Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Synthetic Strategies for Quinoline Based Derivatives as Potential Bioactive Heterocycles

Author(s): Shivangi Sharma, Kuldeep Singh and Shivendra Singh*

Volume 20, Issue 6, 2023

Published on: 29 December, 2022

Page: [606 - 629] Pages: 24

DOI: 10.2174/1570179420666221004143910

Price: $65

Abstract

Quinoline derivatives are an important class of heterocyclic compounds and possess various applications in synthetic organic chemistry, medicinal chemistry, material chemistry and natural product chemistry. This review article describes the different quinoline derivatives having antimalarial, analgesic, anti-inflammatory, antineoplastic, antibacterial, antifungal, antiviral, anthelmintic, antiprotozoal, cardiovascular, CNS and other useful bioactivities. We have delineated the general synthetic routes for the synthesis of many bioactive quinoline based heterocycles. In addition to this, we have also discussed the crucial synthetic routes as well as their mechanistic paths for the formation of bioactive quinoline derivatives. The study shows that substitution at the 4 and 8- position of quinoline is more crucial for bioactivity as compared to other positions.

Keywords: Quinoline, Heterocycles, Bioactive, Synthesis, antimalarial Quinoline, antimalarial

Graphical Abstract

[1]
Ghobadi, N.; Nazari, N.; Gholamzadeh, P. The Friedländer reaction:A powerful strategy for the synthesis of heterocycles. Adv. Heterocycl. Chem., 2020, 132, 85-134.
[http://dx.doi.org/10.1016/bs.aihch.2020.01.001]
[2]
Orhan Püsküllü, M.; Tekiner, B.; Suzen, S. Recent studies of antioxidant quinoline derivatives. Mini Rev. Med. Chem., 2013, 13(3), 365-372.
[PMID: 23190035]
[3]
Ahmed, A.; Daneshtalab, M. Nonclassical biological activities of quinolone derivatives. J. Pharm. Pharm. Sci., 2012, 15(1), 52-72.
[PMID: 22365088]
[4]
Manske, R.H. The chemistry of isoquinolines. Chem. Rev., 1942, 30(1), 145-158.
[http://dx.doi.org/10.1021/cr60095a007]
[5]
Larsen, R.D.; Corley, E.G.; King, A.O.; Carroll, J.D.; Davis, P.; Verhoeven, T.R.; Reider, P.J.; Labelle, M.; Gauthier, J.Y.; Xiang, Y.B.; Zamboni, R.J. Practical route to a new class of LTD4 receptor antagonists. J. Org. Chem., 1996, 61(10), 3398-3405.
[http://dx.doi.org/10.1021/jo952103j]
[6]
Roma, G.; Di, M.; Grossi, G.; Mattioli, F.; Ghia, M. 1,8-Naphthyridines IV. 9-Substituted N, N-dialkyl-5-(alkylamino or compounds with anti-aggressive and potent anti-inflammatory activities. Eur. J. Med. Chem., 2000, 35, 1021-1035.
[http://dx.doi.org/10.1016/S0223-5234(00)01175-2] [PMID: 11137230]
[7]
Chen, Y.L.; Fang, K.C.; Sheu, J.Y.; Hsu, S.L.; Tzeng, C.C. Synthesis and antibacterial evaluation of certain quinolone derivatives. J. Med. Chem., 2001, 44(14), 2374-2377.
[http://dx.doi.org/10.1021/jm0100335] [PMID: 11428933]
[8]
Kauffman, G.S.; Harris, G.D.; Dorow, R.L.; Stone, B.R.P.; Parsons, R.L., Jr; Pesti, J.A.; Magnus, N.A.; Fortunak, J.M.; Confalone, P.N.; Nugent, W.A. An efficient chiral moderator prepared from inexpensive (+)-3-carene: Synthesis of the HIV-1 non-nucleoside reverse transcriptase inhibitor DPC 963. Org. Lett., 2000, 2(20), 3119-3121.
[http://dx.doi.org/10.1021/ol006321x] [PMID: 11009360]
[9]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[10]
Chen, Y.L.; Chen, I.L.; Lu, C.M.; Tzeng, C.C.; Tsao, L.T.; Wang, J.P. Synthesis and anti-inflammatory evaluation of 9-phenoxyacridine and 4-phenoxyfuro[2,3-b]quinoline derivatives. Part 2. Bioorg. Med. Chem., 2003, 11(18), 3921-3927.
[http://dx.doi.org/10.1016/S0968-0896(03)00439-5] [PMID: 12927852]
[11]
Park, B.S.; Kim, D.Y.; Rosenthal, P.J.; Huh, S.C.; Lee, B.J.; Park, E.J.; Kim, S.M.; Kim, J.E.; Kim, M.H.; Huh, T.L.; Choi, Y.J.; Suh, K.H.; Choi, W.S.; Lee, S.E. Synthesis and evaluation of new antimalarial analogues of quinoline alkaloids derived from Cinchona ledgeriana moens ex trimen. Bioorg. Med. Chem. Lett., 2002, 12(10), 1351-1355.
[http://dx.doi.org/10.1016/S0960-894X(02)00173-7] [PMID: 11992775]
[12]
Vlahov, R.; Parushev, S.; Vlahov, J.; Nickel, P.; Snatzke, G. Synthesis of some new quinoline derivatives - potential antimalarial drugs. Pure Appl. Chem., 1990, 62(7), 1303-1306.
[http://dx.doi.org/10.1351/pac199062071303]
[13]
Scovill, J.P.; Klayman, D.L.; Lambros, C.; Childs, G.E.; Notsch, J.D. 2-Acetylpyridine thiosemicarbazones. 9. Derivatives of 2-acetylpyridine 1-oxide as potential antimalarial agents. J. Med. Chem., 1984, 27(1), 87-91.
[http://dx.doi.org/10.1021/jm00367a019] [PMID: 6361258]
[14]
Catoen-Chackal, S.; Facompré, M.; Houssin, R.; Pommery, N.; Goossens, J.F.; Colson, P.; Bailly, C.; Hénichart, J.P. DNA binding to guide the development of tetrahydroindeno[1,2-b]pyrido[4,3,2-de]quinoline derivatives as cytotoxic agents. J. Med. Chem., 2004, 47(14), 3665-3673.
[http://dx.doi.org/10.1021/jm0400193] [PMID: 15214793]
[15]
Antonini, I.; Claudi, F.; Franchetti, P.; Grifantini, M.; Martelli, S. Elucidation of the structure of the antineoplastic agents, 2-formylpyridine and 1-formylisoquinoline thiosemicarbazones. J. Med. Chem., 1977, 20(3), 447-449.
[http://dx.doi.org/10.1021/jm00213a024] [PMID: 845876]
[16]
Antolovich, M.; Prenzler, P.D.; Patsalides, E.; McDonald, S.; Robards, K. Methods for testing antioxidant activity. Analyst (Lond.), 2002, 127(1), 183-198.
[http://dx.doi.org/10.1039/b009171p] [PMID: 11827390]
[17]
Hossain, M.M.; Shaha, S.K.; Aziz, F. Antioxidant potential study of some synthesized N-heterocycles. Bangladesh Med. Res. Counc. Bull., 2009, 35(2), 49-52.
[http://dx.doi.org/10.3329/bmrcb.v35i2.2564] [PMID: 20120779]
[18]
Sahu, N.; Pal, C.; Mandal, N.B.; Banerjee, S.; Raha, M.; Kundu, A.P.; Basu, A.; Ghosh, M.; Roy, K.; Bandyopadhyay, S. Synthesis of a novel quinoline derivative, 2-(2-methylquinolin-4-ylamino)-N-phenylacetamide—a potential antileishmanial agent. Bioorg. Med. Chem., 2002, 10(6), 1687-1693.
[http://dx.doi.org/10.1016/S0968-0896(02)00046-9] [PMID: 11937327]
[19]
Xie, Z.F.; Chai, K.Y.; Piao, H.R.; Kwak, K.C.; Quan, Z.S. Synthesis and anticonvulsant activity of 7-alkoxyl-4,5-dihydro-[1,2,4]triazolo[4,3-a]quinolines. Bioorg. Med. Chem. Lett., 2005, 15(21), 4803-4805.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.051] [PMID: 16139502]
[20]
Nandhakumar, R.; Suresh, T.; Jude, A.L.C.; Rajesh kannan, V; Mohan, P.S. Synthesis, antimicrobial activities and cytogenetic studies of newer diazepino quinoline derivatives via Vilsmeier–Haack reaction. Eur. J. Med. Chem., 2007, 42(8), 1128-1136.
[http://dx.doi.org/10.1016/j.ejmech.2007.01.004] [PMID: 17331623]
[21]
Al-Hiari, Y.; Abu-Dahab, R.; El-Abadelah, M. Heterocycles [h]-fused onto 4-oxoquinoline-3-carboxylic acid, part VIII [1]. Convenient synthesis and antimicrobial properties of substituted hexahydro[1,4]diazepino[2,3-h]quinoline-9-carboxylic acid and its tetrahydroqui-no[7,8-b]benzodiazepine analog. Molecules, 2008, 13(11), 2880-2893.
[http://dx.doi.org/10.3390/molecules13112880] [PMID: 19020473]
[22]
Ferlin, M.G.; Chiarelotto, G.; Antonucci, F.; Caparrotta, L.; Froldi, G. Mannich bases of 3H-pyrrolo[3,2-f]quinoline having vasorelaxing activity. Eur. J. Med. Chem., 2002, 37(5), 427-434.
[http://dx.doi.org/10.1016/S0223-5234(02)01355-7] [PMID: 12008057]
[23]
Dubé, D.; Blouin, M.; Brideau, C.; Chan, C.C.; Desmarais, S.; Ethier, D.; Falgueyret, J.P.; Friesen, R.W.; Girard, M.; Girard, Y.; Guay, J.; Riendeau, D.; Tagari, P.; Young, R.N. Quinolines as potent 5-lipoxygenase inhibitors: Synthesis and biological profile of L-746,530. Bioorg. Med. Chem. Lett., 1998, 8(10), 1255-1260.
[http://dx.doi.org/10.1016/S0960-894X(98)00201-7] [PMID: 9871745]
[24]
Maguire, M.P.; Sheets, K.R.; McVety, K.; Spada, A.P.; Zilberstein, A. A new series of PDGF receptor tyrosine kinase inhibitors: 3-substituted quinoline derivatives. J. Med. Chem., 1994, 37(14), 2129-2137.
[http://dx.doi.org/10.1021/jm00040a003] [PMID: 8035419]
[25]
Bénard, C.; Zouhiri, F.; Normand-Bayle, M.; Danet, M.; Desmaële, D.; Leh, H.; Mouscadet, J.F.; Mbemba, G.; Thomas, C.M.; Bonnenfant, S.; Le Bret, M.; d’Angelo, J. Linker-modified quinoline derivatives targeting HIV-1 integrase: Synthesis and biological activity. Bioorg. Med. Chem. Lett., 2004, 14(10), 2473-2476.
[http://dx.doi.org/10.1016/j.bmcl.2004.03.005] [PMID: 15109635]
[26]
Pathak, D.; Singh, D. Quinoline: A diverse therapeutic agent. Int. J. Pharm. Sci. Res., 2016, 7(1), 11-13.
[27]
Mekouar, K.; Mouscadet, J.F.; Desmaële, D.; Subra, F.; Leh, H.; Savouré, D.; Auclair, C.; d’Angelo, J. Styrylquinoline derivatives: A new class of potent HIV-1 integrase inhibitors that block HIV-1 replication in CEM cells. J. Med. Chem., 1998, 41(15), 2846-2857.
[http://dx.doi.org/10.1021/jm980043e] [PMID: 9667973]
[28]
Pommier, Y.; Johnson, A.A.; Marchand, C. Integrase inhibitors to treat HIV/Aids. Nat. Rev. Drug Discov., 2005, 4(3), 236-248.
[http://dx.doi.org/10.1038/nrd1660] [PMID: 15729361]
[29]
Letafat, B.; Emami, S.; Mohammadhosseini, N.; Faramarzi, M.A.; Samadi, N.; Shafiee, A.; Foroumadi, A. Synthesis and antibacterial activity of new N-[2-(thiophen-3-yl)ethyl] piperazinyl quinolones. Chem. Pharm. Bull. (Tokyo), 2007, 55(6), 894-898.
[http://dx.doi.org/10.1248/cpb.55.894] [PMID: 17541188]
[30]
Srivastava, B.K.; Solanki, M.; Mishra, B.; Soni, R.; Jayadev, S.; Valani, D.; Jain, M.; Patel, P.R. Synthesis and antibacterial activity of 4,5,6,7-tetrahydro-thieno[3,2-c]pyridine quinolones. Bioorg. Med. Chem. Lett., 2007, 17(7), 1924-1929.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.038] [PMID: 17276057]
[31]
Wang, J.C. DNA topoisomerases. Annu. Rev. Biochem., 1985, 54(1), 665-697.
[http://dx.doi.org/10.1146/annurev.bi.54.070185.003313] [PMID: 2992360]
[32]
Okumura, R.; Hirata, T.; Onodera, Y.; Hoshino, K.; Otani, T.; Yamamoto, T. Dual-targeting properties of the 3-aminopyrrolidyl quinolones, DC-159a and sitafloxacin, against DNA gyrase and topoisomerase IV: Contribution to reducing in vitro emergence of quinolone-resistant Streptococcus pneumoniae. J. Antimicrob. Chemother., 2008, 62(1), 98-104.
[http://dx.doi.org/10.1093/jac/dkn136] [PMID: 18390884]
[33]
Narayan Acharya, B.; Thavaselvam, D.; Parshad Kaushik, M. Synthesis and antimalarial evaluation of novel pyridine quinoline hybrids. Med. Chem. Res., 2008, 17(8), 487-494.
[http://dx.doi.org/10.1007/s00044-008-9092-5]
[34]
Assefa, H.; Kamath, S.; Buolamwini, J.K. 3D-QSAR and docking studies on 4-anilinoquinazoline and 4-anilinoquinoline epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors. J. Comput. Aided Mol. Des., 2003, 17(8), 475-493.
[http://dx.doi.org/10.1023/B:JCAM.0000004622.13865.4f] [PMID: 14703120]
[35]
Baba, A.; Kawamura, N.; Makino, H.; Ohta, Y.; Taketomi, S.; Sohda, T. Studies on disease-modifying antirheumatic drugs: Synthesis of novel quinoline and quinazoline derivatives and their anti-inflammatory effect. J. Med. Chem., 1996, 39(26), 5176-5182.
[http://dx.doi.org/10.1021/jm9509408] [PMID: 8978845]
[36]
Fernández-Bachiller, M.I.; Pérez, C.; González-Muñoz, G.C.; Conde, S.; López, M.G.; Villarroya, M.; García, A.G.; Rodríguez-Franco, M.I. Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties. J. Med. Chem., 2010, 53(13), 4927-4937.
[http://dx.doi.org/10.1021/jm100329q] [PMID: 20545360]
[37]
Shang, X.F.; Yang, C.J.; Morris-Natschke, S.L.; Li, J.C.; Yin, X.D.; Liu, Y.Q.; Guo, X.; Peng, J.W.; Goto, M.; Zhang, J.Y.; Lee, K.H. Biologically active isoquinoline alkaloids covering 2014–2018. Med. Res. Rev., 2020, 40(6), 2212-2289.
[http://dx.doi.org/10.1002/med.21703] [PMID: 32729169]
[38]
Bhambhani, S.; Kondhare, K.R.; Giri, A.P. Diversity in chemical structures and biological properties of plant alkaloids. Molecules, 2021, 26(11), 3374.
[http://dx.doi.org/10.3390/molecules26113374] [PMID: 34204857]
[39]
Prajapati, S.M.; Patel, K.D.; Vekariya, R.H.; Panchal, S.N.; Patel, H.D. Recent advances in the synthesis of quinolines: A review. RSC Advances, 2014, 4(47), 24463-24476.
[http://dx.doi.org/10.1039/C4RA01814A]
[40]
Wiesner, J.; Ortmann, R.; Jomaa, H.; Schlitzer, M. New antimalarial drugs. Angew. Chem. Int. Ed., 2003, 42(43), 5274-5293.
[http://dx.doi.org/10.1002/anie.200200569] [PMID: 14613157]
[41]
Kshirsagar, U.A. Recent developments in the chemistry of quinazolinone alkaloids. Org. Biomol. Chem., 2015, 13(36), 9336-9352.
[http://dx.doi.org/10.1039/C5OB01379H] [PMID: 26278395]
[42]
Armarego, W.L. Fused Pyrimidines, Part 1; John Wiley & Sons, 2009, p. 24.
[43]
Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaf-folds: Synthetic approaches and multifarious applications. Eur. J. Med. Chem., 2014, 76, 193-244.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.005] [PMID: 24583357]
[44]
Johne, S. The quinazoline alkaloids. Fortschritte der Chemieorganischer Naturstoffe. Prog. Chem. Org. Nat. Prod., 1984, 159-229.
[45]
Collin, G.; Höke, H. Quinoline and isoquinoline. Ullmann’s Encyclopedia of Industrial Chemistry, 2000, 31, 1-5.
[http://dx.doi.org/10.1002/14356007.a22_465]
[46]
Anzali, S.; Barnickel, G.; Cezanne, B.; Krug, M.; Filimonov, D.; Poroikov, V. Discriminating between drugs and nondrugs by prediction of activity spectra for substances (PASS). J. Med. Chem., 2001, 44(15), 2432-2437.
[http://dx.doi.org/10.1021/jm0010670] [PMID: 11448225]
[47]
S, P. Prediction of activity spectra for substances. J. Pharmacol. Pharmacother., 2011, 2(1), 52-53.
[http://dx.doi.org/10.4103/0976-500X.77119] [PMID: 21701651]
[48]
Wang, L.M.; Hu, L.; Chen, H.J.; Sui, Y.Y.; Shen, W. One-pot synthesis of quinoline-4-carboxylic acid derivatives in water: Ytterbium perfluorooctanoate catalyzed Doebner reaction. J. Fluor. Chem., 2009, 130(4), 406-409.
[http://dx.doi.org/10.1016/j.jfluchem.2009.01.002]
[49]
Hegedüs, A.; Hell, Z.; Vargadi, T.; Potor, A.; Gresits, I. A new, simple synthesis of 1,2-dihydroquinolines via cyclocondensation using zeolite catalyst. Catal. Lett., 2007, 117(3-4), 99-101.
[http://dx.doi.org/10.1007/s10562-007-9127-4]
[50]
Zhou, T.; Lin, J.L.; Chen, Z.C. A convenient synthesis of quinolines via ionic liquid-catalysed friedlander annulation. Lett. Org. Chem., 2008, 5(1), 47-50.
[http://dx.doi.org/10.2174/157017808783330261]
[51]
Ghassamipour, S.; Sardarian, A.R. Friedländer synthesis of poly-substituted quinolines in the presence of dodecylphosphonic acid (DPA) as a highly efficient, recyclable and novel catalyst in aqueous media and solvent-free conditions. Tetrahedron Lett., 2009, 50(5), 514-519.
[http://dx.doi.org/10.1016/j.tetlet.2008.09.097]
[52]
Katariya, K.D.; Shah, S.R.; Reddy, D. Anticancer, antimicrobial activities of quinoline based hydrazone analogues: Synthesis, characterization and molecular docking. Bioorg. Chem., 2020, 94, 103406.
[http://dx.doi.org/10.1016/j.bioorg.2019.103406] [PMID: 31718889]
[53]
Qi, C.; Zheng, Q.; Hua, R. A domino three-component condensation of ortho-haloacetophenones with urea or amines: A novel one-pot synthesis of halogen-substituted quinolines. Tetrahedron, 2009, 65(7), 1316-1320.
[http://dx.doi.org/10.1016/j.tet.2008.12.039]
[54]
Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Moghadam, M.; Mirkhani, V.; Anvar, S.; Mirjafari, A. Microwave-promoted alkynylation-cyclization of 2-aminoaryl ketones: A green strategy for the synthesis of 2,4-disubstituted quinolines. Synlett, 2010, 2010(20), 3104-3112.
[http://dx.doi.org/10.1055/s-0030-1259065]
[55]
Kowsari, E.; Mallakmohammadi, M. Ultrasound promoted synthesis of quinolines using basic ionic liquids in aqueous media as a green procedure. Ultrason. Sonochem., 2011, 18(1), 447-454.
[http://dx.doi.org/10.1016/j.ultsonch.2010.07.020] [PMID: 20719553]
[56]
Zhao, J.; Peng, C.; Liu, L.; Wang, Y.; Zhu, Q. Synthesis of 2-alkoxy(aroxy)-3-substituted quinolines by DABCO-promoted cyclization of o-alkynylaryl isocyanides. J. Org. Chem., 2010, 75(21), 7502-7504.
[http://dx.doi.org/10.1021/jo1017525] [PMID: 20936825]
[57]
Prajapati, D.; Sarma, R. Ionic liquid - An efficient recyclable system for the synthesis of 2,4-disubstituted quinolines via Meyer-Schuster rearrangement. Synlett, 2008, 2008(19), 3001-3005.
[http://dx.doi.org/10.1055/s-0028-1087340]
[58]
Wang, Y.; Ai, J.; Wang, Y.; Chen, Y.; Wang, L.; Liu, G.; Geng, M.; Zhang, A. Synthesis and c-Met kinase inhibition of 3,5-disubstituted and 3,5,7-trisubstituted quinolines: Identification of 3-(4-acetylpiperazin-1-yl)-5-(3-nitrobenzylamino)-7- (trifluoromethyl)quinoline as a novel anticancer agent. J. Med. Chem., 2011, 54(7), 2127-2142.
[http://dx.doi.org/10.1021/jm101340q] [PMID: 21405128]
[59]
Martínez, R.; Ramón, D.J.; Yus, M. Transition-metal-free indirect friedlander synthesis of quinolines from alcohols. J. Org. Chem., 2008, 73(24), 9778-9780.
[http://dx.doi.org/10.1021/jo801678n] [PMID: 18937410]
[60]
Chen, Y.L.; Zhao, Y.L.; Lu, C.M.; Tzeng, C.C.; Wang, J.P. Synthesis, cytotoxicity, and anti-inflammatory evaluation of 2-(furan-2-yl)-4-(phenoxy)quinoline derivatives. Part 4. Bioorg. Med. Chem., 2006, 14(13), 4373-4378.
[http://dx.doi.org/10.1016/j.bmc.2006.02.039] [PMID: 16524734]
[61]
Horn, J.; Marsden, S.P.; Nelson, A.; House, D.; Weingarten, G.G. Convergent, regiospecific synthesis of quinolines from o-aminophenylboronates. Org. Lett., 2008, 10(18), 4117-4120.
[http://dx.doi.org/10.1021/ol8016726] [PMID: 18722456]
[62]
Gao, G.L.; Niu, Y.N.; Yan, Z.Y.; Wang, H.L.; Wang, G.W.; Shaukat, A.; Liang, Y.M. Unexpected domino reaction via Pd-catalyzed Sonogashira coupling of benzimidoyl chlorides with 1,6-enynes and cyclization to synthesize quinoline derivatives. J. Org. Chem., 2010, 75(4), 1305-1308.
[http://dx.doi.org/10.1021/jo9026116] [PMID: 20088585]
[63]
Huo, Z.; Gridnev, I.D.; Yamamoto, Y. A method for the synthesis of substituted quinolines via electrophilic cyclization of 1-azido-2-(2-propynyl)benzene. J. Org. Chem., 2010, 75(4), 1266-1270.
[http://dx.doi.org/10.1021/jo902603v] [PMID: 20099928]
[64]
Yadav, P.; Shah, K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg. Chem., 2021, 109, 104639.
[http://dx.doi.org/10.1016/j.bioorg.2021.104639] [PMID: 33618829]
[65]
Iwaniuk, D.P.; Whetmore, E.D.; Rosa, N.; Ekoue-Kovi, K.; Alumasa, J.; de Dios, A.C.; Roepe, P.D.; Wolf, C. Synthesis and antimalarial activity of new chloroquine analogues carrying a multifunctional linear side chain. Bioorg. Med. Chem., 2009, 17(18), 6560-6566.
[http://dx.doi.org/10.1016/j.bmc.2009.08.003] [PMID: 19703776]
[66]
Raynes, K.; Foley, M.; Tilley, L.; Deady, L.W. Novel bisquinoline antimalarials. Biochem. Pharmacol., 1996, 52(4), 551-559.
[http://dx.doi.org/10.1016/0006-2952(96)00306-1] [PMID: 8759027]
[67]
Mahajan, A.; Yeh, S.; Nell, M.; van Rensburg, C.E.J.; Chibale, K. Synthesis of new 7-chloroquinolinyl thioureas and their biological investigation as potential antimalarial and anticancer agents. Bioorg. Med. Chem. Lett., 2007, 17(20), 5683-5685.
[http://dx.doi.org/10.1016/j.bmcl.2007.07.049] [PMID: 17768052]
[68]
Shiraki, H.; Kozar, M.P.; Melendez, V.; Hudson, T.H.; Ohrt, C.; Magill, A.J.; Lin, A.J. Antimalarial activity of novel 5-aryl-8-aminoquinoline derivatives. J. Med. Chem., 2011, 54(1), 131-142.
[http://dx.doi.org/10.1021/jm100911f] [PMID: 21141892]
[69]
Singh, B.; Chetia, D.; Puri, S.K.; Srivastava, K.; Prakash, A. Synthesis and in vitro and in vivo antimalarial activity of novel 4-anilinoquinoline Mannich base derivatives. Med. Chem. Res., 2011, 20(9), 1523-1529.
[http://dx.doi.org/10.1007/s00044-010-9397-z]
[70]
Abadi, A.H.; Hegazy, G.H.; El-Zaher, A.A. Synthesis of novel 4-substituted-7-trifluoromethylquinoline derivatives with nitric oxide releasing properties and their evaluation as analgesic and antiinflammatory agents. Bioorg. Med. Chem., 2005, 13(20), 5759-5765.
[http://dx.doi.org/10.1016/j.bmc.2005.05.053] [PMID: 16002298]
[71]
Gilbert, A.M.; Bursavich, M.G.; Lombardi, S.; Georgiadis, K.E.; Reifenberg, E.; Flannery, C.R.; Morris, E.A. N-((8-Hydroxy-5-substituted-quinolin-7-yl)(phenyl)methyl)-2-phenyloxy/amino-acetamide inhibitors of ADAMTS-5 (Aggrecanase-2). Bioorg. Med. Chem. Lett., 2008, 18(24), 6454-6457.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.065] [PMID: 18974001]
[72]
Marganakop, S.B.; Kamble, R.R.; Taj, T.; Kariduraganvar, M.Y. An efficient one-pot cyclization of quinoline thiosemicarbazones to quinolines derivatized with 1,3,4-thiadiazole as anticancer and anti tubercular agents. Med. Chem. Res., 2012, 21(2), 185-191.
[http://dx.doi.org/10.1007/s00044-010-9522-z]
[73]
Scott, D.A.; Balliet, C.L.; Cook, D.J.; Davies, A.M.; Gero, T.W.; Omer, C.A.; Poondru, S.; Theoclitou, M.E.; Tyurin, B.; Zinda, M.J. Identification of 3-amido-4-anilinoquinolines as potent and selective inhibitors of CSF-1R kinase. Bioorg. Med. Chem. Lett., 2009, 19(3), 697-700.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.046] [PMID: 19112018]
[74]
Mai, A.; Rotili, D.; Tarantino, D.; Nebbioso, A.; Castellano, S.; Sbardella, G.; Tini, M.; Altucci, L. Identification of 4-hydroxyquinolines inhibitors of p300/CBP histone acetyltransferases. Bioorg. Med. Chem. Lett., 2009, 19(4), 1132-1135.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.097] [PMID: 19144517]
[75]
Miller, L.M.; Mayer, S.C.; Berger, D.M.; Boschelli, D.H.; Boschelli, F.; Di, L.; Du, X.; Dutia, M.; Floyd, M.B.; Johnson, M.; Kenny, C.H.; Krishnamurthy, G.; Moy, F.; Petusky, S.; Tkach, D.; Torres, N.; Wu, B.; Xu, W. Lead identification to generate 3-cyanoquinoline inhibitors of insulin-like growth factor receptor (IGF-1R) for potential use in cancer treatment. Bioorg. Med. Chem. Lett., 2009, 19(1), 62-66.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.037] [PMID: 19041240]
[76]
Ma, X.; Zhou, W.; Brun, R. Synthesis, in vitro antitrypanosomal and antibacterial activity of phenoxy, phenylthio or benzyloxy substituted quinolones. Bioorg. Med. Chem. Lett., 2009, 19(3), 986-989.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.078] [PMID: 19095449]
[77]
Upadhayaya, R.S.; Vandavasi, J.K.; Vasireddy, N.R.; Sharma, V.; Dixit, S.S.; Chattopadhyaya, J. Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis. Bioorg. Med. Chem., 2009, 17(7), 2830-2841.
[http://dx.doi.org/10.1016/j.bmc.2009.02.026] [PMID: 19285414]
[78]
de Souza, M.V.N.; Pais, K.C.; Kaiser, C.R.; Peralta, M.A. de L Ferreira, M.; Lourenço, M.C. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives. Bioorg. Med. Chem., 2009, 17(4), 1474-1480.
[http://dx.doi.org/10.1016/j.bmc.2009.01.013] [PMID: 19188070]
[79]
Lilienkampf, A.; Mao, J.; Wan, B.; Wang, Y.; Franzblau, S.G.; Kozikowski, A.P. Structure-activity relationships for a series of quinoline-based compounds active against replicating and nonreplicating Mycobacterium tuberculosis. J. Med. Chem., 2009, 52(7), 2109-2118.
[http://dx.doi.org/10.1021/jm900003c] [PMID: 19271749]
[80]
Eswaran, S.; Adhikari, A.V.; Chowdhury, I.H.; Pal, N.K.; Thomas, K.D. New quinoline derivatives: Synthesis and investigation of antibacterial and antituberculosis properties. Eur. J. Med. Chem., 2010, 45(8), 3374-3383.
[http://dx.doi.org/10.1016/j.ejmech.2010.04.022] [PMID: 20537437]
[81]
Gholap, A.R.; Toti, K.S.; Shirazi, F.; Kumari, R.; Bhat, M.K.; Deshpande, M.V.; Srinivasan, K.V. Synthesis and evaluation of antifungal properties of a series of the novel 2-amino-5-oxo-4-phenyl-5,6,7,8-tetrahydroquinoline-3-carbonitrile and its analogues. Bioorg. Med. Chem., 2007, 15(21), 6705-6715.
[http://dx.doi.org/10.1016/j.bmc.2007.08.009] [PMID: 17765545]
[82]
Kumar, S.; Bawa, S.; Drabu, S.; Panda, B.P. Design and synthesis of 2-chloroquinoline derivatives as non-azoles antimycotic agents. Med. Chem. Res., 2011, 20(8), 1340-1348.
[http://dx.doi.org/10.1007/s00044-010-9463-6]
[83]
Kharkar, P.S.; Deodhar, M.N.; Kulkarni, V.M. Design, synthesis, antifungal activity, and ADME prediction of functional analogues of terbinafine. Med. Chem. Res., 2009, 18(6), 421-432.
[http://dx.doi.org/10.1007/s00044-008-9138-8]
[84]
Seliem, I.A.; Panda, S.S.; Girgis, A.S.; Moatasim, Y.; Kandeil, A.; Mostafa, A.; Ali, M.A.; Nossier, E.S.; Rasslan, F.; Srour, A.M.; Sakhuja, R.; Ibrahim, T.S.; Abdel-samii, Z.K.M.; Al-Mahmoudy, A.M.M. New quinoline-triazole conjugates: Synthesis, and antiviral properties against SARS-CoV-2. Bioorg. Chem., 2021, 114, 105117.
[http://dx.doi.org/10.1016/j.bioorg.2021.105117] [PMID: 34214752]
[85]
Ghosh, J.; Swarup, V.; Saxena, A.; Das, S.; Hazra, A.; Paira, P.; Banerjee, S.; Mondal, N.B.; Basu, A. Therapeutic effect of a novel anilidoquinoline derivative, 2-(2-methyl-quinoline-4ylamino)-N-(2-chlorophenyl)-acetamide, in Japanese encephalitis: Correlation with in vitro neuroprotection. Int. J. Antimicrob. Agents, 2008, 32(4), 349-354.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.05.001] [PMID: 18674886]
[86]
Chen, S.; Chen, R.; He, M.; Pang, R.; Tan, Z.; Yang, M. Design, synthesis, and biological evaluation of novel quinoline derivatives as HIV-1 Tat–TAR interaction inhibitors. Bioorg. Med. Chem., 2009, 17(5), 1948-1956.
[http://dx.doi.org/10.1016/j.bmc.2009.01.038] [PMID: 19217787]
[87]
Fakhfakh, M.A.; Fournet, A.; Prina, E.; Mouscadet, J.F.; Franck, X.; Hocquemiller, R.; Figadère, B. Synthesis and biological evaluation of substituted quinolines: Potential treatment of protozoal and retroviral co-infections. Bioorg. Med. Chem., 2003, 11(23), 5013-5023.
[http://dx.doi.org/10.1016/j.bmc.2003.09.007] [PMID: 14604664]
[88]
Bharti, A.; Bijauliya, R.K.; Yadav, A.; Suman The chemical and pharmacological advancements of quinoline: A mini review. J. Drug Deliv. Ther., 2022, 12(4), 211-215.
[http://dx.doi.org/10.22270/jddt.v12i4.5561]
[89]
Rossiter, S.; Péron, J.M.; Whitfield, P.J.; Jones, K. Synthesis and anthelmintic properties of arylquinolines with activity against drug-resistant nematodes. Bioorg. Med. Chem. Lett., 2005, 15(21), 4806-4808.
[http://dx.doi.org/10.1016/j.bmcl.2005.07.044] [PMID: 16165359]
[90]
Cai, Z.; Zhou, W.; Sun, L. Synthesis and HMG CoA reductase inhibition of 4-thiophenyl quinolines as potential hypocholesterolemic agents. Bioorg. Med. Chem., 2007, 15(24), 7809-7829.
[http://dx.doi.org/10.1016/j.bmc.2007.08.044] [PMID: 17851082]
[91]
Srimal, R.C.; Gulati, K.; Nityanand, S.; Dhawan, B.N. Pharmacological studies on 2-(2-(4-(3-methylphenyl)-1-piperazinyl)ethyl) quinoline (centhaquin). I. hypotensive activity. Pharmacol. Res., 1990, 22(3), 319-329.
[http://dx.doi.org/10.1016/1043-6618(90)90729-W] [PMID: 2367281]
[92]
Bernotas, R.C.; Singhaus, R.R.; Kaufman, D.H.; Ullrich, J.; Fletcher, H., III; Quinet, E.; Nambi, P.; Unwalla, R.; Wilhelmsson, A.; Goos-Nilsson, A.; Farnegardh, M.; Wrobel, J. Biarylether amide quinolines as liver X receptor agonists. Bioorg. Med. Chem., 2009, 17(4), 1663-1670.
[http://dx.doi.org/10.1016/j.bmc.2008.12.048] [PMID: 19162487]
[93]
Hu, B.; Jetter, J.; Kaufman, D.; Singhaus, R.; Bernotas, R.; Unwalla, R.; Quinet, E.; Savio, D.; Halpern, A.; Basso, M.; Keith, J.; Clerin, V.; Chen, L.; Liu, Q.Y.; Feingold, I.; Huselton, C.; Azam, F.; Goos-Nilsson, A.; Wilhelmsson, A.; Nambi, P.; Wrobel, J. Further modification on phenyl acetic acid based quinolines as liver X receptor modulators. Bioorg. Med. Chem., 2007, 15(10), 3321-3333.
[http://dx.doi.org/10.1016/j.bmc.2007.03.013] [PMID: 17391964]
[94]
Smith, P.W.; Wyman, P.A.; Lovell, P.; Goodacre, C.; Serafinowska, H.T.; Vong, A.; Harrington, F.; Flynn, S.; Bradley, D.M.; Porter, R.; Coggon, S.; Murkitt, G.; Searle, K.; Thomas, D.R.; Watson, J.M.; Martin, W.; Wu, Z.; Dawson, L.A. New quinoline NK3 receptor antagonists with CNS activity. Bioorg. Med. Chem. Lett., 2009, 19(3), 837-840.
[http://dx.doi.org/10.1016/j.bmcl.2008.12.005] [PMID: 19117759]
[95]
Edmont, D.; Rocher, R.; Plisson, C.; Chenault, J. Synthesis and evaluation of quinoline carboxyguanidines as antidiabetic agents. Bioorg. Med. Chem. Lett., 2000, 10(16), 1831-1834.
[http://dx.doi.org/10.1016/S0960-894X(00)00354-1] [PMID: 10969979]
[96]
Lunniss, C.J.; Cooper, A.W.J.; Eldred, C.D.; Kranz, M.; Lindvall, M.; Lucas, F.S.; Neu, M.; Preston, A.G.S.; Ranshaw, L.E.; Redgrave, A.J.; Ed Robinson, J.; Shipley, T.J.; Solanke, Y.E.; Somers, D.O.; Wiseman, J.O. Quinolines as a novel structural class of potent and selective PDE4 inhibitors: Optimisation for oral administration. Bioorg. Med. Chem. Lett., 2009, 19(5), 1380-1385.
[http://dx.doi.org/10.1016/j.bmcl.2009.01.045] [PMID: 19195882]
[97]
Wolkenberg, S.E.; Zhao, Z.; Thut, C.; Maxwell, J.W.; McDonald, T.P.; Kinose, F.; Reilly, M.; Lindsley, C.W.; Hartman, G.D. Design, synthesis, and evaluation of novel 3,6-diaryl-4-aminoalkoxyquinolines as selective agonists of somatostatin receptor subtype 2. J. Med. Chem., 2011, 54(7), 2351-2358.
[http://dx.doi.org/10.1021/jm101501b] [PMID: 21395312]
[98]
Bi, Y.; Stoy, P.; Adam, L.; He, B.; Krupinski, J.; Normandin, D.; Pongrac, R.; Seliger, L.; Watson, A.; Macor, J.E. Quinolines as extremely potent and selective PDE5 inhibitors as potential agents for treatment of erectile dysfunction. Bioorg. Med. Chem. Lett., 2004, 14(6), 1577-1580.
[http://dx.doi.org/10.1016/j.bmcl.2003.12.090] [PMID: 15006407]
[99]
Bazine, I.; Bendjedid, S.; Boukhari, A. Potential antibacterial and antifungal activities of novel sulfamidophosphonate derivatives bearing the quinoline or quinolone moiety. Arch Pharm, 2020, 2000291.
[http://dx.doi.org/10.1002/ardp.202000291] [PMID: 33283901]
[100]
Rathod, S.V.; Shinde, K.W.; Kharkar, P.S.; Shah, C.P. Synthesis, molecular docking, and biological evaluation of novel 2-(3-chlorophenyl)quinoline-4-carboxamide derivatives as potent anti breast cancer and antibacterial agents. Thaiphesatchasan, 2021, 45, 41-49.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy