Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Microneedles: A Versatile Drug Delivery Carrier for Phytobioactive Compounds as a Therapeutic Modulator for Targeting Mitochondrial Dysfunction in the Management of Neurodegenerative Diseases

Author(s): Akshay Bandiwadekar, Kartik Bhairu Khot, Gopika Gopan and Jobin Jose*

Volume 22, Issue 6, 2024

Published on: 03 February, 2023

Page: [1110 - 1128] Pages: 19

DOI: 10.2174/1570159X20666221012142247

Price: $65

Abstract

Neurodegenerative disease (ND) is the fourth leading cause of death worldwide, with limited symptomatic therapies. Mitochondrial dysfunction is a major risk factor in the progression of ND, and it-increases the generation of reactive oxygen species (ROS). Overexposure to these ROS induces apoptotic changes leading to neuronal cell death. Many studies have shown the prominent effect of phytobioactive compounds in managing mitochondrial dysfunctions associated with ND, mainly due to their antioxidant properties. The drug delivery to the brain is limited due to the presence of the blood-brain barrier (BBB), but effective drug concentration needs to reach the brain for the therapeutic action. Therefore, developing safe and effective strategies to enhance drug entry in the brain is required to establish ND's treatment. The microneedle-based drug delivery system is one of the effective non-invasive techniques for drug delivery through the transdermal route. Microneedles are micronsized drug delivery needles that are self-administrable. It can penetrate through the stratum corneum skin layer without hitting pain receptors, allowing the phytobioactive compounds to be released directly into systemic circulation in a controlled manner. With all of the principles mentioned above, this review discusses microneedles as a versatile drug delivery carrier for the phytoactive compounds as a therapeutic potentiating agent for targeting mitochondrial dysfunction for the management of ND.

Graphical Abstract

[1]
Begley, D.J. Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol. Ther., 2004, 104(1), 29-45.
[http://dx.doi.org/10.1016/j.pharmthera.2004.08.001] [PMID: 15500907]
[2]
Hladky, S.B.; Barrand, M.A. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS, 2014, 11(1), 26.
[http://dx.doi.org/10.1186/2045-8118-11-26] [PMID: 25678956]
[3]
Engelhardt, B.; Vajkoczy, P.; Weller, R.O. The movers and shapers in immune privilege of the CNS. Nat. Immunol., 2017, 18(2), 123-131.
[http://dx.doi.org/10.1038/ni.3666] [PMID: 28092374]
[4]
Bélanger, M.; Allaman, I.; Magistretti, P.J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab., 2011, 14(6), 724-738.
[http://dx.doi.org/10.1016/j.cmet.2011.08.016] [PMID: 22152301]
[5]
Harris, J.J.; Jolivet, R.; Attwell, D. Synaptic energy use and supply. Neuron, 2012, 75(5), 762-777.
[http://dx.doi.org/10.1016/j.neuron.2012.08.019] [PMID: 22958818]
[6]
Grimm, A.; Eckert, A. Brain aging and neurodegeneration: from a mitochondrial point of view. J. Neurochem., 2017, 143(4), 418-431.
[http://dx.doi.org/10.1111/jnc.14037] [PMID: 28397282]
[7]
Chistiakov, D.A.; Sobenin, I.A.; Revin, V.V.; Orekhov, A.N.; Bobryshev, Y.V. Mitochondrial aging and age-related dysfunction of mitochondria. BioMed. Res. Int., 2014, 2014, 1-7.
[http://dx.doi.org/10.1155/2014/238463] [PMID: 24818134]
[8]
Rahman, M.A.; Rahman, M.D.H.; Biswas, P.; Hossain, M.S.; Islam, R.; Hannan, M.A.; Uddin, M.J.; Rhim, H. Potential therapeutic role of phytochemicals to mitigate mitochondrial dysfunctions in Alzheimer’s disease. Antioxidants, 2020, 10(1), 23.
[http://dx.doi.org/10.3390/antiox10010023] [PMID: 33379372]
[9]
Ortiz, G.G.; Pacheco-Moisés, F.P.; Macías-Islas, M.Á.; Flores-Alvarado, L.J.; Mireles-Ramírez, M.A.; González-Renovato, E.D.; Hernández-Navarro, V.E.; Sánchez-López, A.L.; Alatorre-Jiménez, M.A. Role of the blood-brain barrier in multiple sclerosis. Arch. Med. Res., 2014, 45(8), 687-697.
[http://dx.doi.org/10.1016/j.arcmed.2014.11.013] [PMID: 25431839]
[10]
Kuo, Y.C.; Wang, C.C. Cationic solid lipid nanoparticles with cholesterol-mediated surface layer for transporting saquinavir to the brain. Biotechnol. Prog., 2014, 30(1), 198-206.
[http://dx.doi.org/10.1002/btpr.1834] [PMID: 24167123]
[11]
van der Maaden, K.; Jiskoot, W.; Bouwstra, J. Microneedle technologies for (trans)dermal drug and vaccine delivery. J. Control. Release, 2012, 161(2), 645-655.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.042] [PMID: 22342643]
[12]
Ye, Y.; Yu, J.; Wen, D.; Kahkoska, A.R.; Gu, Z. Polymeric microneedles for transdermal protein delivery. Adv. Drug Deliv. Rev., 2018, 127, 106-118.
[http://dx.doi.org/10.1016/j.addr.2018.01.015] [PMID: 29408182]
[13]
Brodal, P. The central nervous system: structure and function, 3rd ed; Oxford University Press, 2004.
[14]
Ghavami, S.; Shojaei, S.; Yeganeh, B.; Ande, S.R.; Jangamreddy, J.R.; Mehrpour, M.; Christoffersson, J.; Chaabane, W.; Moghadam, A.R.; Kashani, H.H.; Hashemi, M.; Owji, A.A.; Łos, M.J. Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog. Neurobiol., 2014, 112, 24-49.
[http://dx.doi.org/10.1016/j.pneurobio.2013.10.004] [PMID: 24211851]
[16]
Liu, L.; Zhao, S.; Chen, H.; Wang, A. A new machine learning method for identifying Alzheimer’s disease. Simul. Model. Pract. Theory, 2020, 99, 102023.
[http://dx.doi.org/10.1016/j.simpat.2019.102023]
[17]
Tokuchi, R.; Hishikawa, N.; Sato, K.; Hatanaka, N.; Fukui, Y.; Takemoto, M.; Ohta, Y.; Yamashita, T.; Abe, K. Differences between the behavioral and psychological symptoms of Alzheimer’s disease and Parkinson’s disease. J. Neurol. Sci., 2016, 369, 278-282.
[http://dx.doi.org/10.1016/j.jns.2016.08.053] [PMID: 27653908]
[18]
Kumar, A.; Singh, A.; Ekavali, A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[19]
Wang, J.; Chen, G.J. Mitochondria as a therapeutic target in Alzheimer’s disease. Genes Dis., 2016, 3(3), 220-227.
[http://dx.doi.org/10.1016/j.gendis.2016.05.001] [PMID: 30258891]
[20]
Simon, D.K.; Tanner, C.M.; Brundin, P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med., 2020, 36(1), 1-12.
[http://dx.doi.org/10.1016/j.cger.2019.08.002] [PMID: 31733690]
[21]
Kumar, A.; Chaudhary, R.K.; Singh, R.; Singh, S.P.; Wang, S.Y.; Hoe, Z.Y.; Pan, C.T.; Shiue, Y.L.; Wei, D.Q.; Kaushik, A.C.; Dai, X. Nanotheranostic applications for detection and targeting neurodegenerative diseases. Front. Neurosci., 2020, 14, 305.
[http://dx.doi.org/10.3389/fnins.2020.00305] [PMID: 32425743]
[22]
Singh, E.; Devasahayam, G. Neurodegeneration by oxidative stress: a review on prospective use of small molecules for neuroprotection. Mol. Biol. Rep., 2020, 47(4), 3133-3140.
[http://dx.doi.org/10.1007/s11033-020-05354-1] [PMID: 32162127]
[23]
Prasuhn, J.; Davis, R.L.; Kumar, K.R. Targeting mitochondrial impairment in Parkinson’s disease: Challenges and opportunities. Front. Cell Dev. Biol., 2021, 8, 615461.
[http://dx.doi.org/10.3389/fcell.2020.615461] [PMID: 33469539]
[24]
Cai, M.; Yang, E.J. Complementary and alternative medicine for treating amyotrophic lateral sclerosis: a narrative review. Integr. Med. Res., 2019, 8(4), 234-239.
[http://dx.doi.org/10.1016/j.imr.2019.08.003] [PMID: 31692669]
[25]
Bonafede, R.; Mariotti, R. ALS pathogenesis and therapeutic approaches: the role of mesenchymal stem cells and extracellular vesicles. Front. Cell. Neurosci., 2017, 11, 80.
[http://dx.doi.org/10.3389/fncel.2017.00080] [PMID: 28377696]
[26]
Ralli, M.; Lambiase, A.; Artico, M.; de Vincentiis, M.; Greco, A. Amyotrophic lateral sclerosis: Autoimmune pathogenic mechanisms, clinical features, and therapeutic perspectives. Isr. Med. Assoc. J., 2019, 21(7), 438-443.
[PMID: 31507117]
[27]
Mehta, A.R.; Walters, R.; Waldron, F.M.; Pal, S.; Selvaraj, B.T.; Macleod, M.R.; Hardingham, G.E.; Chandran, S.; Gregory, J.M. Targeting mitochondrial dysfunction in amyotrophic lateral sclerosis: a systematic review and meta-analysis. Brain Commun., 2019, 1(1), fcz009.
[http://dx.doi.org/10.1093/braincomms/fcz009] [PMID: 32133457]
[28]
Ochoa-Morales, A.; Hernández-Mojica, T.; Paz-Rodríguez, F.; Jara-Prado, A.; Trujillo-De Los Santos, Z.; Sánchez-Guzmán, M.A.; Guerrero-Camacho, J.L.; Corona-Vázquez, T.; Flores, J.; Camacho-Molina, A.; Rivas-Alonso, V.; Dávila-Ortiz de Montellano, D.J. Quality of life in patients with multiple sclerosis and its association with depressive symptoms and physical disability. Mult. Scler. Relat. Disord., 2019, 36, 101386.
[http://dx.doi.org/10.1016/j.msard.2019.101386] [PMID: 31520986]
[29]
Ghasemi, N.; Razavi, S.; Nikzad, E. Multiple sclerosis: Pathogenesis, symptoms, diagnoses and cell-based therapy. Cell J., 2017, 19(1), 1-10.
[PMID: 28367411]
[30]
Correale, J.; Gaitán, M.I.; Ysrraelit, M.C.; Fiol, M.P. Progressive multiple sclerosis: from pathogenic mechanisms to treatment. Brain, 2017, 140(3), 527-546.
[PMID: 27794524]
[31]
Barcelos, I.P.; Troxell, R.M.; Graves, J.S. Mitochondrial Dysfunction and Multiple Sclerosis. Biology (Basel), 2019, 8(2), 37.
[http://dx.doi.org/10.3390/biology8020037] [PMID: 31083577]
[32]
Ellis, N.; Tee, A.; McAllister, B.; Massey, T.; McLauchlan, D.; Stone, T.; Correia, K.; Loupe, J.; Kim, K.H.; Barker, D.; Hong, E.P. Genetic risk underlying psychiatric and cognitive symptoms in Huntington’s Disease. Biol. Psychiatry, 2019, 14(2), 12-16.
[PMID: 32087949]
[33]
Jimenez-Sanchez, M.; Licitra, F.; Underwood, B.R.; Rubinsztein, D.C. Huntington’s disease: mechanisms of pathogenesis and therapeutic strategies. Cold Spring Harb. Perspect. Med., 2017, 7(7), a024240.
[http://dx.doi.org/10.1101/cshperspect.a024240] [PMID: 27940602]
[34]
Illarioshkin, S.N.; Klyushnikov, S.A.; Vigont, V.A.; Seliverstov, Y.A.; Kaznacheyeva, E.V. Molecular pathogenesis in Huntington’s disease. Biochemistry (Mosc.), 2018, 83(9), 1030-1039.
[http://dx.doi.org/10.1134/S0006297918090043] [PMID: 30472941]
[35]
Chaturvedi, R.K.; Beal, M.F. Mitochondria targeted therapeutic approaches in Parkinson’s and Huntington’s diseases. Mol. Cell. Neurosci., 2013, 55, 101-114.
[http://dx.doi.org/10.1016/j.mcn.2012.11.011] [PMID: 23220289]
[36]
Wenning, G.K.; Colosimo, C.; Geser, F.; Poewe, W. Multiple system atrophy. Lancet Neurol., 2004, 3(2), 93-103.
[http://dx.doi.org/10.1016/S1474-4422(03)00662-8] [PMID: 14747001]
[37]
Meissner, W.G.; Fernagut, P.O.; Dehay, B.; Péran, P.; Traon, A.P.L.; Foubert-Samier, A.; Lopez Cuina, M.; Bezard, E.; Tison, F.; Rascol, O. Multiple system atrophy: recent developments and future perspectives. Mov. Disord., 2019, 34(11), 1629-1642.
[http://dx.doi.org/10.1002/mds.27894] [PMID: 31692132]
[38]
Palma, J.A.; Kaufmann, H. Novel therapeutic approaches in multiple system atrophy. Clin. Auton. Res., 2015, 25(1), 37-45.
[http://dx.doi.org/10.1007/s10286-014-0249-7] [PMID: 24928797]
[39]
Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150.
[http://dx.doi.org/10.1038/nrneurol.2017.188] [PMID: 29377008]
[40]
Elfawy, H.A.; Das, B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci., 2019, 218, 165-184.
[http://dx.doi.org/10.1016/j.lfs.2018.12.029] [PMID: 30578866]
[41]
Kumar, R.; Harilal, S.; Parambi, D.G.T.; Kanthlal, S.K.; Rahman, M.A.; Alexiou, A.; Batiha, G.E.S.; Mathew, B. The role of mitochondrial genes in neurodegenerative disorders. Curr. Neuropharmacol., 2022, 20(5), 824-835.
[http://dx.doi.org/10.2174/1570159X19666210908163839] [PMID: 34503413]
[42]
Bhat, A.H.; Dar, K.B.; Anees, S.; Zargar, M.A.; Masood, A.; Sofi, M.A.; Ganie, S.A. Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed. Pharmacother., 2015, 74, 101-110.
[http://dx.doi.org/10.1016/j.biopha.2015.07.025] [PMID: 26349970]
[43]
Cha, M.Y.; Kim, D.K.; Mook-Jung, I. The role of mitochondrial DNA mutation on neurodegenerative diseases. Exp. Mol. Med., 2015, 47(3), e150.
[http://dx.doi.org/10.1038/emm.2014.122] [PMID: 25766619]
[44]
Garrido, C.; Galluzzi, L.; Brunet, M.; Puig, P.E.; Didelot, C.; Kroemer, G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ., 2006, 13(9), 1423-1433.
[http://dx.doi.org/10.1038/sj.cdd.4401950] [PMID: 16676004]
[45]
Picone, P.; Nuzzo, D.; Caruana, L.; Scafidi, V.; Di Carlo, M. Mitochondrial dysfunction: different routes to Alzheimer’s disease therapy. Oxid. Med. Cell. Longev., 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/780179] [PMID: 25221640]
[46]
Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Unnikrishnan, M.K.; Uddin, M.S.; Mathew, G.E.; Pratap, R.; Marathakam, A.; Mathew, B. Revisiting the blood-brain barrier: A hard nut to crack in the transportation of drug molecules. Brain Res. Bull., 2020, 160, 121-140.
[http://dx.doi.org/10.1016/j.brainresbull.2020.03.018] [PMID: 32315731]
[47]
Smith, E.F.; Shaw, P.J.; De Vos, K.J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett., 2019, 710, 132933.
[http://dx.doi.org/10.1016/j.neulet.2017.06.052] [PMID: 28669745]
[48]
Orsini, M.; Oliveira, A.B.; Nascimento, O.J.M.; Reis, C.H.M.; Leite, M.A.A.; De Souza, J.A.; Pupe, C.; De Souza, O.G.; Bastos, V.H.; De Freitas, M.R.G.; Teixeira, S.; Bruno, C.; Davidovich, E.; Smidt, B. Amyotrophic lateral sclerosis: new perpectives and update. Neurol. Int., 2015, 7(2), 5885.
[http://dx.doi.org/10.4081/ni.2015.5885] [PMID: 26487927]
[49]
Carrì, M.T.; D’Ambrosi, N.; Cozzolino, M. Pathways to mitochondrial dysfunction in ALS pathogenesis. Biochem. Biophys. Res. Commun., 2017, 483(4), 1187-1193.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.055] [PMID: 27416757]
[50]
Su, K.; Bourdette, D.; Forte, M. Mitochondrial dysfunction and neurodegeneration in multiple sclerosis. Front. Physiol., 2013, 4, 169.
[http://dx.doi.org/10.3389/fphys.2013.00169] [PMID: 23898299]
[51]
Patergnani, S.; Fossati, V.; Bonora, M.; Giorgi, C.; Marchi, S.; Missiroli, S.; Rusielewicz, T.; Wieckowski, M.R.; Pinton, P. Mitochondria in multiple sclerosis: Molecular mechanisms of pathogenesis. Int. Rev. Cell Mol. Biol., 2017, 328, 49-103.
[http://dx.doi.org/10.1016/bs.ircmb.2016.08.003] [PMID: 28069137]
[52]
Sadeghian, M.; Mastrolia, V.; Rezaei Haddad, A.; Mosley, A.; Mullali, G.; Schiza, D.; Sajic, M.; Hargreaves, I.; Heales, S.; Duchen, M.R.; Smith, K.J. Mitochondrial dysfunction is an important cause of neurological deficits in an inflammatory model of multiple sclerosis. Sci. Rep., 2016, 6(1), 33249.
[http://dx.doi.org/10.1038/srep33249] [PMID: 27624721]
[53]
Reddy, P.H.; Shirendeb, U.P. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington’s disease. Biochim. Biophys. Acta Mol. Basis Dis., 2012, 1822(2), 101-110.
[http://dx.doi.org/10.1016/j.bbadis.2011.10.016] [PMID: 22080977]
[54]
Quintanilla, R.A.; Johnson, G.V.W. Role of mitochondrial dysfunction in the pathogenesis of Huntington’s disease. Brain Res. Bull., 2009, 80(4-5), 242-247.
[http://dx.doi.org/10.1016/j.brainresbull.2009.07.010] [PMID: 19622387]
[55]
Gil-Mohapel, J.; Brocardo, P.; Christie, B. The role of oxidative stress in Huntington’s disease: are antioxidants good therapeutic candidates? Curr. Drug Targets, 2014, 15(4), 454-468.
[http://dx.doi.org/10.2174/1389450115666140115113734] [PMID: 24428525]
[56]
Fukui, H.; Moraes, C.T. Extended polyglutamine repeats trigger a feedback loop involving the mitochondrial complex III, the proteasome and huntingtin aggregates. Hum. Mol. Genet., 2007, 16(7), 783-797.
[http://dx.doi.org/10.1093/hmg/ddm023] [PMID: 17356014]
[57]
Browne, S.E.; Beal, M.F. The energetics of Huntington’s disease. Neurochem. Res., 2004, 29(3), 531-546.
[http://dx.doi.org/10.1023/B:NERE.0000014824.04728.dd] [PMID: 15038601]
[58]
Foti, S.C.; Hargreaves, I.; Carrington, S.; Kiely, A.P.; Houlden, H.; Holton, J.L. Cerebral mitochondrial electron transport chain dysfunction in multiple system atrophy and Parkinson’s disease. Sci. Rep., 2019, 9(1), 6559.
[http://dx.doi.org/10.1038/s41598-019-42902-7] [PMID: 31024027]
[59]
Bordoni, M.; Scarian, E.; Rey, F.; Gagliardi, S.; Carelli, S.; Pansarasa, O.; Cereda, C. Biomaterials in neurodegenerative disorders: A promising therapeutic approach. Int. J. Mol. Sci., 2020, 21(9), 3243.
[http://dx.doi.org/10.3390/ijms21093243] [PMID: 32375302]
[60]
Durães, F.; Pinto, M.; Sousa, E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals (Basel), 2018, 11(2), 44.
[http://dx.doi.org/10.3390/ph11020044] [PMID: 29751602]
[61]
Bandiwadekar, A.; Jose, J.; Khayatkashani, M.; Habtemariam, S.; Khayat Kashani, H.R.; Nabavi, S.M. Emerging novel approaches for the enhanced delivery of natural products for the management of neurodegenerative diseases. J. Mol. Neurosci., 2022, 72(3), 653-676.
[http://dx.doi.org/10.1007/s12031-021-01922-7] [PMID: 34697770]
[62]
Mahajani, S.; Bähr, M.; Kügler, S. Patterning inconsistencies restrict the true potential of dopaminergic neurons derived from human induced pluripotent stem cells. Neural Regen. Res., 2021, 16(4), 692-693.
[http://dx.doi.org/10.4103/1673-5374.295316] [PMID: 33063729]
[63]
Nikolenko, V.N.; Oganesyan, M.V.; Vovkogon, A.D.; Nikitina, A.T.; Sozonova, E.A.; Kudryashova, V.A.; Rizaeva, N.A.; Cabezas, R.; Avila-Rodriguez, M.; Neganova, M.E.; Mikhaleva, L.M.; Bachurin, S.O.; Somasundaram, S.G.; Kirkland, C.E.; Tarasov, V.V.; Aliev, G. Current understanding of central nervous system drainage systems: Implications in the context of neurodegenerative diseases. Curr. Neuropharmacol., 2020, 18(11), 1054-1063.
[http://dx.doi.org/10.2174/1570159X17666191113103850] [PMID: 31729299]
[64]
Cecchelli, R.; Berezowski, V.; Lundquist, S.; Culot, M.; Renftel, M.; Dehouck, M.P.; Fenart, L. Modelling of the blood–brain barrier in drug discovery and development. Nat. Rev. Drug Discov., 2007, 6(8), 650-661.
[http://dx.doi.org/10.1038/nrd2368] [PMID: 17667956]
[65]
Newton, H.B. Advances in strategies to improve drug delivery to brain tumors. Expert Rev. Neurother., 2006, 6(10), 1495-1509.
[http://dx.doi.org/10.1586/14737175.6.10.1495] [PMID: 17078789]
[66]
Hawkins, B.T.; Davis, T.P. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol. Rev., 2005, 57(2), 173-185.
[http://dx.doi.org/10.1124/pr.57.2.4] [PMID: 15914466]
[67]
Tom, A.; Nair, K.S. Branched-chain amino acids: metabolism, physiological function, and application. Biomarkers, 2006, 1, 3.
[68]
Begley, D.J.; Brightman, M.W. Structural and functional aspects of the blood-brain barrier. Prog Drug Res, 2003, 61, 39-78.
[http://dx.doi.org/10.1007/978-3-0348-8049-7_2] [PMID: 14674608]
[69]
Abbott, N.J.; Rönnbäck, L.; Hansson, E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 2006, 7(1), 41-53.
[http://dx.doi.org/10.1038/nrn1824] [PMID: 16371949]
[70]
Liu, X.; Testa, B.; Fahr, A. Lipophilicity and its relationship with passive drug permeation. Pharm. Res., 2011, 28(5), 962-977.
[http://dx.doi.org/10.1007/s11095-010-0303-7] [PMID: 21052797]
[71]
Patel, M.; Souto, E.B.; Singh, K.K. Advances in brain drug targeting and delivery: limitations and challenges of solid lipid nanoparticles. Expert Opin. Drug Deliv., 2013, 10(7), 889-905.
[http://dx.doi.org/10.1517/17425247.2013.784742] [PMID: 23550609]
[72]
Goldsmith, M.; Abramovitz, L.; Peer, D. Precision nanomedicine in neurodegenerative diseases. ACS Nano, 2014, 8(3), 1958-1965.
[http://dx.doi.org/10.1021/nn501292z] [PMID: 24660817]
[73]
Hersh, D.S.; Wadajkar, A.S.; Roberts, N.; Perez, J.G.; Connolly, N.P.; Frenkel, V.; Winkles, J.A.; Woodworth, G.F.; Kim, A.J. Evolving drug delivery strategies to overcome the blood brain barrier. Curr. Pharm. Des., 2016, 22(9), 1177-1193.
[http://dx.doi.org/10.2174/1381612822666151221150733] [PMID: 26685681]
[74]
Groothuis, D.R. The blood-brain and blood-tumor barriers: A review of strategies for increasing drug delivery. Neuro-oncol., 2000, 2(1), 45-59.
[http://dx.doi.org/10.1093/neuonc/2.1.45] [PMID: 11302254]
[75]
Lu, C.T.; Zhao, Y.Z.; Wong, H.L.; Cai, J.; Peng, L.; Tian, X.Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. Int. J. Nanomed., 2014, 9, 2241-2257.
[http://dx.doi.org/10.2147/IJN.S61288] [PMID: 24872687]
[76]
Alyautdin, R.; Khalin, I.; Nafeeza, M.I.; Haron, M.H.; Kuznetsov, D. Nanoscale drug delivery systems and the blood-brain barrier. Int. J. Nanomed., 2014, 9, 795-811.
[PMID: 24550672]
[77]
Furukawa, S.; Hirano, S.; Yamamoto, T.; Asahina, M.; Uchiyama, T.; Yamanaka, Y.; Nakano, Y.; Ishikawa, A.; Kojima, K.; Abe, M.; Uji, Y.; Higuchi, Y.; Horikoshi, T.; Uno, T.; Kuwabara, S. Decline in drawing ability and cerebral perfusion in Parkinson’s disease patients after subthalamic nucleus deep brain stimulation surgery. Parkinsonism Relat. Disord., 2020, 70, 60-66.
[http://dx.doi.org/10.1016/j.parkreldis.2019.12.002] [PMID: 31865064]
[78]
Tomycz, N.D. The proposed use of cervical spinal cord stimulation for the treatment and prevention of cognitive decline in dementias and neurodegenerative disorders. Med. Hypotheses, 2016, 96, 83-86.
[http://dx.doi.org/10.1016/j.mehy.2016.10.005] [PMID: 27959284]
[79]
Rautio, J.; Laine, K.; Gynther, M.; Savolainen, J. Prodrug approaches for CNS delivery. AAPS J., 2008, 10(1), 92-102.
[http://dx.doi.org/10.1208/s12248-008-9009-8] [PMID: 18446509]
[80]
Zhong, J.; Guan, X.; Zhong, X.; Cao, F.; Gu, Q.; Guo, T.; Zhou, C.; Zeng, Q.; Wang, J.; Gao, T.; Zhang, M. Levodopa imparts a normalizing effect on default-mode network connectivity in non-demented Parkinson’s disease. Neurosci. Lett., 2019, 705, 159-166.
[http://dx.doi.org/10.1016/j.neulet.2019.04.042] [PMID: 31026534]
[81]
Misra, A.; Ganesh, S.; Shahiwala, A.; Shah, S.P. Drug delivery to the central nervous system: a review. J. Pharm. Pharm. Sci., 2003, 6(2), 252-273.
[PMID: 12935438]
[82]
Dong, X. Current strategies for brain drug delivery. Theranostics, 2018, 8(6), 1481-1493.
[http://dx.doi.org/10.7150/thno.21254] [PMID: 29556336]
[83]
Noble, G.T.; Stefanick, J.F.; Ashley, J.D.; Kiziltepe, T.; Bilgicer, B. Ligand-targeted liposome design: challenges and fundamental considerations. Trends Biotechnol., 2014, 32(1), 32-45.
[http://dx.doi.org/10.1016/j.tibtech.2013.09.007] [PMID: 24210498]
[84]
Donnelly, R.F.; Singh, T.R.R.; Woolfson, A.D. Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety. Drug Deliv., 2010, 17(4), 187-207.
[http://dx.doi.org/10.3109/10717541003667798] [PMID: 20297904]
[85]
Donnelly, R.F.; Singh, T.R.; Morrow, D.I.; Woolfson, A.D. Microneedle-mediated transdermal drug delivery;; John Wiley & Sons,: Ltd: Hoboken,, 2012, 1295, pp. 71-79.
[http://dx.doi.org/10.1002/9781119959687]
[86]
Ma, G.; Wu, C. Microneedle, bio-microneedle and bio-inspired microneedle: A review. J. Control. Release, 2017, 251, 11-23.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.011] [PMID: 28215667]
[87]
Chen, X.; Wang, L.; Yu, H.; Li, C.; Feng, J.; Haq, F.; Khan, A.; Khan, R.U. Preparation, properties and challenges of the microneedles-based insulin delivery system. J. Control. Release, 2018, 288, 173-188.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.042] [PMID: 30189223]
[88]
Akhtar, N. Microneedles: An innovative approach to transdermal delivery—A review. Int. J. Pharm. Pharm. Sci., 2014, 6, 18-25.
[89]
Williams, A.C.; Barry, B.W. Penetration enhancers. Adv. Drug Deliv. Rev., 2012, 64, 128-137.
[http://dx.doi.org/10.1016/j.addr.2012.09.032] [PMID: 15019749]
[90]
Tucak, A.; Sirbubalo, M.; Hindija, L.; Rahić, O.; Hadžiabdić, J.; Muhamedagić, K.; Čekić, A.; Vranić, E. Microneedles: Characteristics, materials, production methods and commercial development. Micromachines (Basel), 2020, 11(11), 961.
[http://dx.doi.org/10.3390/mi11110961] [PMID: 33121041]
[91]
Yan, G.; Warner, K.S.; Zhang, J.; Sharma, S.; Gale, B.K. Evaluation needle length and density of microneedle arrays in the pretreatment of skin for transdermal drug delivery. Int. J. Pharm., 2010, 391(1-2), 7-12.
[http://dx.doi.org/10.1016/j.ijpharm.2010.02.007] [PMID: 20188808]
[92]
Aldawood, F.K.; Andar, A.; Desai, S. A comprehensive review of microneedles: types, materials, processes, characterizations and applications. Polymers (Basel), 2021, 13(16), 2815.
[http://dx.doi.org/10.3390/polym13162815] [PMID: 34451353]
[93]
Verbaan, F.J.; Bal, S.M.; van den Berg, D.J.; Groenink, W.H.H.; Verpoorten, H.; Lüttge, R.; Bouwstra, J.A. Assembled microneedle arrays enhance the transport of compounds varying over a large range of molecular weight across human dermatomed skin. J. Control. Release, 2007, 117(2), 238-245.
[http://dx.doi.org/10.1016/j.jconrel.2006.11.009] [PMID: 17196697]
[94]
Pignatello, R., Ed.; Biomaterials: Applications for Nanomedicine; BoD–Books on Demand,, 2011, 15(1), 123-124.
[95]
Gittard, S.D.; Narayan, R.J.; Jin, C.; Ovsianikov, A.; Chichkov, B.N.; Monteiro-Riviere, N.A.; Stafslien, S.; Chisholm, B. Pulsed laser deposition of antimicrobial silver coating on Ormocer® microneedles. Biofabrication, 2009, 1(4), 041001.
[http://dx.doi.org/10.1088/1758-5082/1/4/041001] [PMID: 20661316]
[96]
Waghule, T.; Singhvi, G.; Dubey, S.K.; Pandey, M.M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother., 2019, 109, 1249-1258.
[http://dx.doi.org/10.1016/j.biopha.2018.10.078] [PMID: 30551375]
[97]
Martin, C.J.; Allender, C.J.; Brain, K.R.; Morrissey, A.; Birchall, J.C. Low temperature fabrication of biodegradable sugar glass microneedles for transdermal drug delivery applications. J. Control. Release, 2012, 158(1), 93-101.
[http://dx.doi.org/10.1016/j.jconrel.2011.10.024] [PMID: 22063007]
[98]
Donnelly, R.F.; Majithiya, R.; Singh, T.R.R.; Morrow, D.I.J.; Garland, M.J.; Demir, Y.K.; Migalska, K.; Ryan, E.; Gillen, D.; Scott, C.J.; Woolfson, A.D. Design, optimization and characterisation of polymeric microneedle arrays prepared by a novel laser-based micromoulding technique. Pharm. Res., 2011, 28(1), 41-57.
[http://dx.doi.org/10.1007/s11095-010-0169-8] [PMID: 20490627]
[99]
Huang, H.; Fu, C. Different fabrication methods of out-of-plane polymer hollow needle arrays and their variations. J. Micromech. Microeng., 2007, 17(2), 393-402.
[http://dx.doi.org/10.1088/0960-1317/17/2/027]
[100]
Indermun, S.; Luttge, R.; Choonara, Y.E.; Kumar, P.; du Toit, L.C.; Modi, G.; Pillay, V. Current advances in the fabrication of microneedles for transdermal delivery. J. Control. Release, 2014, 185, 130-138.
[http://dx.doi.org/10.1016/j.jconrel.2014.04.052] [PMID: 24806483]
[101]
Li, J.; Zeng, M.; Shan, H.; Tong, C. Microneedle patches as drug and vaccine delivery platform. Curr. Med. Chem., 2017, 24(22), 2413-2422.
[PMID: 28552053]
[102]
Pradeep Narayanan, S.; Raghavan, S. Solid silicon microneedles for drug delivery applications. Int. J. Adv. Manuf. Technol., 2017, 93(1-4), 407-422.
[http://dx.doi.org/10.1007/s00170-016-9698-6]
[103]
Pradeep Narayanan, S.; Raghavan, S. Fabrication and characterization of gold-coated solid silicon microneedles with improved biocompatibility. Int. J. Adv. Manuf. Technol., 2019, 104(9-12), 3327-3333.
[http://dx.doi.org/10.1007/s00170-018-2596-3]
[104]
Song, Y.; Herwadkar, A.; Patel, M.G.; Banga, A.K. Transdermal delivery of cimetidine across microneedle-treated skin: effect of extent of drug ionization on the permeation. J. Pharm. Sci., 2017, 106(5), 1285-1292.
[http://dx.doi.org/10.1016/j.xphs.2017.01.005] [PMID: 28161442]
[105]
Ilić, T.; Savić, S.; Batinić, B.; Marković, B.; Schmidberger, M.; Lunter, D.; Savić, M.; Savić, S. Combined use of biocompatible nanoemulsions and solid microneedles to improve transport of a model NSAID across the skin: In vitro and in vivo studies. Eur. J. Pharm. Sci., 2018, 125, 110-119.
[http://dx.doi.org/10.1016/j.ejps.2018.09.023] [PMID: 30287408]
[106]
Li, S.; Li, W.; Prausnitz, M. Individually coated microneedles for co-delivery of multiple compounds with different properties. Drug Deliv. Transl. Res., 2018, 8(5), 1043-1052.
[http://dx.doi.org/10.1007/s13346-018-0549-x] [PMID: 29948917]
[107]
Chen, Y.; Chen, B.Z.; Wang, Q.L.; Jin, X.; Guo, X.D. Fabrication of coated polymer microneedles for transdermal drug delivery. J. Control. Release, 2017, 265, 14-21.
[http://dx.doi.org/10.1016/j.jconrel.2017.03.383] [PMID: 28344014]
[108]
Jain, A.K.; Lee, C.H.; Gill, H.S. 5-Aminolevulinic acid coated microneedles for photodynamic therapy of skin tumors. J. Control. Release, 2016, 239, 72-81.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.015] [PMID: 27543445]
[109]
Zhu, D.D.; Wang, Q.L.; Liu, X.B.; Guo, X.D. Rapidly separating microneedles for transdermal drug delivery. Acta Biomater., 2016, 41, 312-319.
[http://dx.doi.org/10.1016/j.actbio.2016.06.005] [PMID: 27265152]
[110]
Wang, Q.L.; Zhu, D.D.; Liu, X.B.; Chen, B.Z.; Guo, X.D. Microneedles with controlled bubble sizes and drug distributions for efficient transdermal drug delivery. Sci. Rep., 2016, 6(1), 38755.
[http://dx.doi.org/10.1038/srep38755] [PMID: 27929104]
[111]
Quinn, H.L.; Bonham, L.; Hughes, C.M.; Donnelly, R.F. Design of a dissolving microneedle platform for transdermal delivery of a fixed-dose combination of cardiovascular drugs. J. Pharm. Sci., 2015, 104(10), 3490-3500.
[http://dx.doi.org/10.1002/jps.24563] [PMID: 26149914]
[112]
Yao, G.; Quan, G.; Lin, S.; Peng, T.; Wang, Q.; Ran, H.; Chen, H.; Zhang, Q.; Wang, L.; Pan, X.; Wu, C. Novel dissolving microneedles for enhanced transdermal delivery of levonorgestrel: In vitro and in vivo characterization. Int. J. Pharm., 2017, 534(1-2), 378-386.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.035] [PMID: 29051119]
[113]
Mishra, R.; Maiti, T.K.; Bhattacharyya, T.K. Development of SU-8 hollow microneedles on a silicon substrate with microfluidic interconnects for transdermal drug delivery. J. Micromech. Microeng., 2018, 28(10), 105017.
[http://dx.doi.org/10.1088/1361-6439/aad301]
[114]
van der Maaden, K.; Heuts, J.; Camps, M.; Pontier, M.; Terwisscha van Scheltinga, A.; Jiskoot, W.; Ossendorp, F.; Bouwstra, J. Hollow microneedle-mediated micro-injections of a liposomal HPV E743–63 synthetic long peptide vaccine for efficient induction of cytotoxic and T-helper responses. J. Control. Release, 2018, 269, 347-354.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.035] [PMID: 29174441]
[115]
Donnelly, R.F.; Singh, T.R.R.; Alkilani, A.Z.; McCrudden, M.T.C.; O’Neill, S.; O’Mahony, C.; Armstrong, K.; McLoone, N.; Kole, P.; Woolfson, A.D. Hydrogel-forming microneedle arrays exhibit antimicrobial properties: Potential for enhanced patient safety. Int. J. Pharm., 2013, 451(1-2), 76-91.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.045] [PMID: 23644043]
[116]
Kim, Y.C.; Park, J.H.; Prausnitz, M.R. Microneedles for drug and vaccine delivery. Adv. Drug Deliv. Rev., 2012, 64(14), 1547-1568.
[http://dx.doi.org/10.1016/j.addr.2012.04.005] [PMID: 22575858]
[117]
Migdadi, E.M.; Courtenay, A.J.; Tekko, I.A.; McCrudden, M.T.C.; Kearney, M.C.; McAlister, E.; McCarthy, H.O.; Donnelly, R.F. Hydrogel-forming microneedles enhance transdermal delivery of metformin hydrochloride. J. Control. Release, 2018, 285, 142-151.
[http://dx.doi.org/10.1016/j.jconrel.2018.07.009] [PMID: 29990526]
[118]
Larrañeta, E.; Lutton, R.E.M.; Woolfson, A.D.; Donnelly, R.F. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Mater. Sci. Eng. Rep., 2016, 104, 1-32.
[http://dx.doi.org/10.1016/j.mser.2016.03.001]
[119]
Gill, H.S.; Denson, D.D.; Burris, B.A.; Prausnitz, M.R. Effect of microneedle design on pain in human volunteers. Clin. J. Pain, 2008, 24(7), 585-594.
[http://dx.doi.org/10.1097/AJP.0b013e31816778f9] [PMID: 18716497]
[120]
Jose, J.; Netto, G. Role of solid lipid nanoparticles as photoprotective agents in cosmetics. J. Cosmet. Dermatol., 2019, 18(1), 315-321.
[http://dx.doi.org/10.1111/jocd.12504] [PMID: 29441672]
[121]
Birchall, J.C.; Clemo, R.; Anstey, A.; John, D.N. Microneedles in clinical practice--an exploratory study into the opinions of healthcare professionals and the public. Pharm. Res., 2011, 28(1), 95-106.
[http://dx.doi.org/10.1007/s11095-010-0101-2] [PMID: 20238152]
[122]
Arnou, R.; Frank, M.; Hagel, T.; Prébet, A. Willingness to vaccinate or get vaccinated with an intradermal seasonal influenza vaccine: a survey of general practitioners and the general public in France and Germany. Adv. Ther., 2011, 28(7), 555-565.
[http://dx.doi.org/10.1007/s12325-011-0035-z] [PMID: 21626269]
[123]
Harilal, S.; Jose, J.; Parambi, D.G.T.; Kumar, R.; Mathew, G.E.; Uddin, M.S.; Kim, H.; Mathew, B. Advancements in nanotherapeutics for Alzheimer’s disease: current perspectives. J. Pharm. Pharmacol., 2019, 71(9), 1370-1383.
[http://dx.doi.org/10.1111/jphp.13132] [PMID: 31304982]
[124]
Duarah, S.; Sharma, M.; Wen, J. Recent advances in microneedle-based drug delivery: Special emphasis on its use in paediatric population. Eur. J. Pharm. Biopharm., 2019, 136, 48-69.
[http://dx.doi.org/10.1016/j.ejpb.2019.01.005] [PMID: 30633972]
[125]
Kim, J.; Park, S.; Nam, G.; Choi, Y.; Woo, S.; Yoon, S.H. Bioinspired microneedle insertion for deep and precise skin penetration with low force: Why the application of mechanophysical stimuli should be considered. J. Mech. Behav. Biomed. Mater., 2018, 78, 480-490.
[http://dx.doi.org/10.1016/j.jmbbm.2017.12.006] [PMID: 29248845]
[126]
Ye, Z.P.P.; Ai, X.L.; Faramand, A.M.; Fang, F. Macrophages as nanocarriers for drug delivery: Novel therapeutics for central nervous system diseases. J. Nanosci. Nanotechnol., 2018, 18(1), 471-485.
[http://dx.doi.org/10.1166/jnn.2018.15218] [PMID: 29768873]
[127]
Lee, Y.H.; Wu, Z.Y. Enhancing macrophage drug delivery efficiency via co-localization of cells and drug-loaded microcarriers in 3D resonant ultrasound field. PLoS One, 2015, 10(8), e0135321.
[http://dx.doi.org/10.1371/journal.pone.0135321] [PMID: 26267789]
[128]
Vora, L.K.; Moffatt, K.; Tekko, I.A.; Paredes, A.J.; Volpe-Zanutto, F.; Mishra, D.; Peng, K.; Raj, S.T.R.; Donnelly, R.F. Microneedle array systems for long-acting drug delivery. Eur. J. Pharm. Biopharm., 2021, 159, 44-76.
[http://dx.doi.org/10.1016/j.ejpb.2020.12.006] [PMID: 33359666]
[129]
Kataoka, M.; Fukahori, M.; Ikemura, A.; Kubota, A.; Higashino, H.; Sakuma, S.; Yamashita, S. Effects of gastric pH on oral drug absorption: In vitro assessment using a dissolution/permeation system reflecting the gastric dissolution process. Eur. J. Pharm. Biopharm., 2016, 101, 103-111.
[http://dx.doi.org/10.1016/j.ejpb.2016.02.002] [PMID: 26873006]
[130]
Liang, Z.; Currais, A.; Soriano-Castell, D.; Schubert, D.; Maher, P. Natural products targeting mitochondria: emerging therapeutics for age-associated neurological disorders. Pharmacol. Ther., 2021, 221, 107749.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107749] [PMID: 33227325]
[131]
Alikatte, K.; Palle, S.; Rajendra Kumar, J.; Pathakala, N. Fisetin improved rotenone-induced behavioral deficits, oxidative changes, and mitochondrial dysfunctions in rat model of Parkinson’s disease. J. Diet. Suppl., 2021, 18(1), 57-71.
[http://dx.doi.org/10.1080/19390211.2019.1710646] [PMID: 31992104]
[132]
Anis, E.; Zafeer, M.F.; Firdaus, F.; Islam, S.N.; Anees, K.A.; Ali, A.; Hossain, M.M. Ferulic acid reinstates mitochondrial dynamics through PGC1α expression modulation in 6-hydroxydopamine lesioned rats. Phytother. Res., 2020, 34(1), 214-226.
[http://dx.doi.org/10.1002/ptr.6523] [PMID: 31657074]
[133]
Ansari Dezfouli, M.; Zahmatkesh, M.; Farahmandfar, M.; Khodagholi, F. Melatonin protective effect against amyloid β-induced neurotoxicity mediated by mitochondrial biogenesis; involvement of hippocampal Sirtuin-1 signaling pathway. Physiol. Behav., 2019, 204, 65-75.
[http://dx.doi.org/10.1016/j.physbeh.2019.02.016] [PMID: 30769106]
[134]
Ay, M.; Luo, J.; Langley, M.; Jin, H.; Anantharam, V.; Kanthasamy, A.; Kanthasamy, A.G. Molecular mechanisms underlying protective effects of quercetin against mitochondrial dysfunction and progressive dopaminergic neurodegeneration in cell culture and MitoPark transgenic mouse models of Parkinson’s Disease. J. Neurochem., 2017, 141(5), 766-782.
[http://dx.doi.org/10.1111/jnc.14033] [PMID: 28376279]
[135]
Bak, D.H.; Kim, H.D.; Kim, Y.O.; Park, C.G.; Han, S.Y.; Kim, J.J. Neuroprotective effects of 20(S)-protopanaxadiol against glutamate-induced mitochondrial dysfunction in PC12 cells. Int. J. Mol. Med., 2016, 37(2), 378-386.
[http://dx.doi.org/10.3892/ijmm.2015.2440] [PMID: 26709399]
[136]
Chen, Y.; Huang, L.; Zhang, H.; Diao, X.; Zhao, S.; Zhou, W. Reduction in autophagy by (-)-epigallocatechin-3-gallate (EGCG): A potential mechanism of prevention of mitochondrial dysfunction after subarachnoid hemorrhage. Mol. Neurobiol., 2017, 54(1), 392-405.
[http://dx.doi.org/10.1007/s12035-015-9629-9] [PMID: 26742518]
[137]
Ding, Y. Kong, D.; Zhou, T.; Yang, N.; Xin, C.; Xu, J.; Wang, Q.; Zhang, H.; Wu, Q.; Lu, X.; Lim, K.; Ma, B.; Zhang, C.; Li, L.; Huang, W. α-Arbutin protects against Parkinson’s disease-associated mitochondrial dysfunction in vitro and in vivo. Neuromolecular Med., 2020, 22(1), 56-67.
[http://dx.doi.org/10.1007/s12017-019-08562-6] [PMID: 31401719]
[138]
Fu, J.; Jin, J.; Cichewicz, R.H.; Hageman, S.A.; Ellis, T.K.; Xiang, L.; Peng, Q.; Jiang, M.; Arbez, N.; Hotaling, K.; Ross, C.A.; Duan, W. trans-(-)-ε-Viniferin increases mitochondrial sirtuin 3 (SIRT3), activates AMP-activated protein kinase (AMPK), and protects cells in models of Huntington Disease. J. Biol. Chem., 2012, 287(29), 24460-24472.
[http://dx.doi.org/10.1074/jbc.M112.382226] [PMID: 22648412]
[139]
Jang, Y.; Choo, H.; Lee, M.J.; Han, J.; Kim, S.J.; Ju, X.; Cui, J.; Lee, Y.L.; Ryu, M.J.; Oh, E.S.; Choi, S.Y.; Chung, W.; Kweon, G.R.; Heo, J.Y. Auraptene Mitigates Parkinson’s Disease-Like Behavior by Protecting Inhibition of Mitochondrial Respiration and Scavenging Reactive Oxygen Species. Int. J. Mol. Sci., 2019, 20(14), 3409.
[http://dx.doi.org/10.3390/ijms20143409] [PMID: 31336718]
[140]
Kim, M.H.; Min, J.S.; Lee, J.Y.; Chae, U.; Yang, E.J.; Song, K.S.; Lee, H.S.; Lee, H.J.; Lee, S.R.; Lee, D.S. Oleuropein isolated from Fraxinus rhynchophylla inhibits glutamate-induced neuronal cell death by attenuating mitochondrial dysfunction. Nutr. Neurosci., 2018, 21(7), 520-528.
[http://dx.doi.org/10.1080/1028415X.2017.1317449] [PMID: 28448247]
[141]
Lee, D.H.; Kim, C.S.; Lee, Y.J. Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro. Food Chem. Toxicol., 2011, 49(1), 271-280.
[http://dx.doi.org/10.1016/j.fct.2010.10.029] [PMID: 21056612]
[142]
Lee, J.H.; Amarsanaa, K.; Wu, J.; Jeon, S.C.; Cui, Y.; Jung, S.C.; Park, D.B.; Kim, S.J.; Han, S.H.; Kim, H.W.; Rhyu, I.J.; Eun, S.Y. Nobiletin attenuates neurotoxic mitochondrial calcium overload through K + influx and ΔΨ m across mitochondrial inner membrane. Korean J. Physiol. Pharmacol., 2018, 22(3), 311-319.
[http://dx.doi.org/10.4196/kjpp.2018.22.3.311] [PMID: 29719453]
[143]
Lv, C.; Liu, X.; Liu, H.; Chen, T.; Zhang, W. Geniposide attenuates mitochondrial dysfunction and memory deficits in APP/PS1 transgenic mice. Curr. Alzheimer Res., 2014, 11(6), 580-587.
[http://dx.doi.org/10.2174/1567205011666140618095925] [PMID: 25034042]
[144]
Rashedinia, M.; Saberzadeh, J.; Khosravi Bakhtiari, T.; Hozhabri, S.; Arabsolghar, R. Glycyrrhizic acid ameliorates mitochondrial function and biogenesis against aluminum toxicity in PC12 cells. Neurotox. Res., 2019, 35(3), 584-593.
[http://dx.doi.org/10.1007/s12640-018-9967-2] [PMID: 30317430]
[145]
Yang, L.; Ye, C.; Huang, X.; Tang, X.; Zhang, H. Decreased accumulation of subcellular amyloid-β with improved mitochondrial function mediates the neuroprotective effect of huperzine A. J. Alzheimers Dis., 2012, 31(1), 131-142.
[http://dx.doi.org/10.3233/JAD-2012-120274] [PMID: 22531425]
[146]
Zafeer, M.F.; Firdaus, F.; Anis, E.; Mobarak, H.M. Prolong treatment with Trans-ferulic acid mitigates bioenergetics loss and restores mitochondrial dynamics in streptozotocin-induced sporadic dementia of Alzheimer’s type. Neurotoxicology, 2019, 73, 246-257.
[http://dx.doi.org/10.1016/j.neuro.2019.04.006] [PMID: 31029786]
[147]
Zheng, A.; Li, H.; Xu, J.; Cao, K.; Li, H.; Pu, W.; Yang, Z.; Peng, Y.; Long, J.; Liu, J.; Feng, Z. Hydroxytyrosol improves mitochondrial function and reduces oxidative stress in the brain of db/db mice: role of AMP-activated protein kinase activation. Br. J. Nutr., 2015, 113(11), 1667-1676.
[http://dx.doi.org/10.1017/S0007114515000884] [PMID: 25885653]
[148]
Tao, L.; Huang, X.; Chen, Y.; Tang, X.; Zhang, H. Acetylcholinesterase-independent protective effects of huperzine A against iron overload-induced oxidative damage and aberrant iron metabolism signaling in rat cortical neurons. Acta Pharmacol. Sin., 2016, 37(11), 1391-1400.
[http://dx.doi.org/10.1038/aps.2016.78] [PMID: 27498774]
[149]
van der Merwe, C.; van Dyk, H.C.; Engelbrecht, L.; van der Westhuizen, F.H.; Kinnear, C.; Loos, B.; Bardien, S. Curcumin rescues a PINK1 knock down SH-SY5Y cellular model of Parkinson’s disease from mitochondrial dysfunction and cell death. Mol. Neurobiol., 2017, 54(4), 2752-2762.
[http://dx.doi.org/10.1007/s12035-016-9843-0] [PMID: 27003823]
[150]
Singh, M.; Murthy, V.; Ramassamy, C. Modulation of hydrogen peroxide and acrolein-induced oxidative stress, mitochondrial dysfunctions and redox regulated pathways by the Bacopa monniera extract: potential implication in Alzheimer’s disease. J. Alzheimers Dis., 2010, 21(1), 229-247.
[http://dx.doi.org/10.3233/JAD-2010-091729] [PMID: 20421692]
[151]
Yan, Q.; Wang, W.; Weng, J.; Zhang, Z.; Yin, L.; Yang, Q.; Guo, F.; Wang, X.; Chen, F.; Yang, G. Dissolving microneedles for transdermal delivery of huperzine A for the treatment of Alzheimer’s disease. Drug Deliv., 2020, 27(1), 1147-1155.
[http://dx.doi.org/10.1080/10717544.2020.1797240] [PMID: 32729341]
[152]
Prabhu, A.; Jose, J.; Kumar, L.; Salwa, S.; Vijay, K.M.; Nabavi, S.M. Transdermal delivery of curcumin-loaded solid lipid nanoparticles as microneedle patch: An in vitro and in vivo study. AAPS PharmSciTech, 2022, 23(1), 49.
[http://dx.doi.org/10.1208/s12249-021-02186-5] [PMID: 34988698]
[153]
Joy, D.; Jose, J.; Bibi, S.; Bandiwadekar, A.; Gopan, G.; Mariana Gonçalves Lima, C.; Bin Emran, T.; A, Alhumaydhi. F.; Ashtekar, H.; D S, S.; Adam Conte-Junior, C. Development of microneedle patch loaded with Bacopa monnieri solid lipid nanoparticles for the effective management of Parkinson’s disease. Bioinorg. Chem. Appl., 2022, 2022, 9150205.
[http://dx.doi.org/10.1155/2022/9150205] [PMID: 35992047]
[154]
Zhou, X.; Li, B.; Guo, M.; Peng, W.; Wang, D.; Guo, Q.; Wang, S.; Ming, D.; Zheng, B. Microneedle patch based on molecular motor as a spatio-temporal controllable dosing strategy of L-DOPA for Parkinson’s disease. Chem. Eng. J., 2022, 427, 131555.
[http://dx.doi.org/10.1016/j.cej.2021.131555]
[155]
Singh, N.D.; Banga, A.K. Controlled delivery of ropinirole hydrochloride through skin using modulated iontophoresis and microneedles. J. Drug Target., 2013, 21(4), 354-366.
[http://dx.doi.org/10.3109/1061186X.2012.757768] [PMID: 23311703]
[156]
Matsuo, K.; Okamoto, H.; Kawai, Y.; Quan, Y.S.; Kamiyama, F.; Hirobe, S.; Okada, N.; Nakagawa, S. Vaccine efficacy of transcutaneous immunization with amyloid β using a dissolving microneedle array in a mouse model of Alzheimer’s disease. J. Neuroimmunol., 2014, 266(1-2), 1-11.
[http://dx.doi.org/10.1016/j.jneuroim.2013.11.002] [PMID: 24315156]
[157]
Kearney, M.C.; Caffarel-Salvador, E.; Fallows, S.J.; McCarthy, H.O.; Donnelly, R.F. Microneedle-mediated delivery of donepezil: Potential for improved treatment options in Alzheimer’s disease. Eur. J. Pharm. Biopharm., 2016, 103, 43-50.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.026] [PMID: 27018330]
[158]
Kim, J.Y.; Han, M.R.; Kim, Y.H.; Shin, S.W.; Nam, S.Y.; Park, J.H. Tip-loaded dissolving microneedles for transdermal delivery of donepezil hydrochloride for treatment of Alzheimer’s disease. Eur. J. Pharm. Biopharm., 2016, 105, 148-155.
[http://dx.doi.org/10.1016/j.ejpb.2016.06.006] [PMID: 27288938]
[159]
Hoang, M.; Ita, K.; Bair, D. Solid microneedles for transdermal delivery of amantadine hydrochloride and pramipexole dihydrochloride. Pharmaceutics, 2015, 7(4), 379-396.
[http://dx.doi.org/10.3390/pharmaceutics7040379] [PMID: 26426039]
[160]
Jung, J.H.; Jin, S.G. Microneedle for transdermal drug delivery: current trends and fabrication. J. Pharm. Investig., 2021, 51(5), 503-517.
[http://dx.doi.org/10.1007/s40005-021-00512-4] [PMID: 33686358]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy