetes. Anesthesiology, 2013, 118(4), 945-954.
[http://dx.doi.org/10.1097/ALN.0b013e3182829b7b] [PMID: 23334664]
[82]
Zhang, Y.P.; Song, C.Y.; Yuan, Y.; Eber, A.; Rodriguez, Y.; Levitt, R.C.; Takacs, P.; Yang, Z.; Goldberg, R.; Candiotti, K.A. Diabetic neuropathic pain development in type 2 diabetic mouse model and the prophylactic and therapeutic effects of coenzyme Q10. Neurobiol. Dis., 2013, 58, 169-178.
[http://dx.doi.org/10.1016/j.nbd.2013.05.003] [PMID: 23684663]
[83]
Shi, T.J.; Zhang, M.D.; Zeberg, H.; Nilsson, J.; Grünler, J.; Liu, S.X.; Xiang, Q.; Persson, J.; Fried, K.J.; Catrina, S.B.; Watanabe, M.; Århem, P.; Brismar, K.; Hökfelt, T.G.M. Coenzyme Q10 prevents peripheral neuropathy and attenuates neuron loss in the db-/db- mouse, a type 2 diabetes model. Proc. Natl. Acad. Sci. USA, 2013, 110(2), 690-695.
[http://dx.doi.org/10.1073/pnas.1220794110] [PMID: 23267110]
[84]
Garrido-Maraver, J.; Cordero, M.; Oropesa-Avila, M.; Vega, A.F.; de la Mata, M.; Pavon, A.D.; Alcocer-Gomez, E.; Calero, C.P.; Paz, M.V.; Alanis, M.; de Lavera, I.; Cotan, D.; Sanchez-Alcazar, J.A. Clinical applications of coenzyme Q10. Front. Biosci., 2014, 19(4), 619-633.
[http://dx.doi.org/10.2741/4231]
[85]
Mantle, D. Coenzyme Q10 supplementation for diabetes and its complications: Overview. Br. J. Diabetes, 2017, 17(4), 145-148.
[http://dx.doi.org/10.15277/bjd.2017.149]
[86]
Shen, Q.; Pierce, J.D. Supplementation of coenzyme Q10 among patients with type 2 diabetes mellitus. Healthcare (Basel), 2015, 3(2), 296-309.
[http://dx.doi.org/10.3390/healthcare3020296] [PMID: 27417763]
[87]
Suksomboon, N.; Poolsup, N.; Juanak, N. Effects of coenzyme Q10 supplementation on metabolic profile in diabetes: A systematic review and meta-analysis. J. Clin. Pharm. Ther., 2015, 40(4), 413-418.
[http://dx.doi.org/10.1111/jcpt.12280] [PMID: 25913756]
[88]
Cirilli, I.; Damiani, E.; Dludla, P.V.; Hargreaves, I.; Marcheggiani, F.; Millichap, L.E.; Orlando, P.; Silvestri, S.; Tiano, L. Role of coenzyme Q10 in health and disease: An update on the last 10 years (2010-2020). Antioxidants, 2021, 10(8), 1325.
[http://dx.doi.org/10.3390/antiox10081325] [PMID: 34439573]
[89]
Mantle, D.; Hargreaves, I. Coenzyme Q10 and degenerative disorders affecting longevity: An overview. Antioxidants, 2019, 8(2), 44.
[http://dx.doi.org/10.3390/antiox8020044] [PMID: 30781472]
[90]
Visnagri, A.; Kandhare, A.D.; Shiva Kumar, V.; Rajmane, A.R.; Mohammad, A.; Ghosh, P.; Ghule, A.E.; Bodhankar, S.L. Elucidation of ameliorative effect of Co-enzyme Q10 in streptozotocin-induced diabetic neuropathic perturbation by modulation of electrophysiological, biochemical and behavioral markers. Biomed. Aging Pathol., 2012, 2(4), 157-172.
[http://dx.doi.org/10.1016/j.biomag.2012.10.006]
[91]
Zhang, Y.P.; Mei, S.; Yang, J.; Rodriguez, Y.; Candiotti, K.A. Acute hypoglycemia induces painful neuropathy and the treatment of coenzyme Q10. J. Diabetes Res., 2016, 2016, 4593052.
[http://dx.doi.org/10.1155/2016/4593052] [PMID: 26824041]
[92]
Bene, J.; Hadzsiev, K.; Melegh, B. Role of carnitine and its derivatives in the development and management of type 2diabetes. Nutr. Diabetes, 2021, 10(8), 1325.
[93]
Wang, R.; Wang, L.; Zhang, C.; Zhang, Y.; Liu, Y.; Song, L.; Ma, R.; Dong, J. L-carnitine ameliorates peripheral neuropathy in diabetic mice with a corresponding increase in insulin like growth factor 1 level. Mol. Med. Rep., 2019, 19(1), 743-751.
[PMID: 30431101]
[94]
Evans, J.D.; Jacobs, T.F.; Evans, E.W. Role of acetyl-L-carnitine in the treatment of diabetic peripheral neuropathy. Ann. Pharmacother., 2008, 42(11), 1686-1691.
[http://dx.doi.org/10.1345/aph.1L201] [PMID: 18940920]
[95]
Traina, G.; Federighi, G.; Macchi, M.; Bernardi, R.; Durante, M.; Brunelli, M. Modulation of myelin basic protein gene expression by acetyl-L-carnitine. Mol. Neurobiol., 2011, 44(1), 1-6.
[http://dx.doi.org/10.1007/s12035-011-8189-x] [PMID: 21614517]
[96]
Tomassoni, D.; Di Cesare Mannelli, L.; Bramanti, V.; Ghelardini, C.; Amenta, F.; Pacini, A. Treatment with acetyl-L-carnitine exerts a neuroprotective effect in the sciatic nerve following loose ligation: A functional and microanatomical study. Neural Regen. Res., 2018, 13(4), 692-698.
[http://dx.doi.org/10.4103/1673-5374.230297] [PMID: 29722322]
[97]
Sergi, G.; Pizzato, S.; Piovesan, F.; Trevisan, C.; Veronese, N.; Manzato, E. Effects of acetyl-L-carnitine in diabetic neuropathy and other geriatric disorders. Aging Clin. Exp. Res., 2018, 30(2), 133-138.
[http://dx.doi.org/10.1007/s40520-017-0770-3] [PMID: 28534301]
[98]
Bolandghamat, S.; Behnam-Rassouli, M. Recent findings on the effects of pharmacological agents on the nerve regeneration after peripheral nerve injury. Curr. Neuropharmacol., 2020, 18(11), 1154-1163.
[http://dx.doi.org/10.2174/1570159X18666200507084024] [PMID: 32379588]
[99]
Di Stefano, G.; Di Lionardo, A.; Galosi, E.; Truini, A.; Cruccu, G. Acetyl-L-carnitine in painful peripheral neuropathy: A systematic review. J. Pain Res., 2019, 12, 1341-1351.
[http://dx.doi.org/10.2147/JPR.S190231] [PMID: 31118753]
[100]
Zaheer, A.; Zaheer, F.; Saeed, H.; Tahir, Z.; Tahir, M.W. A review of alternative treatment options in diabetic polyneuropathy. Cureus, 2021, 13(4), e14600.
[http://dx.doi.org/10.7759/cureus.14600] [PMID: 34040901]
[101]
Ito, T.; Schaffer, S.W.; Azuma, J. The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids, 2012, 42(5), 1529-1539.
[http://dx.doi.org/10.1007/s00726-011-0883-5] [PMID: 21437784]
[102]
Sak, D.; Erdenen, F. The relationship between plasma taurine levels and diabetic complications in patients with type 2 diabetes mellitus. Biomolecules, 2019, 9, 3, 96.
[103]
Jong, C.J.; Sandal, P.; Schaffer, S.W. The role of taurine in mitochondria health: More than just an antioxidant. Molecules, 2021, 26(16), 4913.
[104]
Jakaria, M.; Azam, S.; Haque, M.E.; Jo, S.H.; Uddin, M.S.; Kim, I.S.; Choi, D.K. Taurine and its analogs in neurological disorders: Focus on therapeutic potential and molecular mechanisms. Redox Biol., 2019, 24, 101223.
[http://dx.doi.org/10.1016/j.redox.2019.101223] [PMID: 31141786]
[105]
Inam-u-llah, ; Piao, F.; Aadil, R.M.; Suleman, R.; Li, K.; Zhang, M.; Wu, P.; Shahbaz, M.; Ahmed, Z. Ameliorative effects of taurine against diabetes: A review. Amino Acids, 2018, 50(5), 487-502.
[http://dx.doi.org/10.1007/s00726-018-2544-4]
[106]
Zhang, M.; Shi, X.; Luo, M.; Lan, Q.; Ullah, H.; Zhang, C.; Li, S.; Chen, X.; Wang, Y.; Piao, F. Taurine ameliorates axonal damage in sciatic nerve of diabetic rats and high glucose exposed DRG neuron by PI3K/Akt/mTOR-dependent pathway. Amino Acids, 2021, 53(3), 395-406.
[http://dx.doi.org/10.1007/s00726-021-02957-1] [PMID: 33598769]
[107]
Li, K.; Shi, X.; Luo, M. Inam-U-Llah; Wu, P.; Zhang, M.; Zhang, C.; Li, Q.; Wang, Y.; Piao, F. Taurine protects against myelin damage of sciatic nerve in diabetic peripheral neuropathy rats by controlling apoptosis of Schwann cells via NGF/Akt/GSK3β pathway. Exp. Cell Res., 2019, 383(2), 15.
[108]
Terada, T.; Hara, K.; Haranishi, Y.; Sata, T. Antinociceptive effect of intrathecal administration of taurine in rat models of neuropathic pain. J. Can. Anesth., 2011, 58(7), 630-637.
[http://dx.doi.org/10.1007/s12630-011-9504-8] [PMID: 21512835]
[109]
Nashine, S.; Kenney, M.C. Role of citicoline in an in vitro AMD model. Aging (Albany NY), 2020, 12(10), 9031-9040.
[http://dx.doi.org/10.18632/aging.103164] [PMID: 32470946]
[110]
Aslan, E.; Kocaeli, H.; Bekar, A.; Tolunay, S.; Ulus, I.H. CDP-choline and its endogenous metabolites, cytidine and choline, promote the nerve regeneration and improve the functional recovery of injured rat sciatic nerves. Neurol. Res., 2011, 33(7), 766-773.
[http://dx.doi.org/10.1179/1743132811Y.0000000004] [PMID: 21756558]
[111]
Jasielski, P.; Piedel, F.; Piwek, M.; Rocka, A.; Petit, V.; Rejdak, K. Application of citicoline in neurological disorders: A systematic review. Nutrients, 2020, 12(10), 3113.
[112]
Emril, D.R.; Wibowo, S.; Meliala, L.; Susilowati, R. Cytidine 5′-diphosphocholine administration prevents peripheral neuropathic pain after sciatic nerve crush injury in rats. J. Pain Res., 2016, 9, 287-291.
[http://dx.doi.org/10.2147/JPR.S70481] [PMID: 27284264]
[113]
Khakpai, F.; Ramezanikhah, M.; Valizadegan, F.; Zarrindast, M.R. Synergistic effect between imipramine and citicoline upon induction of analgesic and antidepressant effects in mice. Neurosci. Lett., 2021, 760, 136095.
[http://dx.doi.org/10.1016/j.neulet.2021.136095] [PMID: 34216716]
[114]
Ahlawat, A.; Sharma, S. A new promising simultaneous approach for attenuating type II diabetes mellitus induced neuropathic pain in rats: iNOS inhibition and neuroregeneration. Eur. J. Pharmacol., 2018, 818, 419-428.
[http://dx.doi.org/10.1016/j.ejphar.2017.11.010] [PMID: 29154836]
[115]
Caner, B.; Kafa, M.I.; Bekar, A.; Kurt, M.A.; Karli, N.; Cansev, M.; Ulus, I.H. Intraperitoneal administration of CDP-choline or a combination of cytidine plus choline improves nerve regeneration and functional recovery in a rat model of sciatic nerve injury. Neurol. Res., 2012, 34(3), 238-245.
[http://dx.doi.org/10.1179/1743132812Y.0000000003] [PMID: 22449436]
[116]
Gundogdu, E.B.; Bekar, A.; Turkyilmaz, M.; Gumus, A.; Kafa, I.M.; Cansev, M. CDP-choline modulates matrix metalloproteinases in rat sciatic injury. J. Surg. Res., 2016, 200(2), 655-663.
[http://dx.doi.org/10.1016/j.jss.2015.10.003] [PMID: 26521098]
[117]
Gunawijaya, D.; Widyadharma, I.; Wijayanti, I.A.S. Citicoline as a suggested novel adjuvant for painful diabetic polyneuropathy. Rom. J. Neurol., 2021, 20(2), 2.
[http://dx.doi.org/10.37897/RJN.2021.2.1]
[118]
Šimat, V. Elabed, N.; Kulawik, P.; Ceylan, Z.; Jamroz, E.; Yazgan, H.; Čagalj M.; Regenstein, J.M.; Özogul, F. Recent advances in marine-based nutraceuticals and their health benefits. Mar. Drugs, 2020, 18(12), 627.
[http://dx.doi.org/10.3390/md18120627]
[119]
Suleria, H.A.R.; Osborne, S.; Masci, P.; Gobe, G. Marine-based nutraceuticals: An innovative trend in the food and supplement industries. Mar. Drugs, 2015, 13(10), 6336-6351.
[http://dx.doi.org/10.3390/md13106336] [PMID: 26473889]
[120]
Kohandel, Z.; Farkhondeh, T.; Aschner, M.; Samarghandian, S. Nrf2 a molecular therapeutic target for Astaxanthin. Biomed. Pharmacother., 2021, 137, 111374.
[http://dx.doi.org/10.1016/j.biopha.2021.111374] [PMID: 33761600]
[121]
Fakhri, S.; Abbaszadeh, F.; Dargahi, L.; Jorjani, M. Astaxanthin: A mechanistic review on its biological activities and health benefits. Pharmacol. Res., 2018, 136, 1-20.
[http://dx.doi.org/10.1016/j.phrs.2018.08.012] [PMID: 30121358]
[122]
Fakhri, S.; Dargahi, L.; Abbaszadeh, F.; Jorjani, M. Astaxanthin attenuates neuroinflammation contributed to the neuropathic pain and motor dysfunction following compression spinal cord injury. Brain Res. Bull., 2018, 143, 217-224.
[http://dx.doi.org/10.1016/j.brainresbull.2018.09.011] [PMID: 30243665]
[123]
Kanwugu, O.N.; Glukhareva, T.V.; Danilova, I.G.; Kovaleva, E.G. Natural antioxidants in diabetes treatment and management: Prospects of astaxanthin. Crit. Rev. Food Sci. Nutr., 2021, 16, 1-24.
[http://dx.doi.org/10.1080/10408398.2021.1881434] [PMID: 33591215]
[124]
Gaur, S.; Gaur, S.; Singhal, S.; Mishra, R.; Bajpai, S. Astaxanthin ameliorates diabetic neuropathy via modulating the inflammatory cytokines in STZ induced diabetic mice. Int. J. Adv. Res. (Indore), 2022, 10(3), 371-378.
[http://dx.doi.org/10.21474/IJAR01/14399]
[125]
Landon, R.; Gueguen, V.; Petite, H.; Letourneur, D.; Pavon-Djavid, G.; Anagnostou, F. Impact of astaxanthin on diabetes pathogenesis and chronic complications. Mar. Drugs, 2020, 18(7), 357.
[http://dx.doi.org/10.3390/md18070357] [PMID: 32660119]
[126]
Fakhri, S.; Dargahi, L.; Abbaszadeh, F.; Jorjani, M. Effects of astaxanthin on sensory-motor function in a compression model of spinal cord injury: Involvement of ERK and AKT signaling pathway. Eur. J. Pain, 2019, 23(4), 750-764.
[http://dx.doi.org/10.1002/ejp.1342] [PMID: 30427581]
[127]
Hosseini, S.F.; Rezaei, M.; McClements, D.J. Bioactive functional ingredients from aquatic origin: A review of recent progress in marine derived nutraceuticals. Crit. Rev. Food Sci. Nutr., 2020, 30, 1-28.
[PMID: 33124897]
[128]
Fakhri, S.; Aneva, I.; Farzaei, M.; Sobarzo-Sánchez, H.; Sobarzo-Sánchez, E. The neuroprotective effects of astaxanthin: Therapeutic targets and clinical perspective. Molecules, 2019, 24(14), 2640.
[http://dx.doi.org/10.3390/molecules24142640]
[129]
Nasab, S.B.; Homaei, A.; Pletschke, B.I.; Salinas-Salazar, C.; Casillo-Zacar´ıas, C.; Parra-Sald’ıvar, R. Marine resources effective in controlling and treating diabetes and its associated complications. Process Biochem., 2020, 92, 313-342.
[http://dx.doi.org/10.1016/j.procbio.2020.01.024]
[130]
Lauritano, C.; Ianora, A. Marine organisms with anti-diabetes properties. Mar. Drugs, 2016, 14(12), 220.
[http://dx.doi.org/10.3390/md14120220] [PMID: 27916864]
[131]
Ning, C.; Wang, H.D.; Gao, R.; Chang, Y.C.; Hu, F.; Meng, X.; Huang, S.Y. Marine derived protein kinase inhibitors for neuroinflammatory diseases. Bio Med Eng,, 2018, 17(1), 46.
[http://dx.doi.org/10.1186/s12938-018-0477-5]
[132]
Shrestha, S.; Zhang, W.; Smid, S.D. Phlorotannins: A review on biosynthesis, chemistry and bioactivity. Food Biosci., 2021, 39, 100832.
[http://dx.doi.org/10.1016/j.fbio.2020.100832]
[133]
Lopes, G.; Andrade, P.; Valentão, P. Phlorotannins: Towards new pharmacological interventions for diabetes mellitus type 2. Molecules, 2017, 22(1), 56.
[http://dx.doi.org/10.3390/molecules22010056]
[134]
Rajan, D.K.; Mohan, K.; Zhang, S.; Ganesan, A.R. Dieckol: A brown algal phlorotannin with biological potential. Biomed. Pharmacother., 2021, 142, 111988.
[http://dx.doi.org/10.1016/j.biopha.2021.111988] [PMID: 34371307]
[135]
Li, Z.; Wang, Y.; Zhao, J.; Zhang, H. Dieckol attenuates the nociception and inflammatory responses in different nociceptive and inflammatory induced mice model. Saudi J. Biol. Sci., 2021, 28(9), 4891-4899.
[http://dx.doi.org/10.1016/j.sjbs.2021.06.021] [PMID: 34466063]
[136]
Behl, T.; Grover, M.; Shah, K.; Makkar, R.; Kaur, L.; Sharma, S.; Gupta, J. Role of omega-3-fatty acid in the management of diabetes and associated complications. In: Bioactive Food as Dietary Interventions for Diabetes, 2nd ed; Watson, R.R.; Preedy, V.R., Eds.; Elsevier Science: Amsterdam, Netherlands, 2019; pp. 185-192.
[137]
Margină, D.; Ungurianu, A.; Purdel, C.; Nițulescu, G.M.; Tsoukalas, D.; Sarandi, E.; Thanasoula, M.; Burykina, T.I; Tekos, F.; Buha, A.; Nikitovic, D.; Kouretas, D.; Tsatsakis, A.M. Analysis of the intricate effects of polyunsaturated fatty acids and polyphenols on inflammatory pathways in health and disease. Food Chem. Toxicol., 2020, 143, 111558.
[http://dx.doi.org/10.1016/j.fct.2020.111558] [PMID: 32640331]
[138]
Giacobbe, J.; Benoiton, B.; Zunszain, P.; Pariante, C.M.; Borsini, A. The anti-inflammatory role of Omega-3 polyunsaturated fatty acids metabolites in pre-clinical models of psychiatric, neurodegenerative, and neurological disorders. Front. Psychiatry, 2020, 11, 122.
[http://dx.doi.org/10.3389/fpsyt.2020.00122] [PMID: 32180741]
[139]
Tatsumi, Y.; Kato, A.; Sango, K.; Himeno, T.; Kondo, M.; Kato, Y.; Kamiya, H.; Nakamura, J.; Kato, K. Omega-3 polyunsaturated fatty acids exert anti-oxidant effects through the nuclear factor (erythroid-derived 2)-related factor 2 pathway in immortalized mouse Schwann cells. J. Diabetes Investig., 2019, 10(3), 602-612.
[http://dx.doi.org/10.1111/jdi.12931] [PMID: 30216708]
[140]
Eid, S.; Sas, K.M.; Abcouwer, S.F.; Feldman, E.L.; Gardner, T.W.; Pennathur, S.; Fort, P.E. New insights into the mechanisms of diabetic complications: Role of lipids and lipid metabolism. Diabetologia, 2019, 62(9), 1539-1549.
[http://dx.doi.org/10.1007/s00125-019-4959-1] [PMID: 31346658]
[141]
Unda, S.R.; Villegas, E.A.; Toledo, M.E.; Asis Onell, G.; Laino, C.H. Beneficial effects of fish oil enriched in omega-3 fatty acids on the development and maintenance of neuropathic pain. J. Pharm. Pharmacol., 2020, 72(3), 437-447.
[http://dx.doi.org/10.1111/jphp.13213] [PMID: 31876957]
[142]
Yorek, M.A. The potential role of fatty acids in treating diabetic neuropathy. Curr. Diab. Rep., 2018, 18(10), 86.
[http://dx.doi.org/10.1007/s11892-018-1046-9] [PMID: 30145729]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy