Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Electrochemical Nanomaterial-based Sensors/Biosensors for Drug Monitoring

Author(s): Masoud Negahdary*, Nathália Florência Barros Azeredo, Berlane Gomes Santos, Thawan Gomes de Oliveira, Renato Soares de Oliveira Lins, Irlan dos Santos Lima and Lúcio Angnes*

Volume 23, Issue 4, 2023

Published on: 08 November, 2022

Page: [295 - 315] Pages: 21

DOI: 10.2174/1568026623666221014154915

Price: $65

Abstract

Determining the amount of medication used is essential for correctly managing treatment systems. The unauthorized use of drugs and the importance of determining the absorbed and required dose of drugs in target organs are essential factors that justify the design of new drug monitoring systems. Electrochemical sensors and biosensors based on nanomaterials have been developed for drug monitoring in the past few years. The use of nanomaterials to optimize the analyte detection process and facilitate electron transfer in electrochemical processes has enhanced intermolecular interactions and increased diagnostic sensitivity. Considering this review, in the first part, the evaluation of cancer drugs is examined, which can be used to determine the exact dose of the drug required in different stages of cancer. Accurate monitoring of cancer drugs can increase patient life expectancy, reduce side effects, and increase economic savings. In the next section, sensors and biosensors designed for antibiotics are examined. Accurate measurement of antibiotics for determining the effectiveness of the dose in controlling infections and preventing antibiotic resistance is possible with the help of these drug diagnostic platforms. In the next part, the diagnosis of different hormones is considered. Abnormal amounts (low/high) of hormones cause multiple physiological complications and various disabilities. Therefore, accurate determination of hormone levels can effectively treat hormonal changes. In the last section, other drugs, including drugs and analgesics for which the use of electrochemical diagnostic platforms can significantly help drug distribution and social health systems, are also discussed.

Graphical Abstract

[1]
Keeys, C.A.; Harding, B.W.; Migneco, G.E.; Rahini, S.S.; Coleman, H.B. New drug formulary management and utilization: evidence in sex, race, and ethnicity: 2019-2020. Ann. Pharmacother., 2022, 56(2), 139-145.
[http://dx.doi.org/10.1177/10600280211019765] [PMID: 34049437]
[2]
Lyman, M.D. Drugs in Society: Causes, Concepts, and Control; Taylor & Francis: UK, 2016.
[http://dx.doi.org/10.4324/9781315474373]
[3]
Mégarbane, B.; Oberlin, M.; Alvarez, J.C.; Balen, F.; Beaune, S.; Bédry, R.; Chauvin, A.; Claudet, I.; Danel, V.; Debaty, G.; Delahaye, A.; Deye, N.; Gaulier, J.M.; Grossenbacher, F.; Hantson, P.; Jacobs, F.; Jaffal, K.; Labadie, M.; Labat, L.; Langrand, J.; Lapostolle, F.; Le Conte, P.; Maignan, M.; Nisse, P.; Sauder, P.; Tournoud, C.; Vodovar, D.; Voicu, S.; Claret, P.G.; Cerf, C. Management of pharmaceutical and recreational drug poisoning. Ann. Intensive Care, 2020, 10(1), 157.
[http://dx.doi.org/10.1186/s13613-020-00762-9] [PMID: 33226502]
[4]
Miniño, A.M.; Hedegaard, H. Drug poisoning mortality, by state and by race and ethnicity: United States, 2019. NCHS Health EStats, 2021, Available from: https://www.cdc.gov/nchs/data/hestat/drug_poisoning_mortality/drug-poisoinging-mortality.htm
[http://dx.doi.org/10.15620/cdc:103967]
[5]
Puiguriguer Ferrando, J.; Miralles Corrales, S.; Frontera Juan, G.; Campillo-Artero, C.; Barceló Martín, B. Poisoning among the elderly. Rev. Clin. Esp. (Barc.), 2021, 221(8), 441-447.
[http://dx.doi.org/10.1016/j.rceng.2020.08.004] [PMID: 34031016]
[6]
Cousins, G.; Bennett, K.E. Mortality in people who use illicit opioids in England. Lancet Public Health, 2022, 7(2), e96-e97.
[http://dx.doi.org/10.1016/S2468-2667(21)00278-4] [PMID: 34906333]
[7]
Nayak, S.; Brigham, J.; Gerstenblith, T.A. 11 Psychopharmacology in the critical care setting. In: Critical Care Psychology and Rehabilitation: Principles and Practice; Oxford Academic: Oxford, UK, 2021, pp. 235.
[8]
Dezfulian, C.; Orkin, A.M.; Maron, B.A.; Elmer, J.; Girotra, S.; Gladwin, M.T.; Merchant, R.M.; Panchal, A.R.; Perman, S.M.; Starks, M.A.; van Diepen, S.; Lavonas, E.J. Opioid-associated out-of-hospital cardiac arrest: distinctive clinical features and implications for health care and public responses: A scientific statement from the American Heart Association. Circulation, 2021, 143(16), e836-e870.
[http://dx.doi.org/10.1161/CIR.0000000000000958] [PMID: 33682423]
[9]
Jiang, T.; Nagy, D.; Rosellini, A.J.; Horváth-Puhó, E.; Keyes, K.M.; Lash, T.L.; Galea, S.; Sørensen, H.T.; Gradus, J.L. Suicide prediction among men and women with depression: A population-based study. J. Psychiatr. Res., 2021, 142, 275-282.
[http://dx.doi.org/10.1016/j.jpsychires.2021.08.003] [PMID: 34403969]
[10]
Vigata, M.; Meinert, C.; Hutmacher, D.W.; Bock, N. Hydrogels as drug delivery systems: A review of current characterization and evaluation techniques. Pharmaceutics, 2020, 12(12), 1188.
[http://dx.doi.org/10.3390/pharmaceutics12121188] [PMID: 33297493]
[11]
Ahmadian, E.; Samiei, M.; Hasanzadeh, A.; Kavetskyy, T.; Jafari, S.; Alipour, M.; Salatin, S.; Rameshrad, M.; Sharifi, S.; Eftekhari, A.; Hasanzadeh, M. Monitoring of drug resistance towards reducing the toxicity of pharmaceutical compounds: Past, present and future. J. Pharm. Biomed. Anal., 2020, 186, 113265.
[http://dx.doi.org/10.1016/j.jpba.2020.113265] [PMID: 32283481]
[12]
Krishnaswamy, G.; Shivaraja, G.; Sreenivasa, S.; Voltammetric Applications, D.B.A.K. Voltammetric applications in drug detection: Mini review. Voltammet. Sens. Appl., 2022, 202, 281.
[13]
de Faria, L.V.; Lisboa, T.P.; Campos, N.S.; Alves, G.F.; Matos, M.A.C.; Matos, R.C.; Munoz, R.A.A. Electrochemical methods for the determination of antibiotic residues in milk: A critical review. Anal. Chim. Acta, 2021, 1173, 338569.
[http://dx.doi.org/10.1016/j.aca.2021.338569] [PMID: 34172150]
[14]
Kalambate, P.K.; Noiphung, J.; Rodthongkum, N.; Larpant, N.; Thirabowonkitphithan, P.; Rojanarata, T.; Hasan, M.; Huang, Y.; Laiwattanapaisal, W. Nanomaterials-based electrochemical sensors and biosensors for the detection of non-steroidal anti-inflammatory drugs. Trends Analyt. Chem., 2021, 143, 116403.
[http://dx.doi.org/10.1016/j.trac.2021.116403]
[15]
Negahdary, M.; Behjati-Ardakani, M.; Sattarahmady, N.; Yadegari, H.; Heli, H. Electrochemical aptasensing of human cardiac troponin I based on an array of gold nanodumbbells-Applied to early detection of myocardial infarction. Sens. Actuators B Chem., 2017, 252, 62-71.
[http://dx.doi.org/10.1016/j.snb.2017.05.149]
[16]
Heiat, M.; Negahdary, M. Sensitive diagnosis of alpha-fetoprotein by a label free nanoaptasensor designed by modified Au electrode with spindle-shaped gold nanostructure. Microchem. J., 2019, 148, 456-466.
[http://dx.doi.org/10.1016/j.microc.2019.05.004]
[17]
Negahdary, M.; Sattarahmady, N.; Heli, H. Advances in prostate specific antigen biosensors-impact of nanotechnology. Clin. Chim. Acta, 2020, 504, 43-55.
[http://dx.doi.org/10.1016/j.cca.2020.01.028] [PMID: 32004532]
[18]
Negahdary, M. Electrochemical aptasensors based on the gold nanostructures. Talanta, 2020, 216, 120999.
[http://dx.doi.org/10.1016/j.talanta.2020.120999] [PMID: 32456913]
[19]
Negahdary, M. Aptamers in nanostructure-based electrochemical biosensors for cardiac biomarkers and cancer biomarkers: A review. Biosens. Bioelectron., 2020, 152, 112018.
[http://dx.doi.org/10.1016/j.bios.2020.112018] [PMID: 32056737]
[20]
Negahdary, M.; Angnes, L. An aptasensing platform for detection of heat shock protein 70 kDa (HSP70) using a modified gold electrode with lady fern-like gold (LFG) nanostructure. Talanta, 2022, 246, 123511.
[http://dx.doi.org/10.1016/j.talanta.2022.123511] [PMID: 35500518]
[21]
Negahdary, M.; Angnes, L. Application of electrochemical biosensors for the detection of microRNAs (miRNAs) related to cancer. Coord. Chem. Rev., 2022, 464, 214565.
[http://dx.doi.org/10.1016/j.ccr.2022.214565]
[22]
Negahdary, M.; Angnes, L. Electrochemical aptamer-based nanobiosensors for diagnosing Alzheimer’s disease: A review. Biomater. Adv., 2022, 135, 112689.
[http://dx.doi.org/10.1016/j.msec.2022.112689] [PMID: 35581077]
[23]
Negahdary, M.; Angnes, L. Electrochemical nanobiosensors equipped with peptides: a review. Mikrochim. Acta, 2022, 189(3), 94.
[http://dx.doi.org/10.1007/s00604-022-05184-x] [PMID: 35132460]
[24]
Qian, L.; Durairaj, S.; Prins, S.; Chen, A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens. Bioelectron., 2021, 175, 112836.
[http://dx.doi.org/10.1016/j.bios.2020.112836] [PMID: 33272868]
[25]
Goud, K.Y.; Satyanarayana, M.; Hayat, A.; Gobi, K.V.; Marty, J.L. Nanomaterial-based electrochemical sensors in pharmaceutical applications.In: Nanoparticles in Pharmacotherapy; Elsevier: Amsterdam, 2019, pp. 195-216.
[http://dx.doi.org/10.1016/B978-0-12-816504-1.00015-6]
[26]
Srivastava, A.K.; Upadhyay, S.S.; Rawool, C.R.; Punde, N.S.; Rajpurohit, A.S. Voltammetric techniques for the analysis of drugs using nanomaterials based chemically modified electrodes. Curr. Anal. Chem., 2019, 15(3), 249-276.
[http://dx.doi.org/10.2174/1573411014666180510152154]
[27]
Porto, L.S.; Silva, D.N.; de Oliveira, A.E.F.; Pereira, A.C.; Borges, K.B. Carbon nanomaterials: synthesis and applications to development of electrochemical sensors in determination of drugs and compounds of clinical interest. Rev. Anal. Chem., 2020, 38(3), 20190017.
[http://dx.doi.org/10.1515/revac-2019-0017]
[28]
Ghalkhani, M.; Kaya, S.I.; Bakirhan, N.K.; Ozkan, Y.; Ozkan, S.A. Application of nanomaterials in development of electrochemical sensors and drug delivery systems for anticancer drugs and cancer biomarkers. Crit. Rev. Anal. Chem., 2022, 52(3), 481-503.
[http://dx.doi.org/10.1080/10408347.2020.1808442] [PMID: 32845726]
[29]
Teymourian, H.; Parrilla, M.; Sempionatto, J.R.; Montiel, N.F.; Barfidokht, A.; Van Echelpoel, R.; De Wael, K.; Wang, J. Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens., 2020, 5(9), 2679-2700.
[http://dx.doi.org/10.1021/acssensors.0c01318] [PMID: 32822166]
[30]
Mollarasouli, F.; Zor, E.; Ozcelikay, G.; Ozkan, S.A. Magnetic nanoparticles in developing electrochemical sensors for pharmaceutical and biomedical applications. Talanta, 2021, 226, 122108.
[http://dx.doi.org/10.1016/j.talanta.2021.122108] [PMID: 33676664]
[31]
Buledi, J.A.; Shah, Z-H.; Mallah, A.; Solangi, A.R. Current perspective and developments in electrochemical sensors modified with nanomaterials for environmental and pharmaceutical analysis. Curr. Anal. Chem., 2022, 18(1), 102-115.
[http://dx.doi.org/10.2174/1573411016999201006122740]
[32]
Karimi, F.; Zakariae, N.; Esmaeili, R.; Alizadeh, M.; Tamadon, A.M. Carbon nanotubes for amplification of electrochemical signal in drug and food analysis; a mini review. Curr. Biochem. Eng., 2020, 6(2), 114-119.
[http://dx.doi.org/10.2174/2212711906666200224110404]
[33]
Klimuntowski, M.; Alam, M.M.; Singh, G.; Howlader, M.M.R. Electrochemical sensing of cannabinoids in biofluids: a noninvasive tool for drug detection. ACS Sens., 2020, 5(3), 620-636.
[http://dx.doi.org/10.1021/acssensors.9b02390] [PMID: 32102542]
[34]
Lima, H.R.S.; da Silva, J.S.; de Oliveira Farias, E.A.; Teixeira, P.R.S.; Eiras, C.; Nunes, L.C.C. Electrochemical sensors and biosensors for the analysis of antineoplastic drugs. Biosens. Bioelectron., 2018, 108, 27-37.
[http://dx.doi.org/10.1016/j.bios.2018.02.034] [PMID: 29494885]
[35]
Tajik, S.; Beitollahi, H.; Shahsavari, S.; Nejad, F.G. Simultaneous and selective electrochemical sensing of methotrexate and folic acid in biological fluids and pharmaceutical samples using Fe3O4/ppy/Pd nanocomposite modified screen printed graphite electrode. Chemosphere, 2022, 291(Pt 3), 132736.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132736] [PMID: 34728224]
[36]
Shalali, F.; Cheraghi, S.; Taher, M.A. A sensitive electrochemical sensor amplified with ionic liquid and N-CQD/Fe3O4 nanoparticles for detection of raloxifene in the presence of tamoxifen as two essentials anticancer drugs. Mater. Chem. Phys., 2022, 278, 125658.
[http://dx.doi.org/10.1016/j.matchemphys.2021.125658]
[37]
Raymundo-Pereira, P.A.; Gomes, N.O.; Machado, S.A.S.; Oliveira, O.N., Jr Wearable glove-embedded sensors for therapeutic drug monitoring in sweat for personalized medicine. Chem. Eng. J., 2022, 435, 135047.
[http://dx.doi.org/10.1016/j.cej.2022.135047]
[38]
Karimi-Maleh, H.; Khataee, A.; Karimi, F.; Baghayeri, M.; Fu, L.; Rouhi, J.; Karaman, C.; Karaman, O.; Boukherroub, R. A green and sensitive guanine-based DNA biosensor for idarubicin anticancer monitoring in biological samples: A simple and fast strategy for control of health quality in chemotherapy procedure confirmed by docking investigation. Chemosphere, 2022, 291(Pt 3), 132928.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132928] [PMID: 34800513]
[39]
Bavandpour, R.; Rajabi, M.; Asghari, A. Electrochemical determination of epirubicin in the presence of topotecan as essential anti-cancer compounds using paste electrode amplified with Pt/SWCNT nanocomposite and a deep eutectic solvent. Chemosphere, 2022, 289, 133060.
[http://dx.doi.org/10.1016/j.chemosphere.2021.133060] [PMID: 34838830]
[40]
Rong, S.; Zou, L.; Meng, L.; Yang, X.; Dai, J.; Wu, M.; Qiu, R.; Tian, Y.; Feng, X.; Ren, X.; Jia, L.; Jiang, L.; Hang, Y.; Ma, H.; Pan, H. Dual function metal-organic frameworks based ratiometric electrochemical sensor for detection of doxorubicin. Anal. Chim. Acta, 2022, 1196, 339545.
[http://dx.doi.org/10.1016/j.aca.2022.339545] [PMID: 35151408]
[41]
Sharifi, J.; Fayazfar, H. Highly sensitive determination of doxorubicin hydrochloride antitumor agent via a carbon nanotube/gold nanoparticle based nanocomposite biosensor. Bioelectrochemistry, 2021, 139, 107741.
[http://dx.doi.org/10.1016/j.bioelechem.2021.107741] [PMID: 33524656]
[42]
Mehmandoust, M.; Uzcan, F.; Soylak, M.; Erk, N. Dual-response electrochemical electrode for sensitive monitoring of topotecan and mitomycin as anticancer drugs in real samples. Chemosphere, 2022, 291(Pt 1), 132809.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132809] [PMID: 34785182]
[43]
Hassani Moghadam, F.; Taher, M.A.; Karimi-Maleh, H. Doxorubicin anticancer drug monitoring by ds-DNA-based electrochemical biosensor in clinical samples. Micromachines (Basel), 2021, 12(7), 808.
[http://dx.doi.org/10.3390/mi12070808] [PMID: 34357218]
[44]
Roostaee, M.; Sheikhshoaei, I.; Karimi-Maleh, H. Fe3O4@Au-rGO Nanocomposite/Ionic Liquid Modified Sensor for Ultrasensitive and Selective Sensing of Doxorubicin. Top. Catal., 2022, 65(5-6), 633-642.
[http://dx.doi.org/10.1007/s11244-021-01504-2]
[45]
Manjula, N.; Vinothkumar, V.; Chen, S.M. Synthesis and characterization of iron-cobalt oxide/polypyrrole nanocomposite: An electrochemical sensing platform of anti-prostate cancer drug flutamide in human urine and serum samples. Colloids Surf. A Physicochem. Eng. Asp., 2021, 628, 127367.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127367]
[46]
Hwa, K.Y.; Santhan, A.; Tata, S.K.S. Fabrication of Sn-doped ZnO hexagonal micro discs anchored on rGO for electrochemical detection of anti-androgen drug flutamide in water and biological samples. Microchem. J., 2021, 160, 105689.
[http://dx.doi.org/10.1016/j.microc.2020.105689]
[47]
Kesavan, G.; Chen, S.M. Highly sensitive manganese oxide/hexagonal boron nitride nanocomposite: An efficient electrocatalyst for the detection of anti-cancer drug flutamide. Microchem. J., 2021, 163, 105906.
[http://dx.doi.org/10.1016/j.microc.2020.105906]
[48]
Ghalkhani, M.; Sohouli, E. Synthesis of the decorated carbon nano onions with aminated MCM-41/Fe3O4 NPs: Morphology and electrochemical sensing performance for methotrexate analysis. Microporous Mesoporous Mater., 2022, 331, 111658.
[http://dx.doi.org/10.1016/j.micromeso.2021.111658]
[49]
Mathad, A.S. Seetharamappa, J.; Kalanur, S.S. β-Cyclodextrin anchored neem carbon dots for enhanced electrochemical sensing performance of an anticancer drug, lapatinib via host-guest inclusion. J. Mol. Liq., 2022, 350, 118582.
[http://dx.doi.org/10.1016/j.molliq.2022.118582]
[50]
Sharma, T.S.K.; Hwa, K.Y. Rational design and preparation of copper vanadate anchored on sulfur doped reduced graphene oxide nanocomposite for electrochemical sensing of antiandrogen drug nilutamide using flexible electrodes. J. Hazard. Mater., 2021, 410, 124659.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124659] [PMID: 33279323]
[51]
Karimi-Maleh, H.; Alizadeh, M.; Orooji, Y.; Karimi, F.; Baghayeri, M.; Rouhi, J.; Tajik, S.; Beitollahi, H.; Agarwal, S.; Gupta, V.K.; Rajendran, S.; Rostamnia, S.; Fu, L.; Saberi-Movahed, F.; Malekmohammadi, S. Guanine-based DNA biosensor amplified with Pt/SWCNTs nanocomposite as analytical tool for nanomolar determination of daunorubicin as an anticancer drug: a docking/experimental investigation. Ind. Eng. Chem. Res., 2021, 60(2), 816-823.
[http://dx.doi.org/10.1021/acs.iecr.0c04698]
[52]
Foroughi, M.M.; Jahani, S.; Aramesh-Broujeni, Z.; Rostaminasab Dolatabad, M. A label-free electrochemical biosensor based on 3D cubic Eu 3+/Cu2O nanostructures with clover-like faces for the determination of anticancer drug cytarabine. RSC Advances, 2021, 11(28), 17514-17525.
[http://dx.doi.org/10.1039/D1RA01372F] [PMID: 35479699]
[53]
Mahmoudi-Moghaddam, H.; Garkani-Nejad, Z. A new electrochemical DNA biosensor for determination of anti-cancer drug chlorambucil based on a polypyrrole/flower-like platinum/NiCo2 O4/pencil graphite electrode. RSC Advances, 2022, 12(8), 5001-5011.
[http://dx.doi.org/10.1039/D1RA08291D] [PMID: 35425519]
[54]
Mahnashi, M.H.; Mahmoud, A.M.; Alhazzani, K.; Alanazi, A.Z.; Alaseem, A.M.; Algahtani, M.M.; El-Wekil, M.M. Ultrasensitive and selective molecularly imprinted electrochemical oxaliplatin sensor based on a novel nitrogen-doped carbon nanotubes/Ag@cu MOF as a signal enhancer and reporter nanohybrid. Mikrochim. Acta, 2021, 188(4), 124.
[http://dx.doi.org/10.1007/s00604-021-04781-6] [PMID: 33712895]
[55]
Li, W.; Deng, X.; Wu, Z.; Zhang, L.; Jiao, J. An electrochemical sensor for quantitation of the oral health care agent chlorogenic acid based on bimetallic nanowires with functionalized reduced graphene oxide nanohybrids. ACS Omega, 2022, 7(5), 4614-4623.
[http://dx.doi.org/10.1021/acsomega.1c06612] [PMID: 35155952]
[56]
Bavandpour, R.; Rajabi, M.; Karimi-Maleh, H.; Asghari, A. Application of deep eutectic solvent and SWCNT-ZrO2 nanocomposite as conductive mediators for the fabrication of simple and rapid electrochemical sensor for determination of trace anti-migration drugs. Microchem. J., 2021, 165, 106141.
[http://dx.doi.org/10.1016/j.microc.2021.106141]
[57]
Ibrahim, H.; Temerk, Y. A novel electrochemical sensor based on functionalized glassy carbon microparticles@CeO2 core–shell for ultrasensitive detection of breast anticancer drug exemestane in patient plasma and pharmaceutical dosage form. Microchem. J., 2021, 167, 106264.
[http://dx.doi.org/10.1016/j.microc.2021.106264]
[58]
Doulache, M.; Kaya, S.I.; Cetinkaya, A.; K. Bakirhan, N.; Trari, M.; Ozkan, S.A. Detailed electrochemical behavior and thermodynamic parameters of anticancer drug regorafenib and its sensitive electroanalytical assay in biological and pharmaceutical samples. Microchem. J., 2021, 170, 106717.
[http://dx.doi.org/10.1016/j.microc.2021.106717]
[59]
Mehmandoust, M.; Erk, N.; Karaman, C.; Karimi, F.; Salmanpour, S. Sensitive and selective electrochemical detection of epirubicin as anticancer drug based on nickel ferrite decorated with gold nanoparticles. Micromachines (Basel), 2021, 12(11), 1334.
[http://dx.doi.org/10.3390/mi12111334] [PMID: 34832746]
[60]
Tajik, S.; Beitollahi, H.; Jang, H.W.; Shokouhimehr, M. A screen printed electrode modified with Fe3O4@polypyrrole-Pt core-shell nanoparticles for electrochemical detection of 6-mercaptopurine and 6-thioguanine. Talanta, 2021, 232, 122379.
[http://dx.doi.org/10.1016/j.talanta.2021.122379] [PMID: 34074387]
[61]
Huang, Z.; Li, Z.; Chen, Y.; Xu, L.; Xie, Q.; Deng, H.; Chen, W.; Peng, H. Regulating valence states of gold nanocluster as a new strategy for the ultrasensitive electrochemiluminescence detection of kanamycin. Anal. Chem., 2021, 93(10), 4635-4640.
[http://dx.doi.org/10.1021/acs.analchem.1c00063] [PMID: 33661613]
[62]
Sharma, T.S.K.; Hwa, K.Y. Architecting hierarchal Zn3V2O8/P-rGO nanostructure: Electrochemical determination of anti-viral drug azithromycin in biological samples using SPCE. Chem. Eng. J., 2022, 439, 135591.
[http://dx.doi.org/10.1016/j.cej.2022.135591]
[63]
Nehru, R.; Dong, C.D.; Chen, C.W. Cobalt-Doped Fe3O4 Nanospheres Deposited on Graphene Oxide as Electrode Materials for Electrochemical Sensing of the Antibiotic Drug. ACS Appl. Nano Mater., 2021, 4(7), 6768-6777.
[http://dx.doi.org/10.1021/acsanm.1c00826]
[64]
Prado, N.S.; Silva, L.A.J.; Takeuchi, R.M.; Richter, E.M.; Santos, A.L.; Falcão, E.H.L. Graphite sheets modified with poly(methylene blue) films: A cost-effective approach for the electrochemical sensing of the antibiotic nitrofurantoin. Microchem. J., 2022, 177, 107289.
[http://dx.doi.org/10.1016/j.microc.2022.107289]
[65]
Mahmoudi-Moghaddam, H.; Garkani-Nejad, Z. Development of the electrochemical biosensor for determination of antibiotic drug isoniazid using ds-DNA/Carbon/La3+/CuO/CPE. Measurement, 2022, 189, 110580.
[http://dx.doi.org/10.1016/j.measurement.2021.110580]
[66]
Jesu Amalraj, A.J.; Narasimha Murthy, U.; Sea-Fue, W. Ultrasensitive electrochemical detection of an antibiotic drug furaltadone in fish tissue with a ZnO-ZnCo2O4 self-assembled nano-heterostructure as an electrode material. Microchem. J., 2021, 169, 106566.
[http://dx.doi.org/10.1016/j.microc.2021.106566]
[67]
Vinothkumar, V.; Sangili, A.; Chen, S.M.; Abinaya, M. Additive-free synthesis of BiVO4 microspheres as an electrochemical sensor for determination of antituberculosis drug rifampicin. Colloids Surf. A Physicochem. Eng. Asp., 2021, 624, 126849.
[http://dx.doi.org/10.1016/j.colsurfa.2021.126849]
[68]
Rahman, M.M.; Musarraf Hussain, M.; Asiri, A.M. Sensitive detection of Penicillin-G chemical using SnO2.YbO nanomaterials by electrochemical approach. J. Saudi Chem. Soc., 2022, 26(1), 101392.
[http://dx.doi.org/10.1016/j.jscs.2021.101392]
[69]
Atta, N.F.; Galal, A.; El-Gohary, A.R.M. Novel designed electrochemical sensor for simultaneous determination of linezolid and meropenem pneumonia drugs. J. Electroanal. Chem. (Lausanne), 2021, 902, 115814.
[http://dx.doi.org/10.1016/j.jelechem.2021.115814]
[70]
Bhuvaneswari, C.; Ganesh Babu, S. Nanoarchitecture and surface engineering strategy for the construction of 3D hierarchical CuS-rGO/g-C3N4 nanostructure: An ultrasensitive and highly selective electrochemical sensor for the detection of furazolidone drug. J. Electroanal. Chem. (Lausanne), 2022, 907, 116080.
[http://dx.doi.org/10.1016/j.jelechem.2022.116080]
[71]
Haidyrah, A.S.; Sundaresan, P.; Venkatesh, K.; Ramaraj, S.K.; Thirumalraj, B. Fabrication of functionalized carbon nanofibers/carbon black composite for electrochemical investigation of antibacterial drug nitrofurantoin. Colloids Surf. A Physicochem. Eng. Asp., 2021, 627, 127112.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127112]
[72]
Kesavan, G.; Vinothkumar, V.; Chen, S.M.; Thangadurai, T.D. Construction of metal-free oxygen-doped graphitic carbon nitride as an electrochemical sensing platform for determination of antimicrobial drug metronidazole. Appl. Surf. Sci., 2021, 556, 149814.
[http://dx.doi.org/10.1016/j.apsusc.2021.149814]
[73]
Hashemi, S.A.; Mousavi, S.M.; Bahrani, S.; Gholami, A.; Chiang, W.H.; Yousefi, K.; Omidifar, N.; Rao, N.V.; Ramakrishna, S.; Babapoor, A.; Lai, C.W. Bio-enhanced polyrhodanine/graphene Oxide/Fe3O4 nanocomposite with kombucha solvent supernatant as ultra-sensitive biosensor for detection of doxorubicin hydrochloride in biological fluids. Mater. Chem. Phys., 2022, 279, 125743.
[http://dx.doi.org/10.1016/j.matchemphys.2022.125743]
[74]
Chen, Y.; Zhao, F.; Zeng, B. Fabrication of surface molecularly imprinted electrochemical sensor for the sensitive quantification of chlortetracycline with ionic liquid and MWCNT improving performance. Talanta, 2022, 239, 123130.
[http://dx.doi.org/10.1016/j.talanta.2021.123130] [PMID: 34920256]
[75]
Manjula, N.; Pulikkutty, S.; Chen, T.W.; Chen, S.M.; Liu, X. Hexagon prism-shaped cerium ferrite embedded on GC electrode for electrochemical detection of antibiotic drug ofloxacin in biological sample. Colloids Surf. A Physicochem. Eng. Asp., 2021, 627, 127129.
[http://dx.doi.org/10.1016/j.colsurfa.2021.127129]
[76]
Yahyapour, M.; Ranjbar, M.; Mohadesi, A. Determination of ciprofloxacin drug with molecularly imprinted polymer/co- metal organic framework nanofiber on modified glassy carbon electrode (GCE). J. Mater. Sci. Mater. Electron., 2021, 32(3), 3180-3190.
[http://dx.doi.org/10.1007/s10854-020-05066-z]
[77]
Zoubir, J.; Bakas, I.; Assabbane, A. Synthesis of ZnO nanoparticles on carbon graphite and its application as a highly efficient electrochemical nano-sensor for the detection of amoxicillin:analytical application: milk, human urine, and tap water. Nanotechnol. Environ. Eng., 2021, 6(3), 54.
[http://dx.doi.org/10.1007/s41204-021-00146-9]
[78]
Kelani, K.M.; Abdel-Raoof, A.M.; Ashmawy, A.M.; Omran, G.A.; Morshedy, S.; Wafaa Nassar, A.M.; Talaat, W.; Elgazzar, E. Electrochemical determination of dinitolmide in poultry product samples using a highly sensitive Mn2O3/MCNTs-NPs carbon paste electrode aided by greenness assessment tools. Food Chem., 2022, 382, 131702.
[http://dx.doi.org/10.1016/j.foodchem.2021.131702] [PMID: 35149471]
[79]
Yeasmin, S.; Wu, B.; Liu, Y.; Ullah, A.; Cheng, L.J. Nano gold-doped molecularly imprinted electrochemical sensor for rapid and ultrasensitive cortisol detection. Biosens. Bioelectron., 2022, 206, 114142.
[http://dx.doi.org/10.1016/j.bios.2022.114142] [PMID: 35259605]
[80]
Şimşek, N.; Tığ, G.A. Graphene Quantum Dot‐poly(L‐lysine)‐gold nanoparticles nanocomposite for electrochemical determination of dopamine and serotonin. Electroanalysis, 2022, 34(1), 61-73.
[http://dx.doi.org/10.1002/elan.202100442]
[81]
Pareek, S.; Jain, U.; Balayan, S.; Chauhan, N. Ultra-sensitive nano- molecular imprinting polymer-based electrochemical sensor for Follicle-Stimulating Hormone (FSH) detection. Biochem. Eng. J., 2022, 180, 108329.
[http://dx.doi.org/10.1016/j.bej.2021.108329]
[82]
Zhang, Y.; Lv, Y.; Chen, Y.; Li, Y.; Wang, Y.; Zhao, H. Trimetallic Ag@Pt-Rh core-shell nanocubes modified anode for voltammetric sensing of dopamine and sulfanilamide. Chem. Eng. Sci., 2022, 249, 117326.
[http://dx.doi.org/10.1016/j.ces.2021.117326]
[83]
Khan, M.I.; Muhammad, N.; Tariq, M.; Nishan, U.; Razaq, A.; Saleh, T.A.; Haija, M.A.; Ismail, I.; Rahim, A. Non-enzymatic electrochemical dopamine sensing probe based on hexagonal shape zinc-doped cobalt oxide (Zn-Co2O4) nanostructure. Mikrochim. Acta, 2022, 189(1), 37.
[http://dx.doi.org/10.1007/s00604-021-05142-z] [PMID: 34958414]
[84]
Amani, A.M.; Alami, A.; Shafiee, M.; Sanaye, R.; Dehghani, F.S.; Atefi, M.; Zare, M.A.; Gheisari, F. A highly sensitive electrochemical biosensor for dopamine and uric acid in the presence of a high concentration of ascorbic acid. Chem. Zvesti, 2022, 76(3), 1653-1664.
[http://dx.doi.org/10.1007/s11696-021-01929-9]
[85]
Mehmandoust, M.; Erk, N.; Karaman, C.; Karaman, O. An electrochemical molecularly imprinted sensor based on CuBi2O4/rGO@MoS2 nanocomposite and its utilization for highly selective and sensitive for linagliptin assay. Chemosphere, 2022, 291(Pt 1), 132807.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132807] [PMID: 34762887]
[86]
Goud, K.Y.; Mahato, K.; Teymourian, H.; Longardner, K.; Litvan, I.; Wang, J. Wearable electrochemical microneedle sensing platform for real-time continuous interstitial fluid monitoring of apomorphine: Toward Parkinson management. Sens. Actuators B Chem., 2022, 354, 131234.
[http://dx.doi.org/10.1016/j.snb.2021.131234]
[87]
Muthukutty, B.; Vivekanandan, A.K.; Chen, S.M.; Sivakumar, M.; Chen, S.H. Designing hybrid barium tungstate on functionalized carbon black as electrode modifier for low potential detection of antihistamine drug promethazine hydrochloride. Compos., Part B Eng., 2021, 215, 108789.
[http://dx.doi.org/10.1016/j.compositesb.2021.108789]
[88]
Balaji, R.; Maheshwaran, S.; Chen, S.M.; Chandrasekar, N.; Ethiraj, S.; Samuel, M.S.; Renganathan, V. High-performance catalytic strips assembled with BiOBr Nano-rose architectures for electrochemical and SERS detection of theophylline. Chem. Eng. J., 2021, 425, 130616.
[http://dx.doi.org/10.1016/j.cej.2021.130616]
[89]
Killedar, L.S.; Vernekar, P.R.; Shanbhag, M.M.; Shetti, N.P.; Malladi, R.S.; Veerapur, R.S.; Reddy, K.R. Fabrication of nanoclay-modified electrodes and their use as an effective electrochemical sensor for biomedical applications. J. Mol. Liq., 2022, 351, 118583.
[http://dx.doi.org/10.1016/j.molliq.2022.118583]
[90]
Qin, Y.; Hang, C.; Huang, L.; Cheng, H.; Hu, J.; Li, W.; Wu, J. An electrochemical biosensor of Sn@C derived from ZnSn(OH)6 for sensitive determination of acetaminophen. Microchem. J., 2022, 175, 107128.
[http://dx.doi.org/10.1016/j.microc.2021.107128]
[91]
Tam Toan, T.T.; Nguyen, D.M.; Dung, D.M.; Ngoc Hoa, D.T.; Thanh Nhi, L.T.; Thanh, N.M.; Dung, N.N.; Vasseghian, Y.; Golzadeh, N. Electrochemical sensor to detect terbutaline in biological samples by a green agent. Chemosphere, 2022, 289, 133171.
[http://dx.doi.org/10.1016/j.chemosphere.2021.133171] [PMID: 34875292]
[92]
Imani, R.; Shabani-Nooshabadi, M.; Ziaie, N. Fabrication of a sensitive sensor for electrochemical detection of diltiazem in presence of methyldopa. Chemosphere, 2022, 297, 134170.
[http://dx.doi.org/10.1016/j.chemosphere.2022.134170] [PMID: 35247446]
[93]
Nataraj, N.; Chen, T.W.; Gan, Z.W.; Chen, S.M.; Hatshan, M.R.; Ali, M.A. Bifunctional 3D-MOF-based nanoprobes for electrochemical sensing and nanozyme enhanced with peroxidase mimicking for colorimetric detection of acetaminophen. Mater. Today Chem., 2022, 23, 100725.
[http://dx.doi.org/10.1016/j.mtchem.2021.100725]
[94]
Ren, S.; Feng, R.; Cheng, S.; Huang, L.; Wang, Q.; Zheng, Z. Construction of a sensitive electrochemical sensor based on hybrid 1 T/2H MoS2 nanoflowers anchoring on rGO nanosheets for the voltammetric determination of acetaminophen. Microchem. J., 2022, 175, 107129.
[http://dx.doi.org/10.1016/j.microc.2021.107129]
[95]
Venkatachalam, R.; Annadurai, T.; Nesakumar, N.; Vembu, S. Fortified electrochemical activity of Au@Fe3O4@rGO decorated GCE for sensing of acetaminophen. Mater. Today Commun., 2021, 27, 102236.
[http://dx.doi.org/10.1016/j.mtcomm.2021.102236]
[96]
Mohammadzadeh kakhki, R.; Yaghoobi Rahni, S. A sensitive photoelectrochemical sensor based on a green nano-Cu3V2O8-modified graphite pencil electrode for determination of acetaminophen. J. Mater. Sci. Mater. Electron., 2022, 33(4), 1798-1806.
[http://dx.doi.org/10.1007/s10854-021-07317-z]
[97]
Sadeghi, M.; Shabani-Nooshabadi, M. High sensitive titanium/chitosan-coated nanoporous gold film electrode for electrochemical determination of acetaminophen in the presence of piroxicam. Prog. Org. Coat., 2021, 151, 106100.
[http://dx.doi.org/10.1016/j.porgcoat.2020.106100]
[98]
Pham, T.S.H.; Hasegawa, S.; Mahon, P.; Guérin, K.; Dubois, M.; Yu, A. Graphene nanocomposites based electrochemical sensing platform for simultaneous detection of multi-drugs. Electroanalysis, 2022, 34(3), 435-444.
[http://dx.doi.org/10.1002/elan.202100485]
[99]
Hwa, K.Y.; Santhan, A.; Ganguly, A.; Sharma, T.S.K. Point of need simultaneous biosensing of pharmaceutical micropollutants with binder free conjugation of manganese stannate micro-rods on reduced graphene oxide in real-time analysis. J. Taiwan Inst. Chem. Eng., 2022, 131, 104135.
[http://dx.doi.org/10.1016/j.jtice.2021.11.002]
[100]
Murugan, E.; Poongan, A.; Dhamodharan, A. Electrochemical sensing of acetaminophen, phenylephrine hydrochloride and cytosine in drugs and blood serum samples using β-AgVO3/ZrO2@g-C3N4 composite coated GC electrode. J. Mol. Liq., 2022, 348, 118447.
[http://dx.doi.org/10.1016/j.molliq.2021.118447]
[101]
Mehrabi, A.; Rahimnejad, M.; Mohammadi, M.; Pourali, M. Electrochemical detection of Flutamide as an anticancer drug with gold nanoparticles modified glassy carbon electrode in the presence of prostate cancer cells. J. Appl. Electrochem., 2021, 51(4), 597-606.
[http://dx.doi.org/10.1007/s10800-020-01519-9]
[102]
Selvi, S.V.; Nataraj, N.; Chen, T.W.; Chen, S.M.; Nagarajan, S.; Ko, C.S.; Tseng, T-W.; Huang, C-C. In-situ formation of 2H phase MoS2/cerium-zirconium oxide nanohybrid for potential electrochemical detection of an anticancer drug flutamide. Mater. Today Chem., 2022, 23, 100749.
[http://dx.doi.org/10.1016/j.mtchem.2021.100749]
[103]
Kokulnathan, T.; Vishnuraj, R.; Wang, T.J.; Kumar, E.A.; Pullithadathil, B. Heterostructured bismuth oxide/hexagonal-boron nitride nanocomposite: A disposable electrochemical sensor for detection of flutamide. Ecotoxicol. Environ. Saf., 2021, 207, 111276.
[http://dx.doi.org/10.1016/j.ecoenv.2020.111276] [PMID: 32931965]
[104]
Fekry, A.M.; Azab, S.M.; Abou Attia, F.M.; Ibrahim, N.S.; Mohamed, G.G. An innovative sensor for the electrochemical determination of the new melatonergic antidepressant drug agomelatine. Measurement, 2021, 186, 110160.
[http://dx.doi.org/10.1016/j.measurement.2021.110160]
[105]
Cheraghi, S.; Taher, M.A.; Karimi-Maleh, H.; Karimi, F.; Shabani-Nooshabadi, M.; Alizadeh, M.; Al-Othman, A.; Erk, N.; Yegya Raman, P.K.; Karaman, C. Novel enzymatic graphene oxide based biosensor for the detection of glutathione in biological body fluids. Chemosphere, 2022, 287(Pt 2), 132187.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132187] [PMID: 34509007]
[106]
Varodi, C.; Coros, M. Pogăcean, F.; Ciorîţă, A.; Turza, A.; Pruneanu, S. Nitrogen-doped graphene-based sensor for electrochemical detection of piroxicam, a NSAID drug for COVID-19 patients. Chemosensors (Basel), 2022, 10(2), 47.
[http://dx.doi.org/10.3390/chemosensors10020047]
[107]
Natesan, M.; Subramaniyan, P.; Chen, T.W.; Chen, S.M.; Ajmal Ali, M.; Al-Zaqri, N. Ceria-doped zinc oxide nanorods assembled into microflower architectures as electrocatalysts for sensing of piroxicam in urine sample. Colloids Surf. A Physicochem. Eng. Asp., 2022, 642, 128697.
[http://dx.doi.org/10.1016/j.colsurfa.2022.128697]
[108]
Vinothkumar, V.; Sakthivel, R.; Chen, S.M.; Abinaya, M.; Kubendhiran, S. Facile synthesis of alpha-phase strontium pyrophosphate incorporated with polypyrrole composite for the electrochemical detection of antipsychotic drug chlorpromazine. J. Alloys Compd., 2021, 888, 161537.
[http://dx.doi.org/10.1016/j.jallcom.2021.161537]
[109]
Kesavan, G.; Gopi, P.K.; Chen, S.M.; Vinothkumar, V. Iron vanadate nanoparticles supported on boron nitride nanocomposite: Electrochemical detection of antipsychotic drug chlorpromazine. J. Electroanal. Chem. (Lausanne), 2021, 882, 114982.
[http://dx.doi.org/10.1016/j.jelechem.2021.114982]
[110]
Kamal Ahmed, R.; Saad, E.M.; Fahmy, H.M.; El Nashar, R.M. Design and application of molecularly imprinted Polypyrrole/Platinum nanoparticles modified platinum sensor for the electrochemical detection of Vardenafil. Microchem. J., 2021, 171, 106771.
[http://dx.doi.org/10.1016/j.microc.2021.106771]
[111]
Manjula, N.; Chen, T.W.; Chen, S.M.; Yu, J.; Hao, Q.; Lei, W. One step construction of crystal rod like Bi2O3/ZnO nanocomposite for voltammetry determination of isoprenaline in pharmaceutical and urine sample. Microchem. J., 2022, 172, 106894.
[http://dx.doi.org/10.1016/j.microc.2021.106894]
[112]
Killedar, L.S.; Shanbhag, M.M.; Malode, S.J.; Bagihalli, G.B.; Mahapatra, S.; Mascarenhas, R.J.; Shetti, N.P.; Chandra, P. Ultra-sensitive detection of tizanidine in commercial tablets and urine samples using zinc oxide coated glassy carbon electrode. Microchem. J., 2022, 172, 106956.
[http://dx.doi.org/10.1016/j.microc.2021.106956]
[113]
Koventhan, C.; Vinothkumar, V.; Chen, S.M. Rational design of manganese oxide/tin oxide hybrid nanocomposite based electrochemical sensor for detection of prochlorperazine (Antipsychotic drug). Microchem. J., 2022, 175, 107082.
[http://dx.doi.org/10.1016/j.microc.2021.107082]
[114]
Lu, Y.; Wang, Z.; Mu, X.; Liu, Y.; Shi, Z.; Zheng, Y.; Huang, W. The electrochemical sensor based on Cu/Co binuclear MOFs and PVP cross-linked derivative materials for the sensitive detection of luteolin and rutin. Microchem. J., 2022, 175, 107131.
[http://dx.doi.org/10.1016/j.microc.2021.107131]
[115]
Li, Y.; Pan, F.; Yin, S.; Tong, C.; Zhu, R.; Li, G. Nafion assisted preparation of prussian blue nanoparticles and its application in electrochemical analysis of l-ascorbic acid. Microchem. J., 2022, 177, 107278.
[http://dx.doi.org/10.1016/j.microc.2022.107278]
[116]
Mohammadzadeh Jahani, P.; Akbari Javar, H.; Mahmoudi-Moghaddam, H. A new electrochemical sensor based on Europium-doped NiO nanocomposite for detection of venlafaxine. Measurement, 2021, 173, 108616.
[http://dx.doi.org/10.1016/j.measurement.2020.108616]
[117]
Ozkan, E.; Cetinkaya, A.; Ozcelikay, G.; Nemutlu, E. Kır, S.; Ozkan, S.A. Sensitive and cost-effective boron doped diamond and Fe2O3/Chitosan nanocomposite modified glassy carbon electrodes for the trace level quantification of anti-diabetic dapagliflozin drug. J. Electroanal. Chem. (Lausanne), 2022, 908, 116092.
[http://dx.doi.org/10.1016/j.jelechem.2022.116092]
[118]
Bakhsh, H.; Palabiyik, I.M.; Oad, R.K.; Qambrani, N.; Buledi, J.A.; Solangi, A.R. SnO2 nanostructure based electroanalytical approach for simultaneous monitoring of vitamin C and vitamin B6 in pharmaceuticals. J. Electroanal. Chem. (Lausanne), 2022, 910, 116181.
[http://dx.doi.org/10.1016/j.jelechem.2022.116181]
[119]
Oghli, A.H.; Soleymanpour, A. Pencil graphite electrode modified with nitrogen-doped graphene and molecular imprinted polyacrylamide/sol-gel as an ultrasensitive electrochemical sensor for the determination of fexofenadine in biological media. Biochem. Eng. J., 2021, 167, 107920.
[http://dx.doi.org/10.1016/j.bej.2020.107920]
[120]
Ghoniem, M.G.; Mohamed, M.A.; Ghoniem, M.G.; Errachid, A. Sensitive electrochemical strategy via the construction of functionalized carbon nanotubes/ionic liquid nanocomposite for the determination of anaesthetic drug cinchocaine. Measurement, 2021, 185, 110071.
[http://dx.doi.org/10.1016/j.measurement.2021.110071]
[121]
Anvari, L.; Ghoreishi, S.M.; Faridbod, F.; Ganjali, M.R. Electrochemical determination of methamphetamine in human plasma on a nanoceria nanoparticle decorated Reduced Graphene Oxide (rGO) Glassy Carbon Electrode (GCE). Anal. Lett., 2021, 54(15), 2509-2522.
[http://dx.doi.org/10.1080/00032719.2021.1875229]
[122]
Qin, Q.; Wang, X.; Shi, J.; Wu, D. Preparation of electrochemical sensor based on β- cyclodextrin/Carbon Nanotube Nanocomposite for Donepezil Hydrochloride as drug for treatment of Alzheimer’s Disease. Int. J. Electrochem. Sci., 2022, 17(220119)
[http://dx.doi.org/10.20964/2022.01.09]
[123]
Jafari, S.; Dehghani, M.; Nasirizadeh, N.; Azimzadeh, M.; Banadaki, F.D. Electrochemical detection of bupropion drug using nanocomposite of molecularly imprinted polyaniline/Au nanoparticles/graphene oxide. Bull. Mater. Sci., 2021, 44(1), 56.
[http://dx.doi.org/10.1007/s12034-020-02348-4]
[124]
Shahsavari, M.; Mortazavi, M.; Tajik, S.; Sheikhshoaie, I.; Beitollahi, H. Synthesis and characterization of GO/ZIF-67 nanocomposite: Investigation of catalytic activity for the determination of epinine in the presence of dobutamine. Micromachines (Basel), 2022, 13(1), 88.
[http://dx.doi.org/10.3390/mi13010088] [PMID: 35056253]
[125]
Al-Qahtani, S.D.; Hameed, A.; Aljuhani, E.; Shah, R.; Alharbi, A.; Asghar, B.H.; El-Metwaly, N.M. Iron oxide nanopowder based electrochemical sensor for sensitive voltammetric quantification of midodrine. Arab. J. Chem., 2021, 14(12), 103446.
[http://dx.doi.org/10.1016/j.arabjc.2021.103446]
[126]
Mutharani, B.; Tsai, H.C.; Lai, J.Y.; Chen, S.M. Protein-assisted biomimetic synthesis of nanoscale gadolinium-integrated polypyrrole for synergetic and ultrasensitive electrochemical assays of nicardipine in biological samples. Anal. Chim. Acta, 2022, 1199, 339567.
[http://dx.doi.org/10.1016/j.aca.2022.339567] [PMID: 35227379]
[127]
Lin, X.; Jiang, J.; Wang, J.; Xia, J.; Wang, R.; Diao, G. Competitive host-guest recognition initiated by DNAzyme-cleavage cycling for novel ratiometric electrochemical assay of miRNA-21. Sens. Actuators B Chem., 2021, 333, 129556.
[http://dx.doi.org/10.1016/j.snb.2021.129556]
[128]
Saravanakumar, V.; Rajagopal, V.; Kathiresan, M.; Suryanarayanan, V.; Anandan, S.; Ho, K.C. Cu-MOF derived CuO nanoparticle decorated amorphous carbon as an electrochemical platform for the sensing of caffeine in real samples. J. Taiwan Inst. Chem. Eng., 2022, 133, 104248.
[http://dx.doi.org/10.1016/j.jtice.2022.104248]
[129]
Huang, L.; Chen, H.; Diao, D. Manufacturing high-density graphene edges with electrochemical etching for sensing aminophenol. Anal. Chim. Acta, 2022, 1198, 339527.
[http://dx.doi.org/10.1016/j.aca.2022.339527] [PMID: 35190130]
[130]
Ilager, D.; Shetti, N.P.; Malladi, R.S.; Shetty, N.S.; Reddy, K.R.; Aminabhavi, T.M. Synthesis of Ca-doped ZnO nanoparticles and its application as highly efficient electrochemical sensor for the determination of anti-viral drug, acyclovir. J. Mol. Liq., 2021, 322, 114552.
[http://dx.doi.org/10.1016/j.molliq.2020.114552]
[131]
Foroughi, M.M.; Jahani, S.; Aramesh-Boroujeni, Z.; Rostaminasab Dolatabad, M.; Shahbazkhani, K. Synthesis of 3D cubic of Eu3+/Cu2O with clover-like faces nanostructures and their application as an electrochemical sensor for determination of antiretroviral drug nevirapine. Ceram. Int., 2021, 47(14), 19727-19736.
[http://dx.doi.org/10.1016/j.ceramint.2021.03.311]
[132]
Keerthi, M.; Kumar Panda, A.; Wang, Y.H.; Liu, X.; He, J.H.; Chung, R.J. Titanium nanoparticle anchored functionalized MWCNTs for electrochemical detection of ractopamine in porcine samples with ultrahigh sensitivity. Food Chem., 2022, 378, 132083.
[http://dx.doi.org/10.1016/j.foodchem.2022.132083] [PMID: 35033720]
[133]
Zhang, L.; Qiao, C.; Cai, X.; Xia, Z.; Han, J.; Yang, Q.; Zhou, C.; Chen, S.; Gao, S. Microcalorimetry-guided pore-microenvironment optimization to improve sensitivity of Ni-MOF electrochemical biosensor for chiral galantamine. Chem. Eng. J., 2021, 426, 130730.
[http://dx.doi.org/10.1016/j.cej.2021.130730]
[134]
Hwa, K.Y.; Santhan, A.; Sharma, T.S.K. One-dimensional self-assembled Co2SnO4 nanosphere to nanocubes intertwined in two-dimensional reduced graphene oxide: an intriguing electrocatalytic sensor toward mesalamine detection. Mater. Today Chem., 2022, 23, 100739.
[http://dx.doi.org/10.1016/j.mtchem.2021.100739]
[135]
Hu, W.; Lu, H.; Duan, Y.; Li, L.; Ding, Y.; An, J.; Duan, D. An electrochemical sensor based on electrospun MoS2@SnO2 modified carbon nanofiber composite materials for simultaneously detection of phenacetin and indomethacin. Chem. Asian J., 2022, 17(6), e202101372.
[http://dx.doi.org/10.1002/asia.202101372] [PMID: 35018742]
[136]
Li, S.; Zhou, J.; Noroozifar, M.; Kerman, K. Gold-platinum core-shell nanoparticles with thiolated polyaniline and multi-walled carbon nanotubes for the simultaneous voltammetric determination of six drug molecules. Chemosensors (Basel), 2021, 9(2), 24.
[http://dx.doi.org/10.3390/chemosensors9020024]
[137]
Roushani, M.; Karazan, Z.M. Novel electrochemical sensor based on electropolymerized dopamine molecularly imprinted polymer for selective detection of pantoprazole. IEEE Sens. J., 2022, 22(7), 6263-6269.
[http://dx.doi.org/10.1109/JSEN.2022.3150222]
[138]
Naz, S.; Nisar, A.; Qian, L.; Hussain, S.; Karim, S.; Hussain, S.Z.; Liu, Y.; Sun, H.; Ahmad, M. Graphene oxide functionalized with silver nanoparticles and ZnO synergic nanocomposite as an efficient electrochemical sensor for diclofenac sodium. Nano, 2021, 16(12), 2150139.
[http://dx.doi.org/10.1142/S1793292021501393]
[139]
Saeed, A.; Akhtar, M.; Zulfiqar, S.; Hanif, F.; Alsafari, I.A.; Agboola, P.O.; Haider, S.; Warsi, M.F.; Shakir, I. Thiamine-functionalized silver–copper bimetallic nanoparticles-based electrochemical sensor for sensitive detection of anti-inflammatory drug 4-aminoantipyrine. Chem. Zvesti, 2022, 76(5), 2721-2731.
[http://dx.doi.org/10.1007/s11696-021-02042-7]
[140]
Singh, A.; Verma, N.; Kumar, K. Fabrication and construction of highly sensitive polymeric nanoparticle-based electrochemical biosensor for asparagine detection. Curr. Pharmacol. Rep., 2022, 8(1), 62-71.
[http://dx.doi.org/10.1007/s40495-021-00271-8]
[141]
Zhao, X.; Guo, Z.; Hou, Y.; Gbologah, L.; Qiu, S.; Zeng, X.; Cao, R.; Zhang, J. AuNP-/rGO-/GCE-based molecular imprinted electrochemical sensor for rapid and sensitive detection of coumarin. Chem. Zvesti, 2022, 76(6), 3679-3690.
[http://dx.doi.org/10.1007/s11696-022-02139-7]
[142]
Tavana, T.; Rezvani, A.R. Monitoring of atropine anticholinergic drug using voltammetric sensor amplified with NiO@Pt/SWCNTs and ionic liquid. Chemosphere, 2022, 289, 133114.
[http://dx.doi.org/10.1016/j.chemosphere.2021.133114] [PMID: 34861254]
[143]
Taqvi, S.I.H.; Solangi, A.R.; Buledi, J.A.; Khand, N.H.; Junejo, B.; Memon, A.F.; Ameen, S.; Bhatti, A.; Show, P.L.; Vasseghian, Y.; Karimi-Maleh, H. Plant extract-based green fabrication of nickel ferrite (NiFe2O4) nanoparticles: An operative platform for non-enzymatic determination of pentachlorophenol. Chemosphere, 2022, 294, 133760.
[http://dx.doi.org/10.1016/j.chemosphere.2022.133760] [PMID: 35092751]
[144]
Saleh, M.A.; Taha, M.M.; Mohamed, M.A.; Allam, N.K. A novel and ultrasensitive electrochemical biosensor based on MnO2-V2O5 nanorods for the detection of the antiplatelet prodrug agent Cilostazol in pharmaceutical formulations. Microchem. J., 2021, 164, 105946.
[http://dx.doi.org/10.1016/j.microc.2021.105946]
[145]
Saeb, E.; Asadpour-Zeynali, K. Facile synthesis of TiO2@PANI@Au nanocomposite as an electrochemical sensor for determination of hydrazine. Microchem. J., 2021, 160, 105603.
[http://dx.doi.org/10.1016/j.microc.2020.105603]
[146]
Asiabar, B.M.; Karimi, M.A.; Tavallali, H.; Rahimi-Nasrabadi, M. Application of MnFe2O4 and AuNPs modified CPE as a sensitive flunitrazepam electrochemical sensor. Microchem. J., 2021, 161, 105745.
[http://dx.doi.org/10.1016/j.microc.2020.105745]
[147]
Kaleeswarran, P.; Sriram, B.; Wang, S.F.; Baby, J.N.; Arumugam, A.; Bilgrami, A.L.; Hashsham, S.A.; Abdullah Sayegh, F.; Liu, C-J. Electrochemical detection of antipsychotic drug in water samples based on nano/sub-microrod-like CuBi2-xInxO4 electrocatalysts. Microchem. J., 2021, 163, 105886.
[http://dx.doi.org/10.1016/j.microc.2020.105886]
[148]
Anupriya, J.; Babulal, S.M.; Chen, T-W.; Chen, S-M.; Kumar, J.V.; Lee, J-W. Facile hydrothermal synthesis of cubic zinc ferrite nanoparticles for electrochemical detection of anti-inflammatory drug nimesulide in biological and pharmaceutical sample. Int. J. Electrochem. Sci., 2021, 16, 1-19.
[http://dx.doi.org/10.20964/2021.07.72]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy