Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Recent Updates on Synthesis, Biological Activity, and Structure-activity Relationship of 1,3,4-Oxadiazole-quinoline Hybrids: A Review

Author(s): Abhishek Shankar Sharma, Salahuddin*, Avijit Mazumder, Rajnish Kumar, Vimal Datt, Km Shabana, Sonakshi Tyagi, Mohammad Shahar Yar and Mohamed Jawed Ahsan

Volume 20, Issue 7, 2023

Published on: 29 December, 2022

Page: [758 - 787] Pages: 30

DOI: 10.2174/1570179420666221004142659

Price: $65

Abstract

Due to their diverse applications in industrial and synthetic organic chemistry, quinoline and 1,3,4-oxadiazole have become important heterocyclic compounds. Quinoline and 1,3,4- oxadiazole compounds have been developed for various medical conditions such as anti-cancer, anti-bacterial, anti-fungal, antimalarial, antioxidants, anti-HIV, anticonvulsant, antiviral, etc. The current review includes synthetic protocols for biologically active 1,3,4-oxadiazole incorporating quinoline hybrids with their structure-activity relationship to explore work (Mainly from 2010 to 2021) based on 1,3,4-oxadiazole-quinoline hybrids to the medicinal chemist for further research in the development of the molecule.

Keywords: Oxadiazole, Quinoline, Oxadiazole-quinoline hybrids, Synthetic Approaches, Biological Activity, Structure-Activity Relationship

Graphical Abstract

[1]
Yadav, P.; Shah, K. Quinolines, a perpetual, multipurpose scaffold in medicinal chemistry. Bioorg. Chem., 2021, 109, 104639.
[http://dx.doi.org/10.1016/j.bioorg.2021.104639] [PMID: 33618829]
[2]
Tang, Z.; Peng, Y.; Liu, F. Design and synthesis of novel quinoline derivatives bearing oxadiazole, isoxazoline, triazolothiadiazole, triazolothiadiazine, and piperazine moieties. J. Heterocycl. Chem., 2020, 57(6), 2330-2338.
[http://dx.doi.org/10.1002/jhet.3907]
[3]
Alaylar, B. Aygün, B.; Turhan, K.; Karadayi, G.; Şakar, E.; Singh, V.P.; Sayyed, M.I.; Pelit, E.; Karabulut, A.; Güllüce, M.; Turgut, Z.; Isaoglu, M. Characterization of gamma-ray and neutron radiation absorption properties of synthesized quinoline derivatives and their genotoxic potential. Radiat. Phys. Chem., 2021, 184, 109471.
[http://dx.doi.org/10.1016/j.radphyschem.2021.109471]
[4]
Orhan Püsküllü, M.; Tekiner, B.; Suzen, S. Recent studies of antioxidant quinoline derivatives. Mini Rev. Med. Chem., 2013, 13(3), 365-372.
[PMID: 23190035]
[5]
Matada, B.S.; Pattanashettar, R.; Yernale, N.G. A comprehensive review on the biological interest of quinoline and its derivatives. Bioorg. Med. Chem., 2021, 32, 115973.
[http://dx.doi.org/10.1016/j.bmc.2020.115973] [PMID: 33444846]
[6]
Solomon, V.R.; Lee, H. Quinoline as a privileged scaffold in cancer drug discovery. Curr. Med. Chem., 2011, 18(10), 1488-1508.
[http://dx.doi.org/10.2174/092986711795328382] [PMID: 21428893]
[7]
Panda, P.; Chakroborty, S. Navigating the synthesis of quinoline hybrid molecules as promising anticancer agents. ChemistrySelect, 2020, 5(33), 10187-10199.
[http://dx.doi.org/10.1002/slct.202002790]
[8]
Xia, L.; Idhayadhulla, A.; Lee, Y.R.; Kim, S.H.; Wee, Y.J. Microwave-assisted synthesis of diverse pyrrolo[3,4-c]quinoline-1,3-diones and their antibacterial activities. ACS Comb. Sci., 2014, 16(7), 333-341.
[http://dx.doi.org/10.1021/co500002s] [PMID: 24749663]
[9]
Jain, S.; Chandra, V.; Kumar Jain, P.; Pathak, K.; Pathak, D.; Vaidya, A. Comprehensive review on current developments of quinoline-based anticancer agents. Arab. J. Chem., 2019, 12(8), 4920-4946.
[http://dx.doi.org/10.1016/j.arabjc.2016.10.009]
[10]
Köprülü, T.K.; Ökten, S. Tekin, Ş Çakmak, O. Biological evaluation of some quinoline derivatives with different functional groups as anticancer agents. J. Biochem. Mol. Toxicol., 2019, 33(3), e22260.
[http://dx.doi.org/10.1002/jbt.22260] [PMID: 30431695]
[11]
Nasr, E.E.; Mostafa, A.S.; El-Sayed, M.A.A.; Massoud, M.A.M. Design, synthesis, and docking study of new quinoline derivatives as antitumor agents. Arch. Pharm. (Weinheim), 2019, 352(7), 1800355.
[http://dx.doi.org/10.1002/ardp.201800355] [PMID: 31081954]
[12]
Manikala, V.; Rao, V.M. Synthesis and biological evaluation of chalcone tethered quinoline derivatives as anticancer agents. Chem. Data Coll., 2020, 28, 100423.
[http://dx.doi.org/10.1016/j.cdc.2020.100423]
[13]
Sankaran, M.; Kumarasamy, C.; Chokkalingam, U.; Mohan, P.S. Synthesis, antioxidant and toxicological study of novel pyrimido quinoline derivatives from 4-hydroxy-3-acyl quinolin-2-one. Bioorg. Med. Chem. Lett., 2010, 20(23), 7147-7151.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.018] [PMID: 20947350]
[14]
Hamlaoui, I.; Bencheraiet, R.; Bensegueni, R.; Bencharif, M. Experimental and theoretical study on DPPH radical scavenging mechanism of some chalcone quinoline derivatives. J. Mol. Struct., 2018, 1156, 385-389.
[http://dx.doi.org/10.1016/j.molstruc.2017.11.118]
[15]
Kumar, S.; Kaushik, D.; Bawa, S.; Khan, S.A. Design, synthesis and screening of quinoline-incorporated thiadiazole as a potential anticonvulsant. Chem. Biol. Drug Des., 2012, 79(1), 104-111.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01255.x] [PMID: 21985632]
[16]
Guo, L.J.; Wei, C.X.; Jia, J.H.; Zhao, L.M.; Quan, Z.S. Design and synthesis of 5-alkoxy-[1,2,4]triazolo[4,3-a]quinoline derivatives with anticonvulsant activity. Eur. J. Med. Chem., 2009, 44(3), 954-958.
[http://dx.doi.org/10.1016/j.ejmech.2008.07.010] [PMID: 18752871]
[17]
Fu, H.G.; Li, Z.W.; Hu, X.X.; Si, S.Y.; You, X.F.; Tang, S.; Wang, Y.X.; Song, D.Q. Synthesis and biological evaluation of quinoline derivatives as a novel class of broad-spectrum antibacterial agents. Molecules, 2019, 24(3), 548.
[http://dx.doi.org/10.3390/molecules24030548] [PMID: 30717338]
[18]
Dorababu, A. Recent update on antibacterial and antifungal activity of quinoline scaffolds. Arch. Pharm. (Weinheim), 2021, 354(3), 2000232.
[http://dx.doi.org/10.1002/ardp.202000232] [PMID: 33210348]
[19]
Bouzian, Y.; Sert, Y.; Khalid, K.; Van Meervelt, L.; Chkirate, K.; Mahi, L.; Ahabchane, N.H.; Talbaoui, A.; Essassi, E.M. Synthesis, spectroscopic characterization, DFT, molecular docking and in vitro antibacterial potential of novel quinoline derivatives. J. Mol. Struct., 2021, 1246, 131217.
[http://dx.doi.org/10.1016/j.molstruc.2021.131217]
[20]
Soares, R.R.; da Silva, J.M.F.; Carlos, B.C.; da Fonseca, C.C.; de Souza, L.S.A.; Lopes, F.V.; de Paula Dias, R.M.; Moreira, P.O.L.; Abramo, C.; Viana, G.H.R.; de Pila Varotti, F.; da Silva, A.D.; Scopel, K.K.G. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg. Med. Chem. Lett., 2015, 25(11), 2308-2313.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.014] [PMID: 25920564]
[21]
Vandekerckhove, S.; D’hooghe, M. Quinoline-based antimalarial hybrid compounds. Bioorg. Med. Chem., 2015, 23(16), 5098-5119.
[http://dx.doi.org/10.1016/j.bmc.2014.12.018] [PMID: 25593097]
[22]
Keri, R.S.; Patil, S.A. Quinoline: A promising antitubercular target. Biomed. Pharmacother., 2014, 68(8), 1161-1175.
[http://dx.doi.org/10.1016/j.biopha.2014.10.007] [PMID: 25458785]
[23]
Casal, J.J.; Asís, S.E. Natural and synthetic quinoline derivatives as anti-tuberculosis agents. Austin Tuberc. Res. Treat., 2017, 2(1), 1007-1010.
[24]
Liu, B.; Li, F.; Zhou, T.; Tang, X.Q.; Hu, G.W. Quinoline derivatives with potential activity against multidrug-resistant tuberculosis. J. Heterocycl. Chem., 2018, 55(8), 1863-1873.
[http://dx.doi.org/10.1002/jhet.3241]
[25]
Fang, Y.M.; Zhang, R.R.; Shen, Z.H.; Wu, H-K.; Tan, C-X.; Weng, J-Q.; Xu, T-M.; Liu, X-H. Synthesis, antifungal activity, and sar study of some new 6-perfluoropropanyl quinoline derivatives. J. Heterocycl. Chem., 2018, 55(1), 240-245.
[http://dx.doi.org/10.1002/jhet.3031]
[26]
Zhang, B. Quinolone derivatives and their antifungal activities: An overview. Arch. Pharm. (Weinheim), 2019, 352(5), 1800382.
[http://dx.doi.org/10.1002/ardp.201800382] [PMID: 31021468]
[27]
Wang, R.; Xu, K.; Shi, W. Quinolone derivatives: Potential anti‐HIV agent-development and application. Arch. Pharm. (Weinheim), 2019, 352(9), 1900045.
[http://dx.doi.org/10.1002/ardp.201900045] [PMID: 31274223]
[28]
Zhong, F.; Geng, G.; Chen, B.; Pan, T.; Li, Q.; Zhang, H.; Bai, C. Identification of benzenesulfonamide quinoline derivatives as potent HIV-1 replication inhibitors targeting Rev protein. Org. Biomol. Chem., 2015, 13(6), 1792-1799.
[http://dx.doi.org/10.1039/C4OB02247E] [PMID: 25503645]
[29]
dos Reis Neto, E.T.; Kakehasi, A.M.; de Medeiros Pinheiro, M.; Ferreira, G.A.; Marques, C.D.L.; da Mota, L.M.H.; dos Santos Paiva, E.; Pileggi, G.C.S.; Sato, E.I.; Reis, A.P.M.G.; Xavier, R.M.; Provenza, J.R. Revisiting hydroxychloroquine and chloroquine for patients with chronic immunity-mediated inflammatory rheumatic diseases. Adv. Rheumatol., 2020, 60(1), 32.
[http://dx.doi.org/10.1186/s42358-020-00134-8] [PMID: 32517786]
[30]
Tseng, C.H.; Tung, C.W.; Wu, C.H.; Tzeng, C.C.; Chen, Y.H.; Hwang, T.L.; Chen, Y.L. Discovery of indeno [1, 2-c] quinoline derivatives as potent dual antituberculosis and anti-Inflammatory agents. Molecules, 2017, 22(6), 1001.
[http://dx.doi.org/10.3390/molecules22061001] [PMID: 28621733]
[31]
Taha, M.; Ismail, N.H.; Imran, S.; Wadood, A.; Rahim, F.; Ali, M.; Rehman, A.U. Novel quinoline derivatives as potent in vitro α-glucosidase inhibitors: In silico studies and SAR predictions. MedChemComm, 2015, 6(10), 1826-1836.
[http://dx.doi.org/10.1039/C5MD00280J]
[32]
Nikookar, H.; Mohammadi-Khanaposhtani, M.; Imanparast, S.; Faramarzi, M.A.; Ranjbar, P.R.; Mahdavi, M.; Larijani, B. Design, synthesis and in vitro α-glucosidase inhibition of novel dihydropyrano[3,2-c]quinoline derivatives as potential anti-diabetic agents. Bioorg. Chem., 2018, 77, 280-286.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.025] [PMID: 29421703]
[33]
Kumar, H.; Devaraji, V.; Joshi, R.; Jadhao, M.; Ahirkar, P.; Prasath, R.; Bhavana, P.; Ghosh, S.K. Antihypertensive activity of a quinoline appended chalcone derivative and its site specific binding interaction with a relevant target carrier protein. RSC Advances, 2015, 5(80), 65496-65513.
[http://dx.doi.org/10.1039/C5RA08778C]
[34]
Costa, C.A.; Lopes, R.M.; Ferraz, L.S.; Esteves, G.N.N.; Di Iorio, J.F.; Souza, A.A.; de Oliveira, I.M.; Manarin, F.; Judice, W.A.S.; Stefani, H.A.; Rodrigues, T. Cytotoxicity of 4-substituted quinoline derivatives: Anticancer and antileishmanial potential. Bioorg. Med. Chem., 2020, 28(11), 115511.
[http://dx.doi.org/10.1016/j.bmc.2020.115511] [PMID: 32336669]
[35]
Upadhyay, A.; Kushwaha, P.; Gupta, S.; Dodda, R.P.; Ramalingam, K.; Kant, R.; Goyal, N.; Sashidhara, K.V. Synthesis and evaluation of novel triazolyl quinoline derivatives as potential antileishmanial agents. Eur. J. Med. Chem., 2018, 154, 172-181.
[http://dx.doi.org/10.1016/j.ejmech.2018.05.014] [PMID: 29793211]
[36]
Chanquia, S.N.; Larregui, F.; Puente, V.; Labriola, C.; Lombardo, E.; García Liñares, G. Synthesis and biological evaluation of new quinoline derivatives as antileishmanial and antitrypanosomal agents. Bioorg. Chem., 2019, 83, 526-534.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.053] [PMID: 30469145]
[37]
de la Guardia, C.; Stephens, D.; Dang, H.; Quijada, M.; Larionov, O.; Lleonart, R. Antiviral activity of novel quinoline derivatives against dengue virus serotype 2. Molecules, 2018, 23(3), 672.
[http://dx.doi.org/10.3390/molecules23030672] [PMID: 29547522]
[38]
Kaur, R.; Kumar, K. Synthetic and medicinal perspective of quinolines as antiviral agents. Eur. J. Med. Chem., 2021, 215, 113220.
[http://dx.doi.org/10.1016/j.ejmech.2021.113220] [PMID: 33609889]
[39]
Khalilullah, H. M., J Ahsan; Hedaitullah, M.; Khan, S.; Ahmed, B. 1, 3, 4-oxadiazole: A biologically active scaffold. Mini Rev. Med. Chem., 2012, 12(8), 789-801.
[http://dx.doi.org/10.2174/138955712801264800] [PMID: 22512560]
[40]
de Oliveira, C.S.; Lira, B.F.; Barbosa-Filho, J.M.; Lorenzo, J.G.F.; de Athayde-Filho, P.F.; Filgueiras, P. Synthetic approaches and pharmacological activity of 1,3,4-oxadiazoles: A review of the literature from 2000-2012. Molecules, 2012, 17(9), 10192-10231.
[http://dx.doi.org/10.3390/molecules170910192] [PMID: 22926303]
[41]
Patel, K.D.; Prajapati, S.M.; Panchal, S.N.; Patel, H.D. Review of synthesis of 1, 3, 4-oxadiazole derivatives. Synth. Commun., 2014, 44(13), 1859-1875.
[http://dx.doi.org/10.1080/00397911.2013.879901]
[42]
Benassi, A.; Doria, F.; Pirota, V. Groundbreaking anticancer activity of highly diversified oxadiazole scaffolds. Int. J. Mol. Sci., 2020, 21(22), 8692.
[http://dx.doi.org/10.3390/ijms21228692] [PMID: 33217987]
[43]
Abdelrehim, E.M. Synthesis and screening of new [1, 3, 4] oxadiazole,[1, 2, 4] triazole, and [1, 2, 4] triazolo [4, 3-b][1, 2, 4] triazole derivatives as potential antitumor agents on the colon carcinoma cell line (HCT-116). ACS Omega, 2021, 6(2), 1687-1696.
[http://dx.doi.org/10.1021/acsomega.0c05718] [PMID: 33490827]
[44]
Rane, R.A.; Gutte, S.D.; Sahu, N.U. Synthesis and evaluation of novel 1,3,4-oxadiazole derivatives of marine bromopyrrole alkaloids as antimicrobial agent. Bioorg. Med. Chem. Lett., 2012, 22(20), 6429-6432.
[http://dx.doi.org/10.1016/j.bmcl.2012.08.061] [PMID: 22967765]
[45]
Tresse, C.; Radigue, R.; Gomes Von Borowski, R.; Thepaut, M.; Hanh Le, H.; Demay, F.; Georgeault, S.; Dhalluin, A.; Trautwetter, A.; Ermel, G.; Blanco, C.; van de Weghe, P.; Jean, M.; Giard, J.C.; Gillet, R. Synthesis and evaluation of 1,3,4-oxadiazole derivatives for development as broad-spectrum antibiotics. Bioorg. Med. Chem., 2019, 27(21), 115097.
[http://dx.doi.org/10.1016/j.bmc.2019.115097] [PMID: 31540826]
[46]
Jagadeesh Prasad, D.B.; Holla, S.; Kumari, N.S.; Laxmana, K.; Chaluvaiah, K. Synthesis and antimicrobial evaluation of some new Mannich bases bearing 1, 3, 4-oxadiazoline ring system. Int. J. Adv. Res Chem Sci., 2015, 2(12), 7-14.
[47]
Bondock, S.; Adel, S.; Etman, H.A.; Badria, F.A. Synthesis and antitumor evaluation of some new 1,3,4-oxadiazole-based heterocycles. Eur. J. Med. Chem., 2012, 48, 192-199.
[http://dx.doi.org/10.1016/j.ejmech.2011.12.013] [PMID: 22204901]
[48]
Bajaj, S.; Kumar, M.S.; Tinwala, H.; Yc, M. Design, synthesis, modelling studies and biological evaluation of 1,3,4-oxadiazole derivatives as potent anticancer agents targeting thymidine phosphorylase enzyme. Bioorg. Chem., 2021, 111, 104873.
[http://dx.doi.org/10.1016/j.bioorg.2021.104873] [PMID: 33845381]
[49]
Yadav, A.R.; Mohite, S.K.; Magdum, C.S. Synthesis, characterization and biological evaluation of some novel 1, 3, 4-oxadiazole derivatives as potential anticancer agents. Int. J. Sci. Res. Sci. Technol., 2020, 7(2), 275-282.
[http://dx.doi.org/10.32628/IJSRST207234]
[50]
Stecoza, C.E.; Nitulescu, G.M.; Draghici, C.; Caproiu, M.T.; Olaru, O.T.; Bostan, M.; Mihaila, M. Synthesis and anticancer evaluation of new 1, 3, 4-oxadiazole derivatives. Pharmaceuticals, 2021, 14(5), 438.
[http://dx.doi.org/10.3390/ph14050438] [PMID: 34066442]
[51]
Chortani, S.; Edziri, H.; Manachou, M.; Al-Ghamdi, Y.O.; Almalki, S.G.; Alqurashi, Y.E.; Ben Jannet, H.; Romdhane, A. Novel 1,3,4-oxadiazole linked benzopyrimidinones conjugates: Synthesis, DFT study and antimicrobial evaluation. J. Mol. Struct., 2020, 1217, 128357.
[http://dx.doi.org/10.1016/j.molstruc.2020.128357]
[52]
Glomb, T.; Świątek, P. Antimicrobial activity of 1,3,4-oxadiazole derivatives Int. J. Mol. Sci., 2021, 22(13), 6979.
[http://dx.doi.org/10.3390/ijms22136979] [PMID: 34209520]
[53]
Aggarwal, N.; Kumar, R.; Dureja, P.; Khurana, J.M. Synthesis of novel nalidixic acid-based 1,3,4-thiadiazole and 1,3,4-oxadiazole derivatives as potent antibacterial agents. Chem. Biol. Drug Des., 2012, 79(4), 384-397.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01316.x] [PMID: 22212247]
[54]
Ningegowda, R.; Chandrashekharappa, S.; Singh, V.; Mohanlall, V.; Venugopala, K.N. Design, synthesis and characterization of novel 2-(2, 3-dichlorophenyl)-5-aryl-1,3,4-oxadiazole derivatives for their anti-tubercular activity against Mycobacterium tuberculosis. Chem. Data Coll., 2020, 28, 100431.
[http://dx.doi.org/10.1016/j.cdc.2020.100431]
[55]
Verma, S.K.; Verma, R.; Verma, S.; Vaishnav, Y.; Tiwari, S.P.; Rakesh, K.P. Anti-tuberculosis activity and its structure-activity relationship (SAR) studies of oxadiazole derivatives: A key review. Eur. J. Med. Chem., 2021, 209, 112886.
[http://dx.doi.org/10.1016/j.ejmech.2020.112886] [PMID: 33032083]
[56]
Desai, N.C.; Somani, H.; Trivedi, A.; Bhatt, K.; Nawale, L.; Khedkar, V.M.; Jha, P.C.; Sarkar, D. Synthesis, biological evaluation and molecular docking study of some novel indole and pyridine based 1,3,4-oxadiazole derivatives as potential antitubercular agents. Bioorg. Med. Chem. Lett., 2016, 26(7), 1776-1783.
[http://dx.doi.org/10.1016/j.bmcl.2016.02.043] [PMID: 26920799]
[57]
Chawla, G.; Naaz, B.; Siddiqui, A.A. Exploring 1, 3, 4-oxadiazole scaffold for anti-inflammatory and analgesic activities: A review of literature from 2005-2016. Mini Rev. Med. Chem., 2018, 18(3), 216-233.
[PMID: 28137242]
[58]
Sindhe, M.A.; Bodke, Y.D.; Kenchappa, R.; Telkar, S.; Chandrashekar, A. Synthesis of a series of novel 2,5-disubstituted-1,3,4-oxadiazole derivatives as potential antioxidant and antibacterial agents. J. Chem. Biol., 2016, 9(3), 79-90.
[http://dx.doi.org/10.1007/s12154-016-0153-9] [PMID: 27493696]
[59]
Kotaiah, Y.; Harikrishna, N.; Nagaraju, K.; Venkata Rao, C. Synthesis and antioxidant activity of 1,3,4-oxadiazole tagged thieno[2,3-d]pyrimidine derivatives. Eur. J. Med. Chem., 2012, 58, 340-345.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.007] [PMID: 23149297]
[60]
Wang, X.; Chai, J.; Kong, X.; Jin, F.; Chen, M.; Yang, C.; Xue, W. Expedient discovery for novel antifungal leads: 1,3,4-Oxadiazole derivatives bearing a quinazolin-4(3H)-one fragment. Bioorg. Med. Chem., 2021, 45, 116330.
[http://dx.doi.org/10.1016/j.bmc.2021.116330] [PMID: 34333395]
[61]
Bitla, S.; Sagurthi, S.R.; Dhanavath, R.; Puchakayala, M.R.; Birudaraju, S.; Gayatri, A.A.; Bhukya, V.K.; Atcha, K.R. Design and synthesis of triazole conjugated novel 2,5-diaryl substituted 1,3,4-oxadiazoles as potential antimicrobial and anti-fungal agents. J. Mol. Struct., 2020, 1220, 128705.
[http://dx.doi.org/10.1016/j.molstruc.2020.128705]
[62]
Wani, M.Y.; Ahmad, A.; Shiekh, R.A.; Al-Ghamdi, K.J.; Sobral, A.J.F.N. Imidazole clubbed 1,3,4-oxadiazole derivatives as potential antifungal agents. Bioorg. Med. Chem., 2015, 23(15), 4172-4180.
[http://dx.doi.org/10.1016/j.bmc.2015.06.053] [PMID: 26164624]
[63]
Bhutani, R.; Pathak, D.P.; Kapoor, G.; Husain, A.; Iqbal, M.A. Novel hybrids of benzothiazole-1,3,4-oxadiazole-4-thiazolidinone: Synthesis, in silico ADME study, molecular docking and in vivo anti-diabetic assessment. Bioorg. Chem., 2019, 83, 6-19.
[http://dx.doi.org/10.1016/j.bioorg.2018.10.025] [PMID: 30339863]
[64]
Gani, R.S.; Kudva, A.K.; Timanagouda, K. Raghuveer; Mujawar, S.B.H.; Joshi, S.D.; Raghu, S.V. Synthesis of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives as potential glucosidase inhibitors. Bioorg. Chem., 2021, 114, 105046.
[http://dx.doi.org/10.1016/j.bioorg.2021.105046] [PMID: 34126575]
[65]
Singh, R.B.; Das, N.; Singh, G.K.; Singh, S.K.; Zaman, K. Synthesis and pharmacological evaluation of 3-[5-(aryl-[1,3,4]oxadiazole-2-yl]-piperidine derivatives as anticonvulsant and antidepressant agents. Arab. J. Chem., 2020, 13(5), 5299-5311.
[http://dx.doi.org/10.1016/j.arabjc.2020.03.009]
[66]
Nazar, S.; Siddiqui, N.; Alam, O. Recent progress of 1,3,4‐oxadiazoles as anticonvulsants: Future horizons. Arch. Pharm. (Weinheim), 2020, 353(7), 1900342.
[http://dx.doi.org/10.1002/ardp.201900342] [PMID: 32319117]
[67]
Narwal, S.; Kumar, S.; Verma, P.K. Synthesis and therapeutic potential of quinoline derivatives. Res. Chem. Intermed., 2017, 43(5), 2765-2798.
[http://dx.doi.org/10.1007/s11164-016-2794-2]
[68]
Ladani, G.G.; Patel, M.P. Novel 1,3,4-oxadiazole motifs bearing a quinoline nucleus: Synthesis, characterization and biological evaluation of their antimicrobial, antitubercular, antimalarial and cytotoxic activities. New J. Chem., 2015, 39(12), 9848-9857.
[http://dx.doi.org/10.1039/C5NJ02566D]
[69]
Desai, N.C.; Dodiya, A.M. Synthesis, characterization and in vitro antimicrobial screening of quinoline nucleus containing 1,3,4-oxadiazole and 2-azetidinone derivatives. J. Saudi Chem. Soc., 2014, 18(5), 425-431.
[http://dx.doi.org/10.1016/j.jscs.2011.09.005]
[70]
Shridhar, A.H.; Keshavayya, J.; Peethambar, S.K.; Joy Hoskeri, H. Synthesis and biological activities of Bis alkyl 1,3,4-oxadiazole incorporated azo dye derivatives. Arab. J. Chem., 2016, 9, S1643-S1648.
[http://dx.doi.org/10.1016/j.arabjc.2012.04.018]
[71]
Hofny, H.A.; Mohamed, M.F.A.; Gomaa, H.A.M.; Abdel-Aziz, S.A.; Youssif, B.G.M.; El-koussi, N.A.; Aboraia, A.S. Design, synthesis, and antibacterial evaluation of new quinoline-1,3,4-oxadiazole and quinoline-1,2,4-triazole hybrids as potential inhibitors of DNA gyrase and topoisomerase IV. Bioorg. Chem., 2021, 112, 104920.
[http://dx.doi.org/10.1016/j.bioorg.2021.104920] [PMID: 33910078]
[72]
Joshi, R.S.; Mandhane, P.G.; Khan, W.; Gill, C.H. Synthesis and antibacterial activity of novel series of 2-(p-tolyloxy)-3-(5-(pyridin-4-yl)-1,3,4-oxadiazol-2-yl)quinoline. J. Heterocycl. Chem., 2011, 48(4), 872-876.
[http://dx.doi.org/10.1002/jhet.653]
[73]
Shelke, S.; Mhaske, G.; Gadakh, S.; Gill, C. Green synthesis and biological evaluation of some novel azoles as antimicrobial agents. Bioorg. Med. Chem. Lett., 2010, 20(24), 7200-7204.
[http://dx.doi.org/10.1016/j.bmcl.2010.10.111] [PMID: 21074427]
[74]
El-Essawy, F.A.; El-Sayed, W.A. Synthesis of New 1,3,4-oxadiazol, thiadiazole, 1,2,4-triazole, and arylidene hydrazide derivatives of 4-oxo-1,4-dihydroquinoline with antimicrobial evaluation. J. Heterocycl. Chem., 2013, 50(S1), E1-E8.
[http://dx.doi.org/10.1002/jhet.1005]
[75]
Karthikeyan, M.S.; Prasad, D.J.; Mahalinga, M.; Holla, B.S.; Kumari, N.S. Antimicrobial studies of 2,4-dichloro-5-fluorophenyl containing oxadiazoles. Eur. J. Med. Chem., 2008, 43(1), 25-31.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.013] [PMID: 17521777]
[76]
Garudachari, B.; Isloor, A.M.; Satyanaraya, M.N.; Ananda, K.; Fun, H.K. Synthesis, characterization and antimicrobial studies of some new trifluoromethyl quinoline-3-carbohydrazide and 1,3,4-oxadiazoles. RSC Advances, 2014, 4(58), 30864-30875.
[http://dx.doi.org/10.1039/C4RA04456H]
[77]
Kumar, R.; Kumar, A.; Jain, S.; Kaushik, D. Synthesis, antibacterial evaluation and QSAR studies of 7-[4-(5-aryl-1,3,4-oxadiazole-2-yl)piperazinyl] quinolone derivatives. Eur. J. Med. Chem., 2011, 46(9), 3543-3550.
[http://dx.doi.org/10.1016/j.ejmech.2011.04.035] [PMID: 21689870]
[78]
Mentese, M.; Demirbas, N.; Mermer, A.; Demirci, S.; Demirbas, A.; Ayaz, F.A. Novel azole-functionalited flouroquinolone hybrids: Design, conventional and microwave irradiated synthesis, evaluation as antibacterial and antioxidant agents. Lett. Drug Des. Discov., 2018, 15(1), 46-64.
[http://dx.doi.org/10.2174/1570180814666170823163540]
[79]
Vinayak, A.; Sudha, M.; Jaadeesha, A.H.; Kulkarni, P.; Lalita, K.S.; Rao, P.K. Synthesis, characterization of some novel 1, 3, 4-oxadiazole compounds containing 8-hydroxy quinolone moiety as potential antibacterial and anticancer agents. Int. J. Pharm. Res., 2014, 4(4), 180-185.
[80]
Modh, RP; Shah, D; Chikhalia, KH 2-(Quinolin-4-ylthio)-1, 3, 4-oxadiazole derivatives: Design, synthesis, antibacterial and antifungal studies Indian J. Chem, 2013, 52((B)), 1318-1324.
[81]
Kumar, S. R2 G. Synthesis and Biological Properties of Some Novel 1,3,4-oxadiazole with Quinoline Moiety. Der Pharma Chem., 2017, 9(15), 68-71.
[82]
Khan, S.A.; Ahuja, P.; Husain, A. Oxidative cyclization of isoniazid with fluoroquinolones: Synthesis, antibacterial and antitubercular activity of new 2, 5-disubstituted-1, 3, 4-oxadiazoles. J. Chin. Chem. Soc., 2017, 64(8), 918-924.
[http://dx.doi.org/10.1002/jccs.201600199]
[83]
Guo, Y.; Xu, T.; Bao, C.; Liu, Z.; Fan, J.; Yang, R.; Qin, S. Design and synthesis of new norfloxacin-1,3,4-oxadiazole hybrids as antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). Eur. J. Pharm. Sci., 2019, 136, 104966.
[http://dx.doi.org/10.1016/j.ejps.2019.104966] [PMID: 31233865]
[84]
Desai, N.C.; Dodiya, A.M. Conventional and microwave techniques for the synthesis and antimicrobial studies of novel 1-[2-(2-chloro-6-methyl(3-quinolyl))-5-(4-nitrophenyl)-(1,3,4-oxadiazolin-3-yl)]-3-(aryl)prop-2-en-1-ones. Arab. J. Chem., 2016, 9, S379-S387.
[http://dx.doi.org/10.1016/j.arabjc.2011.05.004]
[85]
Nandeshwarappa, B.P.; Chandrashekharappa, S.; Sadashiv, S.O.; Patil, S.J.; Onkarappa, H.S. Nitrogen and selenium containing heterocycles: Part-2: Synthesis and antimicrobial activities of novel S-5-(2-oxo-2H-selenopyrano [2,3-b]quinolin-3-yl)-1,3,4-oxadiazol-2-yl-2-cyanoethanethioates. Chem. Data Coll., 2021, 33, 100716.
[http://dx.doi.org/10.1016/j.cdc.2021.100716]
[86]
Mohamed, M.I.; Kandile, N.G.; Zaky, H.T. Synthesis and antimicrobial activity of 1,3,4-oxadiazole-2(3H)-thione and azidomethanone derivatives based on quinoline-4-carbohydrazide derivatives. J. Heterocycl. Chem., 2017, 54(1), 35-43.
[http://dx.doi.org/10.1002/jhet.2529]
[87]
Al-Wahaibi, L.H.; Amer, A.A.; Marzouk, A.A.; Gomaa, H.A.M.; Youssif, B.G.M.; Abdelhamid, A.A. Design, synthesis, and antibacterial screening of some novel heteroaryl-based ciprofloxacin derivatives as DNA gyrase and topoisomerase IV inhibitors. Pharmaceuticals, 2021, 14(5), 399.
[http://dx.doi.org/10.3390/ph14050399] [PMID: 33922361]
[88]
Idrees, M.; Bodkhe, Y.G.; Siddiqui, N.J.; Kola, S. Synthesis of few 1, 3, 4-oxadiazole derivatives blended with different heterocycles and their in-vitro antibacterial activities. Rasayan J. Chem., 2020, 13(1), 291-297.
[http://dx.doi.org/10.31788/RJC.2020.1315593]
[89]
Mahboob Alam, M.; Shaharyar, M.; Hamid, H.; Nazreen, S.; Haider, S.; Sarwar Alam, M. Synthesis of novel 8-hydroxy quinolin based 1,3,4-oxadiazoles and S-substituted 1,2,4-triazole derivatives and evaluation of their anti-inflammatory, analgesic, ulcerogenic and anti-microbial activities. Med. Chem., 2011, 7(6), 663-673.
[http://dx.doi.org/10.2174/157340611797928334] [PMID: 22313306]
[90]
Kumar, R.; Abdullah, M.M. Synthesis, characterization and anticonvulsant potential of 2,5-disubstituted 1,3,4-oxadiazole analogues. Asian J. Chem., 2019, 31(6), 1389-1397.
[http://dx.doi.org/10.14233/ajchem.2019.22061]
[91]
Wang, S.; Liu, H.; Wang, X.; Lei, K.; Li, G.; Li, J.; Liu, R.; Quan, Z. Synthesis of 1,3,4-oxadiazole derivatives with anticonvulsant activity and their binding to the GABAA receptor. Eur. J. Med. Chem., 2020, 206, 112672.
[http://dx.doi.org/10.1016/j.ejmech.2020.112672] [PMID: 32798790]
[92]
Sun, J.; Zhu, H.; Yang, Z.M.; Zhu, H.L. Synthesis, molecular modeling and biological evaluation of 2-aminomethyl-5-(quinolin-2-yl)-1,3,4-oxadiazole-2(3H)-thione quinolone derivatives as novel anticancer agent. Eur. J. Med. Chem., 2013, 60, 23-28.
[http://dx.doi.org/10.1016/j.ejmech.2012.11.039] [PMID: 23279864]
[93]
Hamdy, R.; Elseginy, S.; Ziedan, N.; Jones, A.; Westwell, A. New quinoline-based heterocycles as anticancer agents targeting bcl-2. Molecules, 2019, 24(7), 1274.
[http://dx.doi.org/10.3390/molecules24071274] [PMID: 30986908]
[94]
Jin, X.Y.; Chen, H.; Li, D.D.; Li, A.L.; Wang, W.Y.; Gu, W. Design, synthesis, and anticancer evaluation of novel quinoline derivatives of ursolic acid with hydrazide, oxadiazole, and thiadiazole moieties as potent MEK inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 955-972.
[http://dx.doi.org/10.1080/14756366.2019.1605364] [PMID: 31072147]
[95]
Shamsi, F.; Aneja, B.; Hasan, P.; Zeya, B.; Zafaryab, M.; Mehdi, S.H.; Rizvi, M.M.A.; Patel, R.; Rana, S.; Abid, M. Synthesis, anticancer evaluation and DNA‐binding spectroscopic insights of quinoline‐based 1,3,4‐oxadiazole‐1,2,3‐triazole conjugates. ChemistrySelect, 2019, 4(41), 12176-12182.
[http://dx.doi.org/10.1002/slct.201902797]
[96]
Ibrahim, T.S.; Hawwas, M.M.; Malebari, A.M.; Taher, E.S.; Omar, A.M.; O’Boyle, N.M.; McLoughlin, E.; Abdel-Samii, Z.K.; Elshaier, Y.A.M.M. Potent quinoline-containing combretastatin a-4 analogues: Design, synthesis, antiproliferative, and anti-tubulin activity. Pharmaceuticals, 2020, 13(11), 393.
[http://dx.doi.org/10.3390/ph13110393] [PMID: 33203182]
[97]
Salahuddin, Mazumder, A.; Shaharyar, M. Synthesis, characterization, and in vitro anticancer evaluation of novel 2,5-disubstituted 1,3,4-oxadiazole analogue. BioMed Res. Int., 2014, 2014, 1-14.
[http://dx.doi.org/10.1155/2014/491492] [PMID: 25177693]
[98]
Xu, C.; Han, Y.; Xu, S.; Wang, R.; Yue, M.; Tian, Y.; Li, X.; Zhao, Y.; Gong, P. Design, synthesis and biological evaluation of new Axl kinase inhibitors containing 1,3,4-oxadiazole acetamide moiety as novel linker. Eur. J. Med. Chem., 2020, 186, 111867.
[http://dx.doi.org/10.1016/j.ejmech.2019.111867] [PMID: 31757525]
[99]
Kundu, B.; Das, S.K.; Paul Chowdhuri, S.; Pal, S.; Sarkar, D.; Ghosh, A.; Mukherjee, A.; Bhattacharya, D.; Das, B.B.; Talukdar, A. Discovery and mechanistic study of tailor-made quinoline derivatives as topoisomerase 1 poison with potent anticancer activity. J. Med. Chem., 2019, 62(7), 3428-3446.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01938] [PMID: 30897325]
[100]
Radini, I.; Elsheikh, T.; El-Telbani, E.; Khidre, R. New potential antimalarial agents: Design, synthesis and biological evaluation of some novel quinoline derivatives as antimalarial agents. Molecules, 2016, 21(7), 909.
[http://dx.doi.org/10.3390/molecules21070909] [PMID: 27428939]
[101]
Taha, M.; Ismail, N.H.; Ali, M.; Rashid, U.; Imran, S.; Uddin, N.; Khan, K.M. Molecular hybridization conceded exceptionally potent quinolinyl-oxadiazole hybrids through phenyl linked thiosemicarbazide antileishmanial scaffolds: in silico validation and SAR studies. Bioorg. Chem., 2017, 71, 192-200.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.005] [PMID: 28228228]
[102]
Parizadeh, N.; Alipour, E.; Soleymani, S.; Zabihollahi, R.; Aghasadeghi, M.R.; Hajimahdi, Z.; Zarghi, A. synthesis of novel 3-(5-(Alkyl/arylthio)-1,3,4-oxadiazol-2-yl)-8-phenylquinolin-4(1 H)-one derivatives as anti-HIV agents. Phosphorus Sulfur Silicon Relat. Elem., 2018, 193(4), 225-231.
[http://dx.doi.org/10.1080/10426507.2017.1394302]
[103]
Liu, Y.; Feng, G.; Ma, Z.; Xu, C.; Guo, Z.; Gong, P.; Xu, L. Synthesis and anti-hepatitis B virus evaluation of 7-methoxy-3-heterocyclic quinolin-6-ols. Arch. Pharm. (Weinheim), 2015, 348(11), 776-785.
[http://dx.doi.org/10.1002/ardp.201500238] [PMID: 26435294]
[104]
Bharadwaj, S.S.; Poojary, B.; Nandish, S.K.M.; Kengaiah, J.; Kirana, M.P.; Shankar, M.K.; Das, A.J.; Kulal, A.; Sannaningaiah, D. Efficient synthesis and in silico studies of the benzimidazole hybrid scaffold with the quinolinyloxadiazole skeleton with potential α-glucosidase inhibitory, anticoagulant, and antiplatelet activities for type-II diabetes mellitus management and treating thrombotic disorders. ACS Omega, 2018, 3(10), 12562-12574.
[http://dx.doi.org/10.1021/acsomega.8b01476] [PMID: 30411010]
[105]
Allen, D.R.; Buckley, G.M.; Birli, R.; Davenport, J.R.; Kinsella, N.; Lock, C.J.; Lowe, C.; Mack, S.R.; Pitt, W.R.; Ratcliffe, A.J.; Richard, M.D.; Sabin, V.M.; Sharpe, A.; Tait, L.J.; Warrellow, G.J.; Williams, C.S. Quinoxaline and quinoline derivatives as kinase inhibitor. U.S Patent 8399483, 2013.
[106]
Balaraman, E.; Jaiswal, G.; Midya, S.P. Quinoline derivatives and preperation thereof. U.S. Patent 10227355,, 2019.
[107]
Barnham, K.J.; Gautier, E.C.L.; Kok, G.B.; Krippner, G. 8-Hydroxy quinoline derivative. U.S Patent 9169211, 2015.
[108]
Echeverria, C.G.; Capraro, H.G.; Furet, P. 1H-Imidazole[4.5-C]Quinoline derivatives in the treatment of protein kinase dependentDisease. U.S Patent 7998972, 2021.
[109]
Karra, S.R.; Xiao, Y.; Seenisamy, J.; Jayadevan, J. Quinoline derivatives and their use in neurodegenerative disease. U.S. Patent 9399623,, 2016.
[110]
Knight, S.D.; Schmidt, S.J. Quinoline derivative as a PI3 kinase inhibitor. U.S Patent 8785433, 2004.
[111]
Thomas, A.P.; Hennequin, L.F.A.; Ple, P. Quinoline derivatives inhibiting the effect of growth factors such as VEGF. U.S.6809097,
[112]
Zhang, X.; Wang, X.; Zhan, X.; Dia, J.; Tian, X.; Yang, L. Methods and uses of quinoline derivative in the treatment of soft tissue sarcomas and pharmaceutical composition for treatment of same U.S. Patent 10183017, 2019.
[113]
Barrow, J.C.; Harrison, S.; Mulhearn, J.; Sur, C.; Williams, D.L.; Wolkenberg, S. Novel substituted pyrazole, 1,2,4-oxadiazole, and 1,3,4-oxadiazole. U.S. patent, 20110081297, 2011.
[114]
Tang, J.C.O.; Chan, A.S.C.; Lam, K.H.; Chan, S.H. Quinoline derivatives as anti-cancer agents. U.S. Patent 9493419, 2015.
[115]
Asai, A.; Matsuno, K.; Ogo, N.; Takahashi, O.; Masuda, Y.; Muroya, A.; Akiyama, Y.; Ashizawa, T.; Okawara, T. 1,3,4-oxadiazole-2-carboximide compound U.S. Patent 8796320, 2014.
[116]
Zhang, G.; Chen, Y.; Xu, X.; Liu, B.; Feng, X.; Zhao, S.; Liu, S.; Yu, M.; Lan, Y.; Qiu, Y. 1,3,4-oxadiazole derivative and application Thereof. U.S. Patent 8993575, 2015.
[117]
Salazar, V.; Arevalo, A.; Roberts, B.I.; Iglesias, B. 1,3,4-oxadiazole derivative as histone deacetylase inhibitor. W.O. Patent2020212479, 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy