Generic placeholder image

Current Applied Polymer Science

Editor-in-Chief

ISSN (Print): 2452-2716
ISSN (Online): 2452-2724

Review Article

A Review on Phenol-Formaldehyde Biocomposites

Author(s): Reem Salam, Lakshmipriya Ravindran, Meyyarappallil Sadasivan Sreekala* and Sabu Thomas

Volume 5, Issue 3, 2022

Published on: 21 December, 2022

Page: [151 - 172] Pages: 22

DOI: 10.2174/2452271605666221007091510

Price: $65

Abstract

Due to the greater thermal stability, chemical resistance, and dimensional stability of Phenol Formaldehyde (PF) resin, it occupies a very special position in the resin field. Nowadays, natural fiber reinforced PF composite materials are widely used. The objective of this study is to discuss the property improvements of natural fiber reinforced PF biocomposites. This review paper discusses thermal, electrical, diffusion, viscoelastic, tribological, morphological, and mechanical and biodegradability properties. Biocomposites will be a substitute for plastics which provides properties of both natural and synthetic ones. The greater the pollution magnitude, the more devastating the impacts on people’s health, the environment, and economic well-being. The main sources of pollution contributing to it are vehicle exhaust, open waste burning, lighting, heating and the combustion of various fuels for cooking. When compared with plastic materials, PF biocomposites are partially biodegradable, hence limiting the amount of pollution rate. Moreover, it has a wide range of applications, such as packaging, construction, automobiles, and household purposes. In short, this review aims to provide detailed information regarding PF biocomposites.

Keywords: re, wr, we, r, er, rw, Molestiae numquam po

Graphical Abstract

[1]
Athijayamani A, Sekar S. Mechanical properties of randomly oriented Calotropis Gigante fiber reinforced phenol formaldehyde biocomposites. J Adv Chem 2017; 13(11): 6043-50.
[2]
Mini KM. In: Swater, UK Biofiber composites in building and construction. Advances in Bio Based Fiber 2022; pp. 335-65.
[3]
Khalfallah M, Abbes B, Abbes F, et al. Innovative flax tapes reinforced acrodur biocomposites: A new alternative for automobile applications. Mater Design 2014; 64: 116-26.
[http://dx.doi.org/10.1016/j.matdes.2014.07.029]
[4]
Sanjay MR, Madhu P, Jyotishkumar P, Suchart S, Sergey G, Eds. Advances in bio based fiber: Moving towards a green society The textile Institute Book Series. Elsevier 2021.
[5]
Ahmadzadeh A, Zakaria S. Effect of filler and aging on the mechanical properties of phenolated oil palm empty fruit bunch base composites. Sains Malays 2008; 37(4): 383-7.
[6]
Sathishkumar TP, Satheeshkumar S, Naveen J. Glass fiber-reinforced polymer composites - A review. J Reinf Plast Compos 2014; 33(13): 1258-75.
[http://dx.doi.org/10.1177/0731684414530790]
[7]
John M, Thomas S. Biofibres and biocomposites. Carbohydr Polym 2008; 71(3): 343-64.
[http://dx.doi.org/10.1016/j.carbpol.2007.05.040]
[8]
Wei L, McDonald A. A review on grafting of fibers for biocomposites. Materials 2016; 9(4): 303.
[http://dx.doi.org/10.3390/ma9040303] [PMID: 28773429]
[9]
Chang BP. A comprehensive review of renewable and sustainable biosourced carbon through pyrolysis in biocomposites uses: Current development and future opportunity. Renewable Sustain Energy Rev 2021; 152: 111666.
[10]
Akampumuza O, Wambua PM, Ahmed A, Li W, Qin XH. Review of the applications of biocomposites in the automotive industry. Polym Compos 2017; 38(11): 2553-69.
[http://dx.doi.org/10.1002/pc.23847]
[11]
Suhaily SS. Bamboo based biocomposites material, design and applications. In:Materials Science - Advanced Topics. Intech Publication 2013; pp. 489-517.
[12]
Sjostrom E. Wood Chemistry, fundamentals and applications. Bark 1993; pp. 109-13.
[13]
Priyadarshini M, Biswal T, Dash S. Sustainable biocomposites it’s manufacturing process and application. Egypt J Chem 2019; 62(4): 1151-66.
[14]
Puddister D, Doming SW, Baker JA, et al. Opportunities and challenges for Ontario’s forest bio economy. For Chron 2011; 87(4): 468-77.
[http://dx.doi.org/10.5558/tfc2011-045]
[15]
Gurunathan T, Mohanty S, Sanjay K, Nayak A. A review of the recent developments in biocomposites based on natural fibers and their application perspective. Compos, Part A Appl Sci Manuf 2015; 77: 1-25.
[http://dx.doi.org/10.1016/j.compositesa.2015.06.007]
[16]
Poljansek I, Krajnc M. Characterization of phenol formaldehyde prepolymer resins by in line FT-IR Spectroscopy. Acta Chim Slov 2005; 52(3): 238-44.
[17]
Yan Z, Yujian L, Qi H, Zhewen H. Effect of solvent on the chain conformation and cure behavior of phenolic resin. J Appl Polym Sci 2008; 108(5): 3009-15.
[http://dx.doi.org/10.1002/app.27776]
[18]
Park BD, Riedl B. Yoon SooKim, So WT. Effect of synthesis parameters on thermal behavior of phenol-formaldehyde resol resin. J Appl Polym Sci 2002; 83(7): 1415-24.
[http://dx.doi.org/10.1002/app.2302]
[19]
Yadav R, Devi A, Tripathi G, Srivastava D. Optimization of the process variables for the synthesis of cardanol-based novolac-type phenolic resin using response surface methodology. Eur Polym J 2007; 43(8): 3531-7.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.05.033]
[20]
Chapple S, Anandjiwala R. Flammability of natural fiber reinforced composites and strategies for fire retardancy: A Review. J Therm Composite Mater 2010; 23(6): 871-93.
[http://dx.doi.org/10.1177/0892705709356338]
[21]
Jawaid M, Khalil HPS, Abu Bakar A, Khanam N. Chemical resistance, void content and tensile properties of oil palm/jute fiber reinforced polymer hybrid composites. Mater Des 2011; 32(2): 1014-9.
[http://dx.doi.org/10.1016/j.matdes.2010.07.033]
[22]
Wang DC, Chang GW, Chen Y. Preparation and thermal stability of boron-containing phenolic resin/clay nanocomposites. Polym Degrad Stabil 2008; 93(1): 125-33.
[http://dx.doi.org/10.1016/j.polymdegradstab.2007.10.021]
[23]
Özturk S. Effect of fiber loading on the mechanical properties of kenaf and flax fiber reinforced phenol formaldehyde composites. J Compos Mater 2010; 44(19): 2265-88.
[http://dx.doi.org/10.1177/0021998310364265]
[24]
Ku H, Wang H, Pattarachaiyakoop N, Trada M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos, Part B Eng 2011; 42(4): 856-73.
[http://dx.doi.org/10.1016/j.compositesb.2011.01.010]
[25]
Mohanty AK, Misra M, Hinrichsen G. Biofibres, biodegradable polymers and biocomposites: An overview. Macromol Mater Eng 2000; 276-277(1): 1-24.
[http://dx.doi.org/10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W]
[26]
Maleque MA, Atiqah A, Talib RJ, Zahurin H. New natural fiber reinforced aluminium composites for automotive brake pad. Int J Mech Mater Eng 2012; 7: 166-70.
[27]
de Medeiros ES, Agnelli JAM, Joseph K, de Carvalho LH, Mattoso LHC. Mechanical properties of phenolic composites reinforced with jute/cotton hybrid fabrics. Polym Compos 2005; 26(1): 1-11.
[http://dx.doi.org/10.1002/pc.20063]
[28]
Joseph S, Sreekala MS, Koshy P, Thomas S. Mechanical properties and water sorption behavior of phenol–formaldehyde hybrid composites reinforced with banana fiber and glass fiber. J Appl Polym Sci 2008; 109(3): 1439-46.
[http://dx.doi.org/10.1002/app.27425]
[29]
Joseph S, Oommen Z, Thomas S. Environmental durability of banana-fiber-reinforced phenol formaldehyde composites. J Appl Polym Sci 2006; 100(3): 2521-31.
[http://dx.doi.org/10.1002/app.23680]
[30]
Kumar NM, Reddy GV, Naidu SV, Rani TS, Subha MCS. Mechanical properties of coir/glass fiber phenolic resin based composites. J Reinf Plast Compos 2009; 28(21): 2605-13.
[http://dx.doi.org/10.1177/0731684408093092]
[31]
Varada Rajulu A, Devi RR. Flexural properties of ridgegourd/phenolic composites and glass/ridge gourd/phenolic hybrid composites. J Compos Mater 2008; 42(6): 593-601.
[http://dx.doi.org/10.1177/0021998307086197]
[32]
Varada Rajulu A, Rama Devi R. Tensile properties of ridge gourd/phenolic composites and Ridge gourd/phenolic/Glass Hybrid Composites. J Reinf Plast Compos 2007; 26(6): 629-38.
[http://dx.doi.org/10.1177/0731684407075567]
[33]
Mu Q, Wei C, Feng S. Studies on mechanical properties of sisal fiber/phenol formaldehyde resin in-situ composites. Polym Compos 2009; 30(2): 131-7.
[http://dx.doi.org/10.1002/pc.20529]
[34]
Jawaid M, Abdul Khalil HPS. Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carbohydr Polym 2011; 86(1): 1-18.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.043]
[35]
Cicala G, Cristaldi G, Recca G, Ziegmann G, El-Sabbagh A, Dickert M. Properties and performances of various hybrid glass/natural fibre composites for curved pipes. Mater Des 2009; 30(7): 2538-42.
[http://dx.doi.org/10.1016/j.matdes.2008.09.044]
[36]
Ochi S. Mechanical properties of kenaf fibers and kenaf/PLA composites. Mech Mater 2008; 40(4-5): 446-52.
[http://dx.doi.org/10.1016/j.mechmat.2007.10.006]
[37]
Haris MY, Laila D, Zainudin ES, Mustapha F, Zahari R, Halim Z. Preliminary review of biocomposites materials for aircraft radome application. Key Eng Mater 2011; 471-472: 563-7.
[http://dx.doi.org/10.4028/www.scientific.net/KEM.471-472.563]
[38]
Wang M, Wei L, Zhao T. Cure study of addition-cure-type and condensation–addition-type phenolic resins. Eur Polym J 2005; 41(5): 903-12.
[http://dx.doi.org/10.1016/j.eurpolymj.2004.11.036]
[39]
Pilato L. Phenolic resins: 100 Years and still going strong. React Funct Polym 2013; 73(2): 270-7.
[40]
Trindade WG, Hoareau W, Megiatto JD, Razera I A T, Catellan A, Frollini E. Thermoset phenolic matrices reinforced with unmodified and surface-grafted furfuryl alcohol Sugar cane bagasse and curaua fibers: Properties of fibers and composites. Biomacromolecules 2005; 6(5): 2485-96.
[http://dx.doi.org/10.1021/bm058006+]
[41]
Sreekala MS, George J, Kumaran MG, Thomas S. The mechanical performance of hybrid phenol-formaldehyde-based composites reinforced with glass and oil palm fibres. Compos Sci Technol 2002; 62(3): 339-53.
[http://dx.doi.org/10.1016/S0266-3538(01)00219-6]
[42]
Joseph H. Polymer nano composites: Processing, characterization and application. New York: Megraw Hill 2006.
[43]
Pilato L. Phenolic resins: A Century of progress. (1st ed.). Springer, USA 2010; pp. 1-55.
[44]
Vázquez G, Antorrena G, González J, Mayor J. Lignin-phenol-formaldehyde adhesives for exterior grade plywoods. Bioresour Technol 1995; 51(2-3): 187-92.
[http://dx.doi.org/10.1016/0960-8524(94)00120-P]
[45]
Bindu RL, Nair CPR, Ninan KN. Phenolic resins bearing maleimide groups: Synthesis and characterization. J Polym Sci A Polym Chem 2000; 38(3): 641-52.
[http://dx.doi.org/10.1002/(SICI)1099-0518(20000201)38:3<641:AID-POLA28>3.0.CO;2-Z]
[46]
Bongarde US, Shinde VD. Review on natural fiber reinforcement polymer composites. Int J Innov Sci Eng Technol 2014; 3(2): 431-6.
[47]
Pandey JK, Nagarjuna V, Mohanty AK, Misra M. Commercial potential and competitiveness of natural fiber composites. In:Biocomposites. Woodhead publishing 2015; pp. 1-15.
[48]
Adhitya PH, Kishore KS, Prasad DV. Characterization of natural fiber reinforced composites. Int J Eng Appl Sci 2017; 4(6): 257446.
[49]
Begum K, Islam M. Natural fibers as a substitute to synthetic fiber in polymer composites: A review. Res J Eng Sci 2013; 2278: 9472.
[50]
Rohit K, Dixit S. A review - future aspect of natural fiber reinforced composite. Polymers from Renewable Resources 2016; 7(2): 43-60.
[http://dx.doi.org/10.1177/204124791600700202]
[51]
Baiardo M, Frisoni G, Scandola M, Licciardello A. Surface chemical modification of natural cellulose fibers. J Appl Polym Sci 2002; 83(1): 38-45.
[http://dx.doi.org/10.1002/app.2229]
[52]
Rials T, Wolcott MP. Physical and mechanical properties of agro-based fibers. In: Rowell RM, Young RA, Rowell JK, Eds. Paper and Composites from Agro-Based Resources. Boca Raton, FL: CRC Lewis Publishers 1996; pp. 63-82.
[53]
Pandey SN. Fifty years of research in jute 1939-1989, Jute technology research laboratories. Calcutta, India: Hooghly Printing Co. Ltd. 1990.
[54]
Rowell RM, Stout HP. Jute and kenaf. In: Lewin M, Ed. Handbook of fiber chemistry. (3rd Ed.). Bocaraton, FL: Taylor and Francis 2007; Vol. 7: pp. 405-52.
[55]
Fiber Atlas. Identification of papermaking fibers. Berlin, Germany: Springer 1993.
[56]
Kirby RH. Vegetable fbers. In: London: Leonard Hill Books Ltd. 1963.
[57]
Batra SK. Other long vegetable fibers: Abaca, banana, sisal, henequen, flax, ramie, hemp, sunn, and coir. In: Lewin M, Ed. Handbook of Fiber Chemistry. (3rd ed..). Bocaraton, FL: Taylor and Francis 2007; 8: pp. 453-520.
[58]
Chand N, Hashmi SAR. Effect of plant age on structure and strength of sisal fiber. Metals Mater Processes 1993; 5(1): 51.
[59]
Esau K. Anatomy of Seed Plants, Soil Science. (2nd ed..). 1960; 90: p. 149.
[60]
Saba N, Tahir P, Jawaid M, Abdan K, Ibrahim N. Potential Utilization of Kenaf Biomass in Different Applications. In: Khalid , jawaid , Othman , Eds. Agricultural biomass based potential materials Springer-Verlag, Switzerland.
[61]
Biagiotti J, Pugila D, Kenny JM. A review on natural fiber based composites.part 1: Structure, processing and properties of vegetable fibers. J Nat 2004; 1(2): 37-68.
[62]
Rowell RM, Han JS. Changes in kenaf properties and chemistry as a function of growing time Kenaf properties, processing and products Mississippi State. MS: Mississippi State University, Ag & Bio Engineering 1999; pp. 33-41.
[63]
Mukherjee PS, Satyanarayana KG. Structure and properties of some vegetable fibers. part 2: Pineapple fiber. J Mater Sci 1986; 1: 51-6.
[http://dx.doi.org/10.1007/BF01144698]
[64]
Mukherjee PS, Satyanarayana KG. Structure and properties of sme vegetable fibers. Part 1: Pineapple fiber. J Mater Sci 1984; 19: 3925-34.
[http://dx.doi.org/10.1007/BF00980755]
[65]
Saxena M, Pappu A, Hague R, Sharma A. Sisal fiber based polymer composites and their applications. In: Cellulose Fibers: Bio and Nano-Polymer Composites. Berlin, Heidelberg: Springer 2011; pp. 589-659.
[66]
Sustainable Cotton Production. The Textile Institute Book Series. Elsevier 2017; pp. 21-67.
[67]
Satyanarayana KG, Pillai CKS, Sukumaran K, Pillai SGK, Rohatgi PK, Vijayan K. Structure property studies of fibres from various parts of the coconut tree. J Mater Sci 1982; 17(8): 2453-62.
[http://dx.doi.org/10.1007/BF00543759]
[68]
Rajula ST, Ram B, Venkatasubramanian V, Karpagam C, Puthira PD. Cane agronomy-tillage,crop geometry,plant systems,weed management,irrigation and intercroping. Scientific Sugarcane Cultivation 2014; pp. 22-44.
[69]
Migita N. Chemical properties of bamboo. BULL. Tokyo univ. Forests 1947; 35: 139.
[70]
Higuchi T, Kimura N. Differences of chemical properties of lignins of vascular bundles and of parenchyma cells of bamboo. Mokuzai Gakkaishi 1966; 12: 173.
[71]
Li Xiaobo. Physical,chemical and mechanical properties of bamboo and it’s utilization potential for fiberboard manufacturing. Masters thesis, LSU Louisiana State University 2004; pp. 866.
[72]
Panshin AJ, de Zeeuw C. Structure, identification, uses and properties of the commercial woods of the United States and Canada. In: Textbook of wood technology. 1970; Vol. 1: p. 705.
[73]
Singh S, Singh V, Dhawan S, Tiwari K. A brief review of jute fiber and its composites. Mater Today Proc 2018; 5: 28427-37.
[http://dx.doi.org/10.1016/j.matpr.2018.10.129]
[74]
Yan L, Chouw N, Jayaraman K. Flax fibre and its composites – A review. Compos, Part B Eng 2014; 56: 296-317.
[http://dx.doi.org/10.1016/j.compositesb.2013.08.014]
[75]
Siakeng R, Jawaid M, Ariffin H, Sapuan SM, Asim M, Saba N. Natural fiber reinforced polylactic acid composites: A review. Polym Compos 2019; 40(2): 446-63.
[http://dx.doi.org/10.1002/pc.24747]
[76]
Hulle A, Kadole P, Katkar P. Agave Americana Leaf Fibers. Fibers 2015; 3(4): 64-75.
[http://dx.doi.org/10.3390/fib3010064]
[77]
Alonso Pippo W, Luengo CA, Alonsoamador Morales Alberteris L, Garzone P, Cornacchia G. Energy recovery from sugarcane-trash in the light of 2nd generation biofuel. part 2: socio-economic aspects and techno-economic analysis. Waste Biomass Valoriz 2011; 2(3): 257-66.
[http://dx.doi.org/10.1007/s12649-011-9069-3]
[78]
Kumar S. Fabrication and analysis of thermocol sandwiched between bamboo fiber-reinforced phenol formaldehyde composite laminates. Int J Res Adv Dev 2018; 01: 130-4.
[79]
Jahirul M, Rasul M, Chowdhury A, Ashwath N. biofuels production through biomass pyrolysis-a technological review. Energies 2012; 5(12): 4952-5001.
[http://dx.doi.org/10.3390/en5124952]
[80]
Hasan KMF, Horváth PG, Bak M, Le DHA, Mucsi ZM, Alpár T. Rice straw and energy reed fibers reinforced phenol formaldehyde resin polymeric biocomposites. Cellulose 2021; 28(12): 7859-75.
[http://dx.doi.org/10.1007/s10570-021-04029-9]
[81]
Chrispin DM, Athijayamani A, Arun VGK, Santhosh D, Prathap SS. Effects of length and content of natural cellulose fiber on the mechanical behaviors of phenol formaldehyde composites. Mater Today Proc 2021; 45: 516-21.
[http://dx.doi.org/10.1016/j.matpr.2020.02.111]
[82]
Maya MG, George SC, Sreekala MS, Jose T. Mechanical properties of sisal fiber reinforced phenol formaldehyde eco friendly composites. Renew Resour 2017; 8(1): 28-42.
[83]
Asim M, Jawaid M, Abdan K, Ishak MR, Hammami H. Effect of pineapple leaf fibre and kenaf fibre treatment on mechanical performance of phenolic hybrid composites. Fibers Polym 2017; 18(5): 940-7.
[http://dx.doi.org/10.1007/s12221-017-1236-0]
[84]
Asim M, Jawaid M, Abdan K, Nasir M. Effects of alkali treatments on physical and mechanical strength of pineapple leaf fibers. IOP Mater Sci Engin 2018; 290(1): 12030.
[85]
Sinha AK, Bhattacharya S, Narang HK. Abaca fibre reinforced polymer composites: A review. J Mater Sci 2021; 56(7): 4569-87.
[http://dx.doi.org/10.1007/s10853-020-05572-9]
[86]
Feng NL, Malingam SD, Jenal R, Mustafa Z, Subramonian S. A review of the tensile and fatigue responses of cellulosic fibre-reinforced polymer composites. Mech Adv Mater Structures 2020; 27(8): 645-60.
[http://dx.doi.org/10.1080/15376494.2018.1489086]
[87]
Ashvinder K, Thakur VK, Potluri P. Cellulosic grewia optiva fibers:towards Chemistry,surface engineering and sustainable materials. J Environ Chem Eng 2021; 9(5): 106059.
[http://dx.doi.org/10.1016/j.jece.2021.106059]
[88]
Joseph S, Thomas S, Sreekala MS. Effect of chemical modification of banana fiber reinforced phenol formaldehyde composites. J Appl Polym Sci 2008; 110(4): 2305-14.
[http://dx.doi.org/10.1002/app.27648]
[89]
Loganathan TM, Burhan I, Abdullah SK, et al. Physical, Mechanical, thermal, properties of bio-phenolic based composites. Phenolic Polymer Based Composite Mater 2021; 169-90.
[90]
Barath KN, Sanjay MR, Jawaid M. Effect of stacking sequence on properties of coconut leaf sheath/jute/E-glass reinforced Phenol formaldehyde hybrid composites. J Ind Text 2018; 49(1): 152808371876992.
[91]
Naresh Kumar JS, Kumar GS, Kumar N, Kaseya K. Mechanical and thermal properties of sodium hydroxide treated sisal natural fiber reinforced polymer composites: Barium sulphate used as filler. Mat Today: Proc 2021; 45(6): 5575-8.
[92]
Asim M, Jawaid M, Khan A, Asiri AM, Malik MA. Effects of date palm fibers loading on mechanical and thermal properties of date palm reinforced phenolic composites. J Mater Res Technol 2020; 9(3): 336.
[http://dx.doi.org/10.1016/j.jmrt.2020.01.099]
[93]
Azim M, Paridah MT, Saba N, et al. Thermal, physical properties and flammability of silane treated Kenaf/Pineapple leaf fibers phenolic hybrid composites 2018; 202: 1330-8.
[94]
Pugazhenthi N, Anand P. Mechanical and thermal behavior of hybrid composite medium density fiberboard reinforced with phenol formaldehyde. Heliyon 2021; 7(12): e08597.
[http://dx.doi.org/10.1016/j.heliyon.2021.e08597] [PMID: 34977413]
[95]
Joseph S, Thomas S. Electrical properties of banana fiber-reinforced phenol formaldehyde composites. J Appl Polym Sci 2008; 109(1): 256-63.
[http://dx.doi.org/10.1002/app.27452]
[96]
Gupta RK. Dielectric properties of bio-fiber polymer composites in advances in bio-based fiber 2022; 159-91.
[97]
Shanbhag P, Narayanan BN. Coir composites based electronics for microwave charging of electric vehicles. Mater Today Proc 2020; 24(2): 1.
[98]
Asim M, Paridah MT, Saba N, et al. Thermal, physical properties and flammability of silane treated kenaf/pineapple leaf fibres phenolic hybrid composites. Compos Struct 2018; 202: 1330-8.
[http://dx.doi.org/10.1016/j.compstruct.2018.06.068]
[99]
Indira KN. Viscoelastic behavior of untreated and chemically treated banana fiber reinforced phenol formaldehyde composites. Fibers Polym 2014; 15(1): 91-100.
[http://dx.doi.org/10.1007/s12221-014-0091-5]
[100]
Sreekala MS. Dynamic mechanical properties of oil palm fiber/PF and Oil palm fiber/glass hybrid phenol formaldehyde composites. Polym Compos 2005; 26(3): 388-400.
[http://dx.doi.org/10.1002/pc.20095]
[101]
Singh Tej, Pruncu CI, Gangil B, Singh GV. Comparative performance assessment of pineapple fibers based friction composites. J Mater Res Techol 2020; 9(2): 1491-9.
[102]
Vrålstad T, Saasen A, Fjær E, Øia T, Ytrehus JD, Khalifeh M. Plug & abandonment of offshore wells: Ensuring long-term well integrity and cost-efficiency. J Petrol Sci Eng 2019; 173: 478-91.
[http://dx.doi.org/10.1016/j.petrol.2018.10.049]
[103]
Raffa P, Broekhuis AA, Picchioni F. Polymeric surfactants for enhanced oil recovery: A review. J Petrol Sci Eng 2016; 145: 723-33.
[http://dx.doi.org/10.1016/j.petrol.2016.07.007]
[104]
Barry G, Rabe , Eds. Greenhouse Governance: Addressing Climate Change in America. Brookings Institution Press, Washington, DC 2010; pp. 1-383.
[105]
Sreekala MS, Kumaran MG, Thomas S. Water sorption in oil palm fiber reinforced phenol formaldehyde composites. Compos, Part A Appl Sci Manuf 2002; 33(6): 763-77.
[http://dx.doi.org/10.1016/S1359-835X(02)00032-5]
[106]
Ramlee NA, Jawaid M, Zainudin ES, Yamani SAK. Tensile, physical and morphological properties of oil palm empty fruit bunch/sugarcane bagasse fibre reinforced phenolic hybrid composites. J Mater Res Technol 2019; 8(4): 3466-74.
[http://dx.doi.org/10.1016/j.jmrt.2019.06.016]
[107]
Sanjeevi S, Shanmugam V, Kumar S, et al. Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Sci Rep 2021; 11(1): 13385.
[http://dx.doi.org/10.1038/s41598-021-92457-9] [PMID: 34183690]
[108]
Sreekala MS, Kumaran MG. Seena Joseph and Maya Jacob. Oil Palm Fiber Reinforced Phenol Formaldehyde Composites: Influence of Fiber Surface Modifications on the Mechanical Performance. Appl Compos Mater 2000; 7(5/6): 295-329.
[http://dx.doi.org/10.1023/A:1026534006291]
[109]
Ozturk B. Hybrid effect in the mechanical properties of jute/Rockwood hybrid fibers reinforced PF composites. Fibers Polym 2010; 11(3): 464-73.
[http://dx.doi.org/10.1007/s12221-010-0464-3]
[110]
Prashanth M, Gouda PSS, Manjunatha TS, Banapurmath NR, Edacheriane A. Understanding the impact of fiber orientation on mechanical, interlaminar shear strength, and fracture properties of jute–banana hybrid composite laminates. Polym Compos 2021; 42(10): 5475-89.
[http://dx.doi.org/10.1002/pc.26239]
[111]
Ayadi R, Hanana M, Mzid R, Hamrouni L, Khouja ML. Salhi Hanachi. Hibiscus Cannabis’s L.-kenaf: a review paper. J Nat Fibers 2017; 14(4): 466-84.
[112]
Chandramohan D, Marimuthu K. A review on natural fiber. Int J Appl Sci- Res Rev 2011; 8(2): 194-206.
[113]
Ashik K P. A review on mechanical properties of natural fiber reinforced hybrid polymer composites. J Mineral Mater character Eng 2015; 3(05): 420.
[114]
Elanchezhian C, Ramnath BV, Ramakrishnan G, Rajendrakumar M, Naveenkumar V, Saravanakumar MK. Review on mechanical properties of natural fiber composites. Mater Today Proc 2018; 5(1): 1785-90.
[http://dx.doi.org/10.1016/j.matpr.2017.11.276]
[115]
Silva G, Kim S, Aguilar R, Nakamatsu J. Natural fibers as reinforcement additives for geopolymer -A review of potential ecofriendly applications to the construction industry. Sustainable M echnol 2020; 23: e00132.
[116]
Kong Ing. Properties of bio based fibers Advances in bio based fiber moving towards a green society The Textile Institute Book Series. Woodhead Publishing 2022; pp. 33-64.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy