Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Editorial

CFTR Modulators and Reduction of Airway Inflammation in Cystic Fibrosis: How Much is Enough?

Author(s): Giulio Cabrini*

Volume 30, Issue 19, 2023

Published on: 18 November, 2022

Page: [2205 - 2208] Pages: 4

DOI: 10.2174/0929867330666221014110730

Price: $65

[1]
Wang, Y.; Ma, B.; Li, W.; Li, P. Efficacy and safety of triple combination cystic fibrosis transmembrane conductance regulator modula-tors in patients with cystic fibrosis: A meta-analysis of randomized controlled trials. Front. Pharmacol., 2022, 13, 863280.
[http://dx.doi.org/10.3389/fphar.2022.863280] [PMID: 35359862]
[2]
Li, Q.; Liu, S.; Ma, X.; Yu, J. Effectiveness and safety of cystic fibrosis transmembrane conductance regulator modulators in children with cystic fibrosis: A meta-analysis. Front Pediatr., 2022, 10, 937250.
[http://dx.doi.org/10.3389/fped.2022.937250] [PMID: 35844763]
[3]
Cabrini, G.; Rimessi, A.; Borgatti, M.; Pinton, P.; Gambari, R. Overview of CF lung pathophysiology. Curr. Opin. Pharmacol., 2022, 64, 102214.
[http://dx.doi.org/10.1016/j.coph.2022.102214] [PMID: 35453033]
[4]
Keown, K.; Brown, R.; Doherty, D.F.; Houston, C.; McKelvey, M.C.; Creane, S.; Linden, D.; McAuley, D.F.; Kidney, J.C.; Weldon, S.; Downey, D.G.; Taggart, C.C. Airway inflammation and host responses in the era of CFTR modulators. Int. J. Mol. Sci., 2020, 21(17), 6379.
[http://dx.doi.org/10.3390/ijms21176379] [PMID: 32887484]
[5]
Hisert, K.B.; Heltshe, S.L.; Pope, C.; Jorth, P.; Wu, X.; Edwards, R.M.; Radey, M.; Accurso, F.J.; Wolter, D.J.; Cooke, G.; Adam, R.J.; Carter, S.; Grogan, B.; Launspach, J.L.; Donnelly, S.C.; Gallagher, C.G.; Bruce, J.E.; Stoltz, D.A.; Welsh, M.J.; Hoffman, L.R.; McKone, E.F.; Singh, P.K. Restoring cystic fibrosis transmembrane conductance regulator function reduces airway bacteria and inflam-mation in people with cystic fibrosis and chronic lung infections. Am. J. Respir. Crit. Care Med., 2017, 195(12), 1617-1628.
[http://dx.doi.org/10.1164/rccm.201609-1954OC] [PMID: 28222269]
[6]
Mainz, J.G.; Arnold, C.; Wittstock, K.; Hipler, U.C.; Lehmann, T.; Zagoya, C.; Duckstein, F.; Ellemunter, H.; Hentschel, J. Ivacaftor reduces inflammatory mediators in upper airway lining fluid from cystic fibrosis patients with a G551D mutation: Serial non-invasive home-based collection of upper airway lining fluid. Front. Immunol., 2021, 12, 642180.
[http://dx.doi.org/10.3389/fimmu.2021.642180] [PMID: 34025651]
[7]
Harris, J.K.; Wagner, B.D.; Zemanick, E.T.; Robertson, C.E.; Stevens, M.J.; Heltshe, S.L.; Rowe, S.M.; Sagel, S.D. Changes in airway microbiome and inflammation with ivacaftor treatment in patients with cystic fibrosis and the G551D mutation. Ann. Am. Thorac. Soc., 2020, 17(2), 212-220.
[http://dx.doi.org/10.1513/AnnalsATS.201907-493OC] [PMID: 31604026]
[8]
McNally, P.; Butler, D.; Karpievitch, Y.V.; Linnane, B.; Ranganathan, S.; Stick, S.M.; Hall, G.L.; Schultz, A. Ivacaftor and airway in-flammation in preschool children with cystic fibrosis. Am. J. Respir. Crit. Care Med., 2021, 204(5), 605-608.
[http://dx.doi.org/10.1164/rccm.202012-4332LE] [PMID: 34077699]
[9]
Graeber, S.Y.; Boutin, S.; Wielpütz, M.O.; Joachim, C.; Frey, D.L.; Wege, S.; Sommerburg, O.; Kauczor, H.U.; Stahl, M.; Dalpke, A.H.; Mall, M.A. Effects of lumacaftor–ivacaftor on lung clearance index, magnetic resonance imaging, and airway microbiome in Phe508del homozygous patients with cystic fibrosis. Ann. Am. Thorac. Soc., 2021, 18(6), 971-980.
[http://dx.doi.org/10.1513/AnnalsATS.202008-1054OC] [PMID: 33600745]
[10]
Gabillard-Lefort, C.; Casey, M.; Glasgow, A.M.A.; Boland, F.; Kerr, O.; Marron, E.; Lyons, A.M.; Gunaratnam, C.; McElvaney, N.G.; Reeves, E.P. Trikafta rescues CFTR and lowers monocyte P2X7R-induced inflammasome activation in cystic fibrosis. Am. J. Respir. Crit. Care Med., 2022, 205(7), 783-794.
[http://dx.doi.org/10.1164/rccm.202106-1426OC] [PMID: 35021019]
[11]
Gentzsch, M.; Cholon, D.M.; Quinney, N.L.; Martino, M.E.B.; Minges, J.T.; Boyles, S.E.; Guhr Lee, T.N.; Esther, C.R., Jr; Ribeiro, C.M.P. Airway epithelial inflammation in vitro augments the rescue of mutant CFTR by current CFTR modulator therapies. Front. Pharmacol., 2021, 12, 628722.
[http://dx.doi.org/10.3389/fphar.2021.628722] [PMID: 33859562]
[12]
Rehman, T.; Karp, P.H.; Tan, P.; Goodell, B.J.; Pezzulo, A.A.; Thurman, A.L.; Thornell, I.M.; Durfey, S.L.; Duffey, M.E.; Stoltz, D.A.; McKone, E.F.; Singh, P.K.; Welsh, M. J. Inflammatory cytokines TNF-α and IL-17 enhance the efficacy of cystic fibrosis transmem-brane conductance regulator modulators. J. Clin. Invest., 2021, 131(16), e150398.
[http://dx.doi.org/10.1172/JCI150398] [PMID: 34166230]
[13]
Stanton, B.A.; Coutermarsh, B.; Barnaby, R.; Hogan, D. Pseudomonas aeruginosa reduces VX-809 stimulated F508del-CFTR chloride secretion by airway epithelial cells. PLoS One, 2015, 10(5), e0127742.
[http://dx.doi.org/10.1371/journal.pone.0127742] [PMID: 26018799]
[14]
Trinh, N.T.N.; Bilodeau, C.; Maillé, É.; Ruffin, M.; Quintal, M.C.; Desrosiers, M.Y.; Rousseau, S.; Brochiero, E. Deleterious impact of Pseudomonas aeruginosa on cystic fibrosis transmembrane conductance regulator function and rescue in airway epithelial cells. Eur. Respir. J., 2015, 45(6), 1590-1602.
[http://dx.doi.org/10.1183/09031936.00076214] [PMID: 25792634]
[15]
Hegde, R.N.; Parashuraman, S.; Iorio, F.; Ciciriello, F.; Capuani, F.; Carissimo, A.; Carrella, D.; Belcastro, V.; Subramanian, A.; Boun-ti, L.; Persico, M.; Carlile, G.; Galietta, L.; Thomas, D.Y.; Di Bernardo, D.; Luini, A. Unravelling druggable signalling networks that control F508del-CFTR proteostasis. eLife, 2015, 4, e10365.
[http://dx.doi.org/10.7554/eLife.10365] [PMID: 26701908]
[16]
Ribeiro, C.M.P.; McElvaney, N.G.; Cabrini, G. Editorial: Novel anti-inflammatory approaches for cystic fibrosis lung disease: Identifi-cation of molecular targets and design of innovative therapies. Front. Pharmacol., 2021, 12, 794854.
[http://dx.doi.org/10.3389/fphar.2021.794854] [PMID: 34867428]
[17]
Perrem, L.; Ratjen, F. Designing clinical trials for anti-inflammatory therapies in cystic fibrosis. Front. Pharmacol., 2020, 11, 576293.
[http://dx.doi.org/10.3389/fphar.2020.576293] [PMID: 33013419]
[18]
Malhotra, S.; Hayes, D., Jr; Wozniak, D.J. Mucoid Pseudomonas aeruginosa and regional inflammation in the cystic fibrosis lung. J. Cyst. Fibros., 2019, 18(6), 796-803.
[http://dx.doi.org/10.1016/j.jcf.2019.04.009] [PMID: 31036488]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy