Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Bioinformatics Analysis to Identify Intersection Genes, Associated Pathways and Therapeutic Drugs between COVID-19 and Oral Candidiasis

Author(s): Liuqing Yang, Nan Yang, Handan Huang, Jinling Yu, Xin Sui, Lu Tao, Ying Gao and Zhihui Liu*

Volume 26, Issue 8, 2023

Published on: 03 November, 2022

Page: [1533 - 1546] Pages: 14

DOI: 10.2174/1386207325666221007111239

Price: $65

Abstract

Background: Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has a serious threat to human health. Oral candidiasis (OC) may be one of the causes of morbidity in severe COVID-19 patients. However, there is currently no treatment for oral candidiasis and COVID-19 (OC/COVID-19). The purpose of this study was to use text mining and data analysis to investigate the target genes for treatment and explore potential therapeutic drugs for OC/COVID-19.

Methods: We used the text mining tool pubmed2ensembl to detect genes associated with OC, and the dataset GSE164805 was used for the data analysis. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed on two intersection genes using the Database of Annotation, Visualization and Integrated Discovery (DAVID) platform. The protein-protein interaction (PPI) networks were constructed by STRING software, and gene module analysis was performed using Molecular Complex Detection (MCODE), a plug-in in Cytoscape. The most significant genes were selected as hub genes and their functions and pathways were analyzed using Metascape. We revealed the upstream pathway activity of the hub genes. The drug-gene interaction database (DGIdb) and the traditional Chinese medicines integrated database (TCMID) were used to discover potential drugs for the treatment of OC/COVID-19.

Results: The analysis indicated that there were 2869 differentially expressed genes (DEGs) in GSE164805. We identified 161 unique genes associated with oral candidiasis through text mining. A total of 20 intersection genes were identified as the therapeutic targets for OC/COVID-19. Based on the bioinformatics analysis, nine genes (TNF, IL1B, IFNG, CSF2, ELANE, CCL2, MMP9, CXCR4, and IL1A) were identified as hub genes that were mainly enriched in the IL-17 signaling pathway, TNF signaling pathway, AGE-RAGE signaling pathway in diabetic complications and NOD-like receptor signaling pathway. We identified four of the nine genes that target five existing drugs, including BKT140, mavorixafor, sivelestat, canakinumab, and rilonacept. Furthermore, twenty herb ingredients were also screened as potential drugs.

Conclusion: In this study, TNF, IL1B, IFNG, CSF2, ELANE, CCL2, MMP9, CXCR4, and IL1A were potentially key genes involved in the treatment of OC/COVID-19. Taken together five drugs and twenty herb ingredients were identified as potential therapeutic agents for OC/COVID-19 treatment and management.

Graphical Abstract

[1]
Coronaviridae Study Group of the International Committee on Taxonomy of Viruses. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 2020, 5(4), 536-544.
[http://dx.doi.org/10.1038/s41564-020-0695-z] [PMID: 32123347]
[2]
COVID Live - Coronavirus Statistics - Worldometer. Available from: https://www.worldometers.info/coronavirus/ (Accessed on: 26 Aug 2022).
[3]
Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; Du, B.; Li, L.; Zeng, G.; Yuen, K.Y.; Chen, R.; Tang, C.; Wang, T.; Chen, P.; Xiang, J.; Li, S.; Wang, J.; Liang, Z.; Peng, Y.; Wei, L.; Liu, Y.; Hu, Y.; Peng, P.; Wang, J.; Liu, J.; Chen, Z.; Li, G.; Zheng, Z.; Qiu, S.; Luo, J.; Ye, C.; Zhu, S.; Zhong, N. Clinical characteristics of coronavirus disease 2019 in China. N. Engl. J. Med., 2020, 382(18), 1708-1720.
[http://dx.doi.org/10.1056/NEJMoa2002032] [PMID: 32109013]
[4]
Ly, L.; Jb, C. COVID-19 mortality in patients with cancer on chemotherapy or other anticancer treatments: A prospective cohort study. Lancet, 2020, 395(10241), 1919-1926.
[5]
Chen, L.; Zhao, J.; Peng, J.; Li, X.; Deng, X.; Geng, Z.; Shen, Z.; Guo, F.; Zhang, Q.; Jin, Y.; Wang, L.; Wang, S. Detection of SARS‐CoV‐2 in saliva and characterization of oral symptoms in COVID‐19 patients. Cell Prolif., 2020, 53(12), e12923.
[http://dx.doi.org/10.1111/cpr.12923] [PMID: 33073910]
[6]
De Maria, A.; Varese, P.; Dentone, C.; Barisione, E.; Bassetti, M. High prevalence of olfactory and taste disorder during SARS‐CoV‐2 infection in outpatients. J. Med. Virol., 2020, 92(11), 2310-2311.
[http://dx.doi.org/10.1002/jmv.25995] [PMID: 32383174]
[7]
Lechien, J.R.; Chiesa-Estomba, C.M.; De Siati, D.R.; Horoi, M.; Le Bon, S.D.; Rodriguez, A.; Dequanter, D.; Blecic, S.; El Afia, F.; Distinguin, L.; Chekkoury-Idrissi, Y.; Hans, S.; Delgado, I.L.; Calvo-Henriquez, C.; Lavigne, P.; Falanga, C.; Barillari, M.R.; Cammaroto, G.; Khalife, M.; Leich, P.; Souchay, C.; Rossi, C.; Journe, F.; Hsieh, J.; Edjlali, M.; Carlier, R.; Ris, L.; Lovato, A.; De Filippis, C.; Coppee, F.; Fakhry, N.; Ayad, T.; Saussez, S. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): A multicenter European study. Eur. Arch. Otorhinolaryngol., 2020, 277(8), 2251-2261.
[http://dx.doi.org/10.1007/s00405-020-05965-1] [PMID: 32253535]
[8]
Martín Carreras-Presas, C.; Amaro Sánchez, J.; López-Sánchez, A.F.; Jané-Salas, E.; Somacarrera Pérez, M.L. Oral vesiculobullous lesions associated with SARS‐CoV‐2 infection. Oral Dis., 2021, 27(S3), 710-712.
[http://dx.doi.org/10.1111/odi.13382] [PMID: 32369674]
[9]
Dziedzic, A.; Wojtyczka, R. The impact of coronavirus infectious disease 19 (COVID‐19) on oral health. Oral Dis., 2021, 27(S3), 703-706.
[http://dx.doi.org/10.1111/odi.13359] [PMID: 32304276]
[10]
Salehi, M.; Ahmadikia, K.; Mahmoudi, S.; Kalantari, S.; Jamalimoghadamsiahkali, S.; Izadi, A.; Kord, M.; Dehghan Manshadi, S.A.; Seifi, A.; Ghiasvand, F.; Khajavirad, N.; Ebrahimi, S.; Koohfar, A.; Boekhout, T.; Khodavaisy, S. Oropharyngeal candidiasis in hospitalised COVID‐19 patients from Iran: Species identification and antifungal susceptibility pattern. Mycoses, 2020, 63(8), 771-778.
[http://dx.doi.org/10.1111/myc.13137] [PMID: 32609906]
[11]
Bianchi, C.M.P.C.; Bianchi, H.A.; Tadano, T.; Paula, C.R.; Hoffmann-Santos, H.D. Factors related to oral candidiasis in elderly users and non-users of removable dental prostheses. Rev. Inst. Med. Trop. Sao Paulo, 2016, 58, 17.
[12]
Baba, Y.; Sato, Y.; Owada, G.; Minakuchi, S. Effectiveness of a combination denture-cleaning method versus a mechanical method: Comparison of denture cleanliness, patient satisfaction, and oral health-related quality of life. J. Prosthodont. Res., 2018, 62(3), 353-358.
[http://dx.doi.org/10.1016/j.jpor.2018.01.005] [PMID: 29428169]
[13]
Kassebaum, N.J.; Bernabé, E.; Dahiya, M.; Bhandari, B.; Murray, C.J.L.; Marcenes, W. Global burden of severe tooth loss. J. Dent. Res., 2014, 93(S7), 20S-28S.
[http://dx.doi.org/10.1177/0022034514537828] [PMID: 24947899]
[14]
Carmen, S.; Michelangelo, P.; María, C.; Vincenzo, E.; Maurizio, B.; Lucio, M.; Agostino, G.; Massimo, P.; Rosario, S. Candida-associated denture stomatitis. Med. Oral Patol. Oral Cir. Bucal, 2011, 16(2), e139-e143.
[15]
Millsop, J.W.; Fazel, N. Oral candidiasis. Clin. Dermatol., 2016, 34(4), 487-494.
[16]
Pendleton, K.M.; Dickson, R.P.; Newton, D.W.; Hoffman, T.C.; Yanik, G.A.; Huffnagle, G.B. Respiratory tract colonization by Candida species portends worse outcomes in immunocompromised patients. Clin. Pulm. Med., 2018, 25(6), 197-201.
[http://dx.doi.org/10.1097/CPM.0000000000000279] [PMID: 30911217]
[17]
Zj, L. Case fatality rates for patients with COVID-19 requiring invasive mechanical ventilation - A meta-analysis. Am. J. Respir. Crit. Care Med., 2021, 203(1), 54-66.
[18]
Phua, J.; Weng, L.; Ling, L.; Egi, M.; Lim, C.M.; Divatia, J.V.; Shrestha, B.R.; Arabi, Y.M.; Ng, J.; Gomersall, C.D.; Nishimura, M.; Koh, Y.; Du, B. Intensive care management of coronavirus disease 2019 (COVID-19): Challenges and recommendations. Lancet Respir. Med., 2020, 8(5), 506-517.
[http://dx.doi.org/10.1016/S2213-2600(20)30161-2] [PMID: 32272080]
[19]
Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; Cookingham, J.; Coppa, K.; Diefenbach, M.A.; Dominello, A.J.; Duer-Hefele, J.; Falzon, L.; Gitlin, J.; Hajizadeh, N.; Harvin, T.G.; Hirschwerk, D.A.; Kim, E.J.; Kozel, Z.M.; Marrast, L.M.; Mogavero, J.N.; Osorio, G.A.; Qiu, M.; Zanos, T.P. Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York city area. JAMA, 2020, 323(20), 2052-2059.
[http://dx.doi.org/10.1001/jama.2020.6775] [PMID: 32320003]
[20]
Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; Zhao, Y.; Li, Y.; Wang, X.; Peng, Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-Infected pneumonia in Wuhan, China. JAMA, 2020, 323(11), 1061-1069.
[http://dx.doi.org/10.1001/jama.2020.1585] [PMID: 32031570]
[21]
Safdar, N.; Crnich, C.J.; Maki, D.G. The pathogenesis of ventilator associated pneumonia: Its relevance to developing effective strategies for prevention. Respir. Care, 2005, 50(6), 725-739.
[22]
Jerônimo, L.S.; Abreu, L.G.; Cunha, F.A.; Esteves Lima, R.P. Association between periodontitis and nosocomial pneumonia: A systematic review and meta-analysis of observational studies. Oral Health Prev. Dent., 2020, 18(1), 11-17.
[PMID: 32051966]
[23]
Azevedo, J.S.; Azevedo, M.S.; Oliveira, L.J.C.; Correa, M.B.; Demarco, F.F. Use and need for dental prosthesis in elderly Brazilians according to the National Survey of Oral Health (SBBrasil 2010): Prevalence and associated factors. Cad. Saude Publica, 2017, 33(8), e00054016.
[http://dx.doi.org/10.1590/0102-311x00054016]
[24]
Ong, E.Z.; Chan, Y.F.Z.; Leong, W.Y.; Lee, N.M.Y.; S Kalimuddin, S.; Mohideen, S.M.H.; Chan, K.S.; Tan, A.T.; Bertoletti, A.; Eong Ooi, E.; Low J.G.H. A dynamic immune response shapes COVID-19 progression. Cell Host Microbe, 2020, 27(6), 879-882.e2.
[25]
Castro, F.; Cardoso, A.P.; Gonçalves, R.M.; Serre, K.; Oliveira, M.J. Interferon gamma at the crossroads of tumor immune surveillance or evasion. Front. Immunol., 2018, 9, 847.
[http://dx.doi.org/10.3389/fimmu.2018.00847] [PMID: 29780381]
[26]
François, T.; Jean-Paul, G.; Andrew, Z.; Peter, C.; Mahmoud, R. Involvement of interleukin-18 in the inflammatory response against oropharyngeal Candidiasis. Med. Sci. Monit., 2004, 10(8), BR239-BR249.
[27]
Zhao, Y.; Kilian, C.; Turner, J.E.; Bosurgi, L.; Roedl, K.; Bartsch, P.; Gnirck, A.C.; Cortesi, F.; Schultheiß, C.; Hellmig, M.; Enk, L.U.B.; Hausmann, F.; Borchers, A.; Wong, M.N.; Paust, H.J.; Siracusa, F.; Scheibel, N.; Herrmann, M.; Rosati, E.; Bacher, P.; Kylies, D.; Jarczak, D.; Lütgehetmann, M.; Pfefferle, S.; Steurer, S.; Zur-Wiesch, J.S.; Puelles, V.G.; Sperhake, J.P.; Addo, M.M.; Lohse, A.W.; Binder, M.; Huber, S.; Huber, T.B.; Kluge, S.; Bonn, S.; Panzer, U.; Gagliani, N.; Krebs, C.F. Clonal expansion and activation of tissue-resident memory-like Th17 cells expressing GM-CSF in the lungs of severe COVID-19 patients. Sci. Immunol., 2021, 6(56), eabf6692.
[28]
Temesgen, Z.; Assi, M.; Shweta, F.N.U.; Vergidis, P.; Rizza, S.A.; Bauer, P.R.; Pickering, B.W.; Razonable, R.R.; Libertin, C.R.; Burger, C.D.; Orenstein, R.; Vargas, H.E.; Palraj, R.; Dababneh, A.S.; Chappell, G.; Chappell, D.; Ahmed, O.; Sakemura, R.; Durrant, C.; Kenderian, S.S.; Badley, A.D. GM-CSF neutralization with lenzilumab in severe COVID-19 pneumonia. Mayo Clin. Proc., 2020, 95(11), 2382-2394.
[http://dx.doi.org/10.1016/j.mayocp.2020.08.038] [PMID: 33153629]
[29]
Lotfi, N.; Zhang, G.X.; Esmaeil, N.; Rostami, A. Evaluation of the effect of GM-CSF blocking on the phenotype and function of human monocytes. Sci. Rep., 2020, 10(1), 1567.
[http://dx.doi.org/10.1038/s41598-020-58131-2] [PMID: 32005854]
[30]
De Luca, G.; Cavalli, G.; Campochiaro, C.; Della-Torre, E.; Angelillo, P.; Tomelleri, A.; Boffini, N.; Tentori, S.; Mette, F.; Farina, N.; Rovere-Querini, P.; Ruggeri, A.; D’Aliberti, T.; Scarpellini, P.; Landoni, G.; De Cobelli, F.; Paolini, J.F.; Zangrillo, A.; Tresoldi, M.; Trapnell, B.C.; Ciceri, F.; Dagna, L. GM-CSF blockade with mavrilimumab in severe COVID-19 pneumonia and systemic hyperinflammation: A single-centre, prospective cohort study. Lancet Rheumatol., 2020, 2(8), e465-e473.
[http://dx.doi.org/10.1016/S2665-9913(20)30170-3] [PMID: 32835256]
[31]
Quinton, L.J.; Mizgerd, J.P. Dynamics of lung defense in pneumonia: Resistance, resilience, and remodeling. Annu. Rev. Physiol., 2015, 77(1), 407-430.
[http://dx.doi.org/10.1146/annurev-physiol-021014-071937] [PMID: 25148693]
[32]
Yamamoto, K.; Ahyi, A.N.N.; Pepper-Cunningham, Z.A.; Ferrari, J.D.; Wilson, A.A.; Jones, M.R.; Quinton, L.J.; Mizgerd, J.P. Roles of lung epithelium in neutrophil recruitment during pneumococcal pneumonia. Am. J. Respir. Cell Mol. Biol., 2014, 50(2), 253-262.
[http://dx.doi.org/10.1165/rcmb.2013-0114OC] [PMID: 24010952]
[33]
Taniguchi-Ponciano, K.; Vadillo, E.; Mayani, H.; Gonzalez-Bonilla, C.R.; Torres, J.; Majluf, A.; Flores-Padilla, G.; Wacher-Rodarte, N.; Galan, J.C.; Ferat-Osorio, E.; Blanco-Favela, F.; Lopez-Macias, C.; Ferreira-Hermosillo, A.; Ramirez-Renteria, C.; Peña-Martínez, E.; Silva-Román, G.; Vela-Patiño, S.; Mata-Lozano, C.; Carvente-Garcia, R.; Basurto-Acevedo, L.; Saucedo, R.; Piña-Sanchez, P.; Chavez-Gonzalez, A.; Marrero-Rodríguez, D.; Mercado, M. Increased expression of hypoxia-induced factor 1α mRNA and its related genes in myeloid blood cells from critically ill COVID-19 patients. Ann. Med., 2021, 53(1), 197-207.
[http://dx.doi.org/10.1080/07853890.2020.1858234] [PMID: 33345622]
[34]
Taus, F.; Salvagno, G.; Canè, S.; Fava, C.; Mazzaferri, F.; Carrara, E.; Petrova, V.; Barouni, R.M.; Dima, F.; Dalbeni, A.; Romano, S.; Poli, G.; Benati, M.; De Nitto, S.; Mansueto, G.; Iezzi, M.; Tacconelli, E.; Lippi, G.; Bronte, V.; Minuz, P. Platelets promote thromboinflammation in SARS-CoV-2 pneumonia. Arterioscler. Thromb. Vasc. Biol., 2020, 40(12), 2975-2989.
[http://dx.doi.org/10.1161/ATVBAHA.120.315175] [PMID: 33052054]
[35]
Lee, J.S.; Park, S.; Jeong, H.W.; Ahn, J.Y.; Choi, S.J.; Lee, H.; Choi, B.; Nam, S.K.; Sa, M.; Kwon, J.S.; Jeong, S.J.; Lee, H.K.; Park, S.H.; Park, S-H.; Choi, J.Y.; Kim, S.H.; Jung, I.; Shin, E.C. Immunophenotyping of COVID-19 and influenza highlights the role of Type I interferons in development of severe COVID-19. Sci. Immunol., 2020, 5(49), abd1554.
[http://dx.doi.org/10.1126/sciimmunol.abd1554]
[36]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[37]
Vargas-Alarcón, G.; Posadas-Sánchez, R.; Ramírez-Bello, J. Variability in genes related to SARS-CoV-2 entry into host cells (ACE2, TMPRSS2, TMPRSS11A, ELANE, and CTSL) and its potential use in association studies. Life Sci., 2020, 260, 118313.
[http://dx.doi.org/10.1016/j.lfs.2020.118313] [PMID: 32835700]
[38]
Young, B.E.; Ong, S.W.X.; Ng, L.F.P.; Anderson, D.E.; Chia, W.N.; Chia, P.Y.; Ang, L.W.; Mak, T.M.; Kalimuddin, S.; Chai, L.Y.A.; Pada, S.; Tan, S.Y.; Sun, L.; Parthasarathy, P.; Fong, S.W.; Chan, Y.H.; Tan, C.W.; Lee, B.; Rötzschke, O.; Ding, Y.; Tambyah, P.; Low, J.G.H.; Cui, L.; Barkham, T.; Lin, R.T.P.; Leo, Y.S.; Renia, L.; Wang, L.F.; Lye, D.C.; Lim, P.L.; Peng, Ang B.S.; Lee, C.C.; U Lee, L.S.; Ling, L.M.; Ng, O.T.; Chan, M.; Marimuthu, K.; Vasoo, S.; Wong, C.S.; Lee, T.H.; Sadarangani, S.; Lin, R.J.; Sadasiv, M.S.; Ling Ng, D.H.; Choy, C.Y.; En Tan, G.S.; Tan, Y.K.; Sutjipto, S.; Lee, P.H.; Tay, J.Y.; Yeo, T.W.; Khoo, B.Y.; Tay, W.C.; Ng, G.; Mah, Y.Y.; Tan, W.; De, P.P.; Pooja, R.; Chia, J.W.Z.; Constance Chen, Y.Y.; Mendis, S.; Toh, B.K.; Choon Fong, R.K.; Lin Oh, H.M.; Fong Chien, J.M.; Shafi, H.; Cheong, H.Y.; Tan, T.Y.; Tan, T.T.; Tan, B.H.; Wijaya, L.; Venkatachalam, I.; Chua, Y.Y.; Zhi Cherng, B.P.; Zi Chan, Y.F.; Wong, H.M.; Thien, S.Y.; Meng Goh, K.C.; Ling Tan, S.Y.; Ean Oon, L.L.; Chan, K.S.; Lin, L.; Gin Chan, D.S.; Ooi, S.T.; Narayana, D.R.; Somani, J.; Ling Oon, J.E.; Yan, G.Z.; Allen, D.M.; Jureen, R.; Yan, B.; Foo, R.; Kang, A.; Sivalingam, V.; How, W.; Fernandez, N.L.; Yeo, N.K-W.; Chee, R.S-L.; Amrun, S.N. Viral dynamics and immune correlates of coronavirus disease 2019 (COVID-19) severity. Clin. Infect. Dis., 2021, 73(9), e2932-e2942.
[http://dx.doi.org/10.1093/cid/ciaa1280] [PMID: 32856707]
[39]
Ueland, T.; Holter, J.C.; Holten, A.R.; Müller, K.E.; Lind, A.; Bekken, G.K.; Dudman, S.; Aukrust, P.; Dyrhol-Riise, A.M.; Heggelund, L. Distinct and early increase in circulating MMP-9 in COVID-19 patients with respiratory failure. J. Infect., 2020, 81(3), e41-e43.
[http://dx.doi.org/10.1016/j.jinf.2020.06.061] [PMID: 32603675]
[40]
Davey, A.; McAuley, D.F.; O’Kane, C.M. Matrix metalloproteinases in acute lung injury: Mediators of injury and drivers of repair. Eur. Respir. J., 2011, 38(4), 959-970.
[http://dx.doi.org/10.1183/09031936.00032111] [PMID: 21565917]
[41]
Ma, W.T.; Yao, X.T.; Peng, Q.; Chen, D.K. The protective and pathogenic roles of IL-17 in viral infections: Friend or foe? Open Biol., 2019, 9(7), 190109.
[http://dx.doi.org/10.1098/rsob.190109] [PMID: 31337278]
[42]
Song, J.; Zeng, M.; Wang, H.; Qin, C.; Hou, H.Y.; Sun, Z.Y.; Xu, S.P.; Wang, G.P.; Guo, C.L.; Deng, Y.K.; Wang, Z.C.; Ma, J.; Pan, L.; Liao, B.; Du, Z.H.; Feng, Q.M.; Liu, Y.; Xie, J.G.; Liu, Z. Distinct effects of asthma and COPD comorbidity on disease expression and outcome in patients with COVID‐19. Allergy, 2021, 76(2), 483-496.
[http://dx.doi.org/10.1111/all.14517] [PMID: 32716553]
[43]
Sodhi, C.P.; Nguyen, J.; Yamaguchi, Y.; Werts, A.D.; Lu, P.; Ladd, M.R.; Fulton, W.B.; Kovler, M.L.; Wang, S.; Prindle, T.; Zhang, Y.; Lazartigues, E.D.; Holtzman, M.J.; Alcorn, J.F.; Hackam, D.J.; Jia, H. A dynamic variation of pulmonary ACE2 is required to modulate neutrophilic inflammation in response to Pseudomonas aeruginosa lung infection in mice. J. Immunol., 2019, 203(11), 3000-3012.
[44]
Wan, M.T.; Shin, D.B.; Winthrop, K.L.; Gelfand, J.M. The risk of respiratory tract infections and symptoms in psoriasis patients treated with interleukin 17 pathway–inhibiting biologics: A meta-estimate of pivotal trials relevant to decision making during the COVID-19 pandemic. J. Am. Acad. Dermatol., 2020, 83(2), 677-679.
[http://dx.doi.org/10.1016/j.jaad.2020.05.035] [PMID: 32416207]
[45]
Misra, J.R.; Irvine, K.D. The hippo signaling network and its biological functions. Annu. Rev. Genet., 2018, 52(1), 65-87.
[http://dx.doi.org/10.1146/annurev-genet-120417-031621] [PMID: 30183404]
[46]
Kalliolias, G.D.; Ivashkiv, L.B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol., 2016, 12(1), 49-62.
[http://dx.doi.org/10.1038/nrrheum.2015.169] [PMID: 26656660]
[47]
Borghi, A.; Verstrepen, L.; Beyaert, R. TRAF2 multitasking in TNF receptor-induced signaling to NF-κB, MAP kinases and cell death. Biochem. Pharmacol., 2016, 116, 1-10.
[http://dx.doi.org/10.1016/j.bcp.2016.03.009] [PMID: 26993379]
[48]
Schmidt, A.M. 2016 ATVB plenary lecture. Arterioscler. Thromb. Vasc. Biol., 2017, 37(4), 613-621.
[http://dx.doi.org/10.1161/ATVBAHA.117.307263] [PMID: 28183700]
[49]
Ott, C.; Jacobs, K.; Haucke, E.; Navarrete Santos, A.; Grune, T.; Simm, A. Role of advanced glycation end products in cellular signaling. Redox Biol., 2014, 2, 411-429.
[http://dx.doi.org/10.1016/j.redox.2013.12.016] [PMID: 24624331]
[50]
Litwinoff, E.M.S.; Hurtado del Pozo, C.; Ramasamy, R.; Schmidt, A.M. Emerging targets for therapeutic development in diabetes and its complications: The RAGE signaling pathway. Clin. Pharmacol. Ther., 2015, 98(2), 135-144.
[http://dx.doi.org/10.1002/cpt.148] [PMID: 25974754]
[51]
Brubaker, S.W.; Bonham, K.S.; Zanoni, I.; Kagan, J.C. Innate immune pattern recognition: A cell biological perspective. Annu. Rev. Immunol., 2015, 33(1), 257-290.
[http://dx.doi.org/10.1146/annurev-immunol-032414-112240] [PMID: 25581309]
[52]
Caruso, R.; Warner, N.; Inohara, N.; Núñez, G. NOD1 and NOD2: Signaling, host defense, and inflammatory disease. Immunity, 2014, 41(6), 898-908.
[http://dx.doi.org/10.1016/j.immuni.2014.12.010] [PMID: 25526305]
[53]
Keestra-Gounder, A.M.; Byndloss, M.X.; Seyffert, N.; Young, B.M.; Chávez-Arroyo, A.; Tsai, A.Y.; Cevallos, S.A.; Winter, M.G.; Pham, O.H.; Tiffany, C.R.; de Jong, M.F.; Kerrinnes, T.; Ravindran, R.; Luciw, P.A.; McSorley, S.J.; Bäumler, A.J.; Tsolis, R.M. NOD1 and NOD2 signalling links ER stress with inflammation. Nature, 2016, 532(7599), 394-397.
[http://dx.doi.org/10.1038/nature17631] [PMID: 27007849]
[54]
Motta, V.; Soares, F.; Sun, T.; Philpott, D.J. NOD-like receptors: Versatile cytosolic sentinels. Physiol. Rev., 2015, 95(1), 149-178.
[http://dx.doi.org/10.1152/physrev.00009.2014] [PMID: 25540141]
[55]
Kobayashi, K.; Inohara, N.; Hernandez, L.D.; Galán, J.E.; Núñez, G.; Janeway, C.A.; Medzhitov, R.; Flavell, R.A. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. Nature, 2002, 416(6877), 194-199.
[http://dx.doi.org/10.1038/416194a] [PMID: 11894098]
[56]
Inohara, N.; Koseki, T.; del Peso, L.; Hu, Y.; Yee, C.; Chen, S.; Carrio, R.; Merino, J.; Liu, D.; Ni, J.; Núñez, G. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J. Biol. Chem., 1999, 274(21), 14560-14567.
[http://dx.doi.org/10.1074/jbc.274.21.14560] [PMID: 10329646]
[57]
Tamamura, H.; Fujisawa, M.; Hiramatsu, K.; Mizumoto, M.; Nakashima, H.; Yamamoto, N.; Otaka, A.; Fujii, N. Identification of a CXCR4 antagonist, a T140 analog, as an anti-rheumatoid arthritis agent. FEBS Lett., 2004, 569(1-3), 99-104.
[http://dx.doi.org/10.1016/j.febslet.2004.05.056] [PMID: 15225616]
[58]
Jacobson, O.; Weiss, I.D.; Kiesewetter, D.O.; Farber, J.M.; Chen, X. PET of tumor CXCR4 expression with 4-18F-T140. J. Nucl. Med., 2010, 51(11), 1796-1804.
[http://dx.doi.org/10.2967/jnumed.110.079418] [PMID: 20956475]
[59]
Jacobson, O.; Weiss, I.D.; Szajek, L.P.; Niu, G.; Ma, Y.; Kiesewetter, D.O.; Farber, J.M.; Chen, X. PET imaging of CXCR4 using copper-64 labeled peptide antagonist. Theranostics, 2011, 1, 251-262.
[http://dx.doi.org/10.7150/thno/v01p0251] [PMID: 21544263]
[60]
Peled, A.; Abraham, M.; Avivi, I.; Rowe, J.M.; Beider, K.; Wald, H.; Tiomkin, L.; Ribakovsky, L.; Riback, Y.; Ramati, Y.; Aviel, S.; Galun, E.; Shaw, H.L.; Eizenberg, O.; Hardan, I.; Shimoni, A.; Nagler, A. The high-affinity CXCR4 antagonist BKT140 is safe and induces a robust mobilization of human CD34+ cells in patients with multiple myeloma. Clin. Cancer Res., 2014, 20(2), 469-479.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-1302] [PMID: 24246358]
[61]
Abraham, M.; Biyder, K.; Begin, M.; Wald, H.; Weiss, I.D.; Galun, E.; Nagler, A.; Peled, A. Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4F-benzoyl-TN14003. Stem Cells, 2007, 25(9), 2158-2166.
[http://dx.doi.org/10.1634/stemcells.2007-0161] [PMID: 17525235]
[62]
Mosi, R.M.; Anastassova, V.; Cox, J.; Darkes, M.C.; Idzan, S.R.; Labrecque, J.; Lau, G.; Nelson, K.L.; Patel, K.; Santucci, Z.; Wong, R.S.Y.; Skerlj, R.T.; Bridger, G.J.; Huskens, D.; Schols, D.; Fricker, S.P. The molecular pharmacology of AMD11070: An orally bioavailable CXCR4 HIV entry inhibitor. Biochem. Pharmacol., 2012, 83(4), 472-479.
[http://dx.doi.org/10.1016/j.bcp.2011.11.020] [PMID: 22146583]
[63]
Stone, N.D.; Dunaway, S.B.; Flexner, C.; Tierney, C.; Calandra, G.B.; Becker, S.; Cao, Y.J.; Wiggins, I.P.; Conley, J.; MacFarland, R.T.; Park, J.G.; Lalama, C.; Snyder, S.; Kallungal, B.; Klingman, K.L.; Hendrix, C.W. Multiple-dose escalation study of the safety, pharmacokinetics, and biologic activity of oral AMD070, a selective CXCR4 receptor inhibitor, in human subjects. Antimicrob. Agents Chemother., 2007, 51(7), 2351-2358.
[http://dx.doi.org/10.1128/AAC.00013-07] [PMID: 17452489]
[64]
Korkmaz, B.; Horwitz, M.S.; Jenne, D.E.; Gauthier, F. Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol. Rev., 2010, 62(4), 726-759.
[http://dx.doi.org/10.1124/pr.110.002733] [PMID: 21079042]
[65]
Roghanian, A.; Sallenave, J.M. Neutrophil elastase (NE) and NE inhibitors: Canonical and noncanonical functions in lung chronic inflammatory diseases (cystic fibrosis and chronic obstructive pulmonary disease). J. Aerosol Med. Pulm. Drug Deliv., 2008, 21(1), 125-144.
[http://dx.doi.org/10.1089/jamp.2007.0653] [PMID: 18518838]
[66]
Imaki, K.; Okada, T.; Nakayama, Y.; Nagao, Y.; Kobayashi, K.; Sakai, Y.; Mohri, T.; Amino, T.; Nakai, H.; Kawamura, M. Non-peptidic inhibitors of human neutrophil elastase: The design and synthesis of sulfonanilide-containing inhibitors. Bioorg. Med. Chem., 1996, 4(12), 2115-2134.
[http://dx.doi.org/10.1016/S0968-0896(96)00216-7] [PMID: 9022976]
[67]
Nakayama, Y.; Odagaki, Y.; Fujita, S.; Matsuoka, S.; Hamanaka, N.; Nakai, H.; Toda, M. Clarification of mechanism of human sputum elastase inhibition by a new inhibitor, ONO-5046, using electrospray ionization mass spectrometry. Bioorg. Med. Chem. Lett., 2002, 12(17), 2349-2353.
[http://dx.doi.org/10.1016/S0960-894X(02)00393-1] [PMID: 12161131]
[68]
Raevens, S.; Van Campenhout, S.; Debacker, P.J.; Lefere, S.; Verhelst, X.; Geerts, A.; Van Vlierberghe, H.; Colle, I.; Devisscher, L. Combination of sivelestat and N‐acetylcysteine alleviates the inflammatory response and exceeds standard treatment for acetaminophen‐induced liver injury. J. Leukoc. Biol., 2020, 107(2), 341-355.
[http://dx.doi.org/10.1002/JLB.5A1119-279R] [PMID: 31841237]
[69]
Lachmann, H.J.; Kone-Paut, I.; Kuemmerle-Deschner, J.B.; Leslie, K.S.; Hachulla, E.; Quartier, P.; Gitton, X.; Widmer, A.; Patel, N.; Hawkins, P.N. Use of canakinumab in the cryopyrin-associated periodic syndrome. N. Engl. J. Med., 2009, 360(23), 2416-2425.
[http://dx.doi.org/10.1056/NEJMoa0810787] [PMID: 19494217]
[70]
Generali, D.; Bosio, G.; Malberti, F.; Cuzzoli, A.; Testa, S.; Romanini, L.; Fioravanti, A.; Morandini, A.; Pianta, L.; Giannotti, G.; Viola, E.M.; Giorgi-Pierfranceschi, M.; Foramitti, M.; Tira, R.A.; Zangrandi, I.; Chiodelli, G.; Machiavelli, A.; Cappelletti, M.R.; Giossi, A.; De Giuli, V.; Costanzi, C.; Campana, C.; Bernocchi, O.; Sirico, M.; Zoncada, A.; Molteni, A.; Venturini, S.; Giudici, F.; Scaltriti, M.; Pan, A. Canakinumab as treatment for COVID-19-related pneumonia: A prospective case-control study. Int. J. Infect. Dis., 2021, 104, 433-440.
[71]
Dinarello, C.A.; Simon, A.; van der Meer, J.W.M. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat. Rev. Drug Discov., 2012, 11(8), 633-652.
[http://dx.doi.org/10.1038/nrd3800] [PMID: 22850787]
[72]
Cavalli, G.; Larcher, A.; Tomelleri, A.; Campochiaro, C.; Della-Torre, E.; De Luca, G.; Farina, N.; Boffini, N.; Ruggeri, A.; Poli, A.; Scarpellini, P.; Rovere-Querini, P.; Tresoldi, M.; Salonia, A.; Montorsi, F.; Landoni, G.; Castagna, A.; Ciceri, F.; Zangrillo, A.; Dagna, L. Interleukin-1 and interleukin-6 inhibition compared with standard management in patients with COVID-19 and hyperinflammation: A cohort study. Lancet Rheumatol., 2021, 3(4), e253-e261.
[http://dx.doi.org/10.1016/S2665-9913(21)00012-6] [PMID: 33655218]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy