Generic placeholder image

Current Nutrition & Food Science

Editor-in-Chief

ISSN (Print): 1573-4013
ISSN (Online): 2212-3881

Mini-Review Article

Medicinal Plants, Economical and Natural Agents with Antioxidant Activity

Author(s): Mohamad Hesam Shahrajabian and Wenli Sun*

Volume 19, Issue 8, 2023

Published on: 15 November, 2022

Page: [763 - 784] Pages: 22

DOI: 10.2174/1573401318666221003110058

Price: $65

Abstract

The review aims to summarize the most important and common natural antioxidants and their resources from medicinal plants, as the vast majority in the world have always applied medicinal plants for the prevention and treatment of various diseases. Keywords were searched in PubMed/MEDLINE, Scopus, and the Institute for Scientific Information Web of Science, as well as the search engine Google Scholar.

Important traditional medicinal plants with antioxidant activities in China are Asparagus, bindii, blueberries, barberry fruit, borage, calendula, camellia, coriander, cumin, Chinese bayberry, bitter Chinese melon, Chinese cabbage, Chinese cherry, Chinese jujube, Chinese olive, pomegranate, Chinese rose tea, Chinese toon, Chinese watermelon, black tea, green tea, knotweed, Chinese quince, Chinese rhubarb, pomegranate, sumac, thyme, wolfberry, dendrobium, drumstick tree, rosemary, black Zira, rose, Fiscus species, ginger, ginkgo, goji berry, grape, Jerusalem thorn, jujube, kiwifruit seed oil, and liquorice root.

The main derived exogenous natural antioxidants are derived from medicinal plants, fruits, foods, flowers, and traditional herbal medicines. Among various medicinal plants, the medicinal plants common in Asian traditional medicine have shown enormous potential as great sources of natural antioxidants. Polyphenols, and some other secondary bioactive compounds like anthocyanins, isoflavones, pterostilbene, resveratol, quercetin and catechins have shown potent antioxidant activity.

Keywords: Antioxidant, Medicinal Plants, Natural Products, DPPH method, FRAP method

Graphical Abstract

[1]
Shahrajabian MH, Sun W, Zandi P, Cheng Q. A review of Chrysanthemum, the eastern queen in traditional Chinese medicine with healing power in modern pharmaceutical sciences. Appl Ecol Environ Res 2019; 17(6): 13355-69.
[http://dx.doi.org/10.15666/aeer/1706_1335513369]
[2]
Shahrajabian MH, Sun W, Cheng Q. A review of Astragalus species as foodstuffs, dietary supplements, a traditional Chinese medicine and a part of modern pharmaceutical science. Appl Ecol Environ Res 2019; 17(6): 13371-82.
[http://dx.doi.org/10.15666/aeer/1706_1337113382]
[3]
Shahrajabian MH, Sun W, Cheng Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry. Acta Agric Scand B Soil Plant Sci 2019; 69(6): 546-56.
[http://dx.doi.org/10.1080/09064710.2019.1606930]
[4]
Sun W, Shahrajabian MH, Cheng Q. Anise (Pimpinella anisum L.), a dominant spice and traditional medicinal herb for both food and medicinal purposes. Cogent Biol 2019; 5(1): 1673688.
[http://dx.doi.org/10.1080/23312025.2019.1673688]
[5]
Wenli S, Mohamad HS, Qi C. The insight and survey on medicinal properties and nutritive components of Shallot. J Med Plants Res 2019; 13(18): 452-7.
[http://dx.doi.org/10.5897/JMPR2019.6836]
[6]
Wrona M, Silva F, Salafranca J, Nerín C, Alfonso MJ, Caballero MÁ. Design of new natural antioxidant active packaging: Screening flowsheet from pure essential oils and vegetable oils to ex vivo testing in meat samples. Food Control 2021; 120: 107536.
[http://dx.doi.org/10.1016/j.foodcont.2020.107536]
[7]
Halliwell B. How to characterize a biological antioxidant. Free Radic Res Commun 1990; 9(1): 1-32.
[http://dx.doi.org/10.3109/10715769009148569] [PMID: 2159941]
[8]
Gong Y, Huang XY, Pei D, et al. The applicability of high-speed counter current chromatography to the separation of natural antioxidants. J Chromatogr A 2020; 1623: 461150.
[http://dx.doi.org/10.1016/j.chroma.2020.461150] [PMID: 32505270]
[9]
Keddar MN, Ballesteros-Gómez A, Amiali M, et al. Efficient extraction of hydrophilic and lipophilic antioxidants from microalgae with supramolecular solvents. Separ Purif Tech 2020; 251: 117327.
[http://dx.doi.org/10.1016/j.seppur.2020.117327]
[10]
Diamantis DA, Oblukova M, Chatziathanasiadou MV, et al. Bioinspired tailoring of fluorogenic thiol responsive antioxidant precursors to protect cells against H2O2-induced DNA damage. Free Radic Biol Med 2020; 160: 540-51.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.08.025] [PMID: 32871232]
[11]
Sarangarajan R, Meera S, Rukkumani R, Sankar P, Anuradha G. Antioxidants: Friend or foe? Asian Pac J Trop Med 2017; 10(12): 1111-6.
[http://dx.doi.org/10.1016/j.apjtm.2017.10.017] [PMID: 29268965]
[12]
Halliwell B, Gutteridge JMC. The definition and measurement of antioxidants in biological systems. Free Radic Biol Med 1995; 18(1): 125-6.
[http://dx.doi.org/10.1016/0891-5849(95)91457-3] [PMID: 7896166]
[13]
Bi X, Soong YY, Lim SW, Henry CJ. Evaluation of antioxidant capacity of Chinese five-spice ingredients. Int J Food Sci Nutr 2015; 66(3): 289-92.
[http://dx.doi.org/10.3109/09637486.2015.1007452] [PMID: 25666419]
[14]
Tlili N, Elfalleh W, Hannachi H, et al. Screening of natural antioxidants from selected medicinal plants. Int J Food Prop 2013; 16(5): 1117-26.
[http://dx.doi.org/10.1080/10942912.2011.576360]
[15]
Abd-ElGawad A, El Gendy AEN, El-Amier Y, et al. Essential oil of Bassia muricata: Chemical characterization, antioxidant activity, and allelopathic effect on the weed Chenopodium murale. Saudi J Biol Sci 2020; 27(7): 1900-6.
[http://dx.doi.org/10.1016/j.sjbs.2020.04.018] [PMID: 32565712]
[16]
Zhao Q, Bowles EJ, Zhang HY. Antioxidant activities of elevenAustralian essential oils. Nat Prod Commun 2008; 3(5): 1934578X0800300.
[http://dx.doi.org/10.1177/1934578X0800300531]
[17]
Wong FC, Xiao J, Wang S, Ee KY, Chai TT. Advances on the antioxidant peptides from edible plant sources. Trends Food Sci Technol 2020; 99: 44-57.
[http://dx.doi.org/10.1016/j.tifs.2020.02.012]
[18]
Mason SA, Trewin AJ, Parker L, Wadley GD. Antioxidant supplements and endurance exercise: Current evidence and mechanistic insights. Redox Biol 2020; 35: 101471.
[http://dx.doi.org/10.1016/j.redox.2020.101471] [PMID: 32127289]
[19]
Jäger R, Purpura M, Kerksick CM. Eight weeks of a high dose of curcumin supplementation may attenuate performance decrements following muscle-damaging excersie. Nutrients 2019; 11(7): 1692.
[http://dx.doi.org/10.3390/nu11071692] [PMID: 31340534]
[20]
Shahrajabian MH, Sun W. Using sumac (Rhus coriaria L.), as a miraculous spice with outstanding pharmacological activities. Not Sci Biol 2022; 14(1): 11118.
[http://dx.doi.org/10.15835/nsb14111118]
[21]
Abd El-Hack ME, El-Saadony MT, Shafi ME, et al. Antimicrobial and antioxidant properties of chitosan and its derivatives and their applications: A review. Int J Biol Macromol 2020; 164: 2726-44.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.08.153] [PMID: 32841671]
[22]
Juárez-Gómez J, Ramírez-Silva MT, Guzmán-Hernández DS, Romero-Romo M, Palomar-Pardavé M. Novel electrochemical method to evaluate the antioxidant capacity of infusions and beverages, based on in situ formation of free superoxide radicals. Food Chem 2020; 332: 127409.
[http://dx.doi.org/10.1016/j.foodchem.2020.127409] [PMID: 32615388]
[23]
Lima AP, dos Santos WTP, Nossol E, Richter EM, Munoz RAA. Critical evaluation of voltammetric techniques for antioxidant capacity and activity: Presence of alumina on glassy-carbon electrodes alters the results. Electrochim Acta 2020; 358: 136925.
[http://dx.doi.org/10.1016/j.electacta.2020.136925]
[24]
Qin L, Wang H, Zhang W, Pan M, Xie H, Guo X. Effects of different drying methods on phenolic substances and antioxidant activities of seedless raisins. Lebensm Wiss Technol 2020; 131: 109807.
[http://dx.doi.org/10.1016/j.lwt.2020.109807]
[25]
Alves MAE, de Castro RJS. Effects of solid-state fermentation and extraction solvents on the antioxidant properties of lentils. Biocatal Agric Biotechnol 2020; 28: 101753.
[http://dx.doi.org/10.1016/j.bcab.2020.101753]
[26]
Serna-Escolano V, Martinez-Romero D, Gimenez MJ, et al. Enhancing antioxidant systems by preharvest treatments with methyl jasmonate and salicylic acid leads to maintain lemon quality during cold storage. Food Chem 2020.
[http://dx.doi.org/10.1016/j.foodchem.2020.128044] [PMID: 32932092]
[27]
Casadey R, Broglia M, Barbero C, Criado S, Rivarola C. Controlled release systems of natural phenolic antioxidants encapsulated inside biocompatible hydrogels. React Funct Polym 2020; 156: 104729.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2020.104729]
[28]
Rebelatto EA, Rodrigues LGG, Rudke AR, Andrade KS, Ferreira SRS. Sequential green-based extraction processes applied to recover antioxidant extracts from pink pepper fruits. J Supercrit Fluids 2020; 166: 105034.
[http://dx.doi.org/10.1016/j.supflu.2020.105034]
[29]
Tinello F, Lante A. Accelerated storage conditions effect on ginger- and turmeric-enriched soybean oils with comparing a synthetic antioxidant BHT. Lebensm Wiss Technol 2020; 131: 109797.
[http://dx.doi.org/10.1016/j.lwt.2020.109797]
[30]
Saranchina NV, Damzina AA, Ermolaev YE, Urazov EV, Gavrilenko NA, Gavrilenko MA. Determination of antioxidant capacity of medicinal tinctures using cuprac method involving Cu(II) neocuproine immobilized into polymethacrylate matrix. Spectrochim Acta A Mol Biomol Spectrosc 2020; 240: 118581.
[http://dx.doi.org/10.1016/j.saa.2020.118581] [PMID: 32554138]
[31]
Arnaud J, Bost M, Vitoux D, et al. Effect of low dose antioxidant vitamin and trace element supplementation on the urinary concentrations of thromboxane and prostacyclin metabolites. J Am Coll Nutr 2007; 26(5): 405-11.
[http://dx.doi.org/10.1080/07315724.2007.10719629] [PMID: 17914127]
[32]
Zhang X, Liu Q, Chen Z, Zuo X. Colorimetric sensor array for accurate detection and identification of antioxidants based on metal ions as sensor receptors. Talanta 2020; 215: 120935.
[http://dx.doi.org/10.1016/j.talanta.2020.120935] [PMID: 32312471]
[33]
Birinci Y, Niazi JH, Aktay-Çetin O, Basaga H. Quercetin in the form of a nano-antioxidant (QTiO2) provides stabilization of quercetin and maximizes its antioxidant capacity in the mouse fibroblast model. Enzyme Microb Technol 2020; 138: 109559.
[http://dx.doi.org/10.1016/j.enzmictec.2020.109559] [PMID: 32527528]
[34]
Jaberie H, Momeni S, Nabipour I. Total antioxidant capacity assessment by a development of an antioxidant assay based on green synthesized MnO2nanosheets. Microchem J 2020; 157: 104908.
[http://dx.doi.org/10.1016/j.microc.2020.104908]
[35]
Ran L, Chi Y, Huang Y, He Q, Ren Y. Synergistic antioxidant effect of glutathione and edible phenolic acids and improvement of the activity protection by coencapsulation into chitosan-coated liposomes. Lebensm Wiss Technol 2020; 127: 109409.
[http://dx.doi.org/10.1016/j.lwt.2020.109409]
[36]
Ibrahim TA, El-Hefnawy HM, El-Hela AA. Antioxidant potential and phenolic acid content of certain cucurbitaceous plants cultivated in Egypt. Nat Prod Res 2010; 24(16): 1537-45.
[http://dx.doi.org/10.1080/14786419.2010.489049] [PMID: 20835955]
[37]
Liu L, Zhao Y, Han W, Chen T, Hou G, Tong X. Protective effect of antioxidant on renal damage caused by doxorubicin chemotherapy in mice with hepatic cancer. Asian Pac J Trop Med 2016; 9(11): 1101-4.
[http://dx.doi.org/10.1016/j.apjtm.2016.08.003] [PMID: 27890372]
[38]
Ündeğer Ü, Başaran A, Degen GH, Başaran N. Antioxidant activities of major thyme ingredients and lack of (oxidative) DNA damage in V79 Chinese hamster lung fibroblast cells at low levels of carvacrol and thymol. Food Chem Toxicol 2009; 47(8): 2037-43.
[http://dx.doi.org/10.1016/j.fct.2009.05.020] [PMID: 19477215]
[39]
Lu M, Yuan B, Zeng M, Chen J. Antioxidant capacity and major phenolic compounds of spices commonly consumed in China. Food Res Int 2011; 44(2): 530-6.
[http://dx.doi.org/10.1016/j.foodres.2010.10.055]
[40]
West IC. Radicals and oxidative stress in diabetes. Diabet Med 2000; 17(3): 171-80.
[http://dx.doi.org/10.1046/j.1464-5491.2000.00259.x] [PMID: 10784220]
[41]
Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PIH Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J 2016; 473(24): 4527-50.
[http://dx.doi.org/10.1042/BCJ20160503C] [PMID: 27941030]
[42]
Ziegler D, Nowak H, Kempler P, Vargha P, Low PA. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: A meta-analysis. Diabet Med 2004; 21(2): 114-21.
[http://dx.doi.org/10.1111/j.1464-5491.2004.01109.x] [PMID: 14984445]
[43]
Song Y, Cook NR, Albert CM, Van Denburgh M, Manson JE. Effects of vitamins C and E and β-carotene on the risk of type 2 diabetes in women at high risk of cardiovascular disease: A randomized controlled trial. Am J Clin Nutr 2009; 90(2): 429-37.
[http://dx.doi.org/10.3945/ajcn.2009.27491] [PMID: 19491386]
[44]
Szkudlinska MA, von Frankenberg AD, Utzschneider KM. The antioxidant N-Acetylcysteine does not improve glucose tolerance or β-cell function in type 2 diabetes. J Diabetes Complications 2016; 30(4): 618-22.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.02.003] [PMID: 26922582]
[45]
Godic A, Poljšak B, Adamic M, Dahmane R. The role of antioxidants in skin cancer prevention and treatment. Oxid Med Cell Longev 2014; 2014(5): 1-6.
[http://dx.doi.org/10.1155/2014/860479] [PMID: 24790705]
[46]
Ma J, Zhang Q, Chen S, et al. Mitochondrial dysfunction promotes breast cancer cell migration and invasion through HIF1α accumulation via increased production of reactive oxygen species. PLoS One 2013; 8(7): e69485.
[http://dx.doi.org/10.1371/journal.pone.0069485] [PMID: 23922721]
[47]
Rao AV, Agarwal S. Role of antioxidant lycopene in cancer and heart disease. J Am Coll Nutr 2000; 19(5): 563-9.
[http://dx.doi.org/10.1080/07315724.2000.10718953] [PMID: 11022869]
[48]
Borrás C, Gómez-Cabrera MC, Viña J. The dual role of p53: DNA protection and antioxidant. Free Radic Res 2011; 45(6): 643-52.
[http://dx.doi.org/10.3109/10715762.2011.571685] [PMID: 21452930]
[49]
Prasad KN. Simultaneous activation of Nrf2 and elevation of dietary and endogenous antioxidant chemicals for cancer prevention in humans. J Am Coll Nutr 2016; 35(2): 175-84.
[http://dx.doi.org/10.1080/07315724.2014.1003419] [PMID: 26151600]
[50]
Dastmalchi N, Baradaran B, Latifi-Navid S, et al. Antioxidants with two faces toward cancer. Life Sci 2020; 258: 118186.
[http://dx.doi.org/10.1016/j.lfs.2020.118186] [PMID: 32768586]
[51]
Erdoğan MK, Geçibesler İH, Behçet L. Chemical constituents, antioxidant, antiproliferative and apoptotic effects of a new endemic Boraginaceae species: Paracaryum bingoelianum. Results in Chem 2020; 2: 100032.
[http://dx.doi.org/10.1016/j.rechem.2020.100032]
[52]
Fu L, Wei J, Gao Y, Chen R. Antioxidant and antitumoral activities of isolated macamide and macaene fractions from Lepidium meyenii (Maca). Talanta 2020; 221: 121635.
[http://dx.doi.org/10.1016/j.talanta.2020.121635] [PMID: 33076155]
[53]
Meng DF, Guo LL, Peng LX, et al. Antioxidants suppress radiation-induced apoptosis via inhibiting MAPK pathway in nasopharyngeal carcinoma cells. Biochem Biophys Res Commun 2020; 527(3): 770-7.
[http://dx.doi.org/10.1016/j.bbrc.2020.04.093] [PMID: 32446561]
[54]
Shirinzadeh H, Neuhaus E, Ince EE, Tascioglu AA, Gurer-Orhan H, Suzen S. New indole-7-aldehyde derivatives as melatonin analogues; synthesis and screening their antioxidant and anticancer potential. Bioorg Chem 2020; 104: 104219.
[http://dx.doi.org/10.1016/j.bioorg.2020.104219] [PMID: 32916391]
[55]
Anderson JW, Gowri MS, Turner J, et al. Antioxidant supplementation effects on low-density lipoprotein oxidation for individuals with type 2 diabetes mellitus. J Am Coll Nutr 1999; 18(5): 451-61.
[http://dx.doi.org/10.1080/07315724.1999.10718883] [PMID: 10511327]
[56]
Shankar P, Kumar V, Rao N. Evaluation of antidiabetic activity of Ginkgo biloba in streptozotocin induced diabetic rats. Iran J Pharmacol Ther 2005; 4(1): 16-9.
[57]
Khajehdehi P. Turmeric: Reemerging of a neglected Asian traditional remedy. J Nephropathol 2012; 1(1): 17-22.
[http://dx.doi.org/10.5812/jnp.5] [PMID: 24475382]
[58]
Nasri H, Rafieian-Kopaei M. Metformin and diabetic kidney disease: A mini-review on recent findings. Iran J Pediatr 2014; 24(5): 565-8.
[PMID: 25793062]
[59]
Rahimi-Madiseh M, Bahmani M, Karimian P, Rafieian-kopaei M. Herbalism in Iran: A systematic review. Der Pharma Chem 2016; 8(2): 36-42.
[60]
Parthasarathy L, Khadilkar V, Chiplonkar S, Khadilkar A. Effect of antioxidant supplementation on total antioxidant status in Indian children with type 1 diabetes. J Diet Suppl 2019; 16(4): 390-400.
[http://dx.doi.org/10.1080/19390211.2018.1470123] [PMID: 29958027]
[61]
Franco RR, Mota AVH, Ribeiro ZLF, et al. Antidiabetic potential of Bauhinia forficata Link leaves: A non-cytotoxic source of lipase and glycoside hydrolases inhibitors and molecules with antioxidant and antiglycation properties. Biomed Pharmacother 2020; 123: 109798.
[http://dx.doi.org/10.1016/j.biopha.2019.109798] [PMID: 31877553]
[62]
Sun C, Liu Y, Zhan L, et al. Anti-diabetic effects of natural antioxidants from fruits. Trends Food Sci Technol 2021; 117: 3-14.
[http://dx.doi.org/10.1016/j.tifs.2020.07.024]
[63]
Stanner SA, Hughes J, Kelly CNM, Buttriss J. A review of the epidemiological evidence for the ‘antioxidant hypothesis’. Public Health Nutr 2004; 7(3): 407-22.
[http://dx.doi.org/10.1079/PHN2003543] [PMID: 15153272]
[64]
Xia Z, Liu M, Wu Y, et al. N-acetylcysteine attenuates TNF-α-induced human vascular endothelial cell apoptosis and restores eNOS expression. Eur J Pharmacol 2006; 550(1-3): 134-42.
[http://dx.doi.org/10.1016/j.ejphar.2006.08.044] [PMID: 17026986]
[65]
Bonello S, Zähringer C. BelAiba RS, et al. Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol 2007; 27(4): 755-61.
[http://dx.doi.org/10.1161/01.ATV.0000258979.92828.bc] [PMID: 17272744]
[66]
Ozkanlar S, Akcay F. Antioxidant vitamins in atherosclerosis--animal experiments and clinical studies. Adv Clin Exp Med 2012; 21(1): 115-23.
[PMID: 23214308]
[67]
Maiolino G, Rossitto G, Caielli P, Bisogni V, Rossi GP, Calò LA. The role of oxidized low-density lipoproteins in atherosclerosis: The myths and the facts. Mediators Inflamm 2013; 2013: 1-13.
[http://dx.doi.org/10.1155/2013/714653] [PMID: 24222937]
[68]
Bagherifard A, Amini KA, Yahyazadeh H, et al. The value of serum total oxidant to the antioxidant ratio as a biomarker of knee osteoarthritis. Clin Nutr ESPEN 2020; 38: 118-23.
[http://dx.doi.org/10.1016/j.clnesp.2020.05.019] [PMID: 32690145]
[69]
Huges MCB, Williams GM, Pageon H, Foutanier A, Green AC. Dietary antioxidant capacity and skin photoaging: A 15-year longitudinal study. J Invest Dermatol 2020; 141(4S): 1111-8.
[http://dx.doi.org/10.106/j.jid.2020.06.026] [PMID: 32682911]
[70]
Murugan M, Rajendran K, Velmurugan T, Muthu S, Gundappa M, Thangavel S. Antagonistic and antioxidant potencies of Centrosema pubescens benth extracts against nosocomial infection pathogens. Biocatal Agric Biotechnol 2020; 29: 101776.
[http://dx.doi.org/10.1016/j.bcab.2020.101776]
[71]
Avila-Nava A, Medina-Vera I, Rodriguez-Hernandez P, et al. Oxalate content and antioxidant activity of different ethnic foods. J Ren Nutr 2021; 31(1): 73-9.
[http://dx.doi.org/10.1053/j.jrn.2020.04.006] [PMID: 32709427]
[72]
Balaji S, Saravanan R, Kapilan N. Influence of propyl gallate antioxidant on performance and emissions of a compression ignition engine fueled with Madhuca indica B20 ester blends. Energt Source Part A: Recov Util Environ Effects 2019; 43(18): 2197-209.
[http://dx.doi.org/10.1080/15567036.2019.1644396]
[73]
Jeyakumar N, Narayanasamy B, Balasubramanian D, Viswanathan K. Characterization and effect of Moringa Oleifera Lam. antioxidant additive on the storage stability of Jatropha biodiesel. Fuel 2020; 281: 118614.
[http://dx.doi.org/10.1016/j.fuel.2020.118614]
[74]
Kerkel F, Brock D, Touraud D, Kunz W. Stabilisation of biofuels with hydrophilic, natural antioxidants solubilised by glycerol derivatives. Fuel 2021; 284: 119055.
[http://dx.doi.org/10.1016/j.fuel.2020.119055]
[75]
Mirshafiey A, Mohsenzadegan M. Antioxidant therapy in multiple sclerosis. Immunopharmacol Immunotoxicol 2009; 31(1): 13-29.
[http://dx.doi.org/10.1080/08923970802331943] [PMID: 18763202]
[76]
Gohari AR, Hajimehdipoor H, Saeidnia S, Ajani Y, Hadjiakhoondi A. Antioxidant activity of some medicinal species using FRAP assay. Faslnamah-i Giyahan-i Daruyi 2011; 10(37): 54-60.
[77]
Pan X, Liu X, Zhao H, Wu B, Liu G. Antioxidant, anti-inflammatory and neuroprotective effect of kaempferol on rotenone-induced Parkinson’s disease model of rats and SH-S5Y5 cells by preventing loss of tyrosine hydroxylase. J Funct Foods 2020; 74: 104140.
[http://dx.doi.org/10.1016/j.jff.2020.104140]
[78]
Silva C, Pinto M, Fernandes C, Benfeito S, Borges F. Antioxidant therapy and neurodegenerative disorders: Lessons from clinical trials. Syst Med 2021; 2: 97-110.
[79]
Canakçi CF, Ciçek Y, Canakçi V. Reactive oxygen species and human inflammatory periodontal diseases. Biochemistry 2005; 70(6): 619-28.
[http://dx.doi.org/10.1007/s10541-005-0161-9] [PMID: 16038603]
[80]
Carnelio S, Khan SA, Rodrigues G. Definite, probable or dubious: Antioxidants trilogy in clinical dentistry. Br Dent J 2008; 204(1): 29-32.
[http://dx.doi.org/10.1038/bdj.2007.1186] [PMID: 18192996]
[81]
Miricescu D, Greabu M, Totan A, Didilescu A, Radulescu R. The antioxidant potential of saliva: Clinical significance in oral diseases. Ther Pharmacol Clin Toxicol 2011; 15(2): 139-43.
[82]
Kumar G, Jalaluddin M, Rout P, Mohanty R, Dileep CL. Emerging trends of herbal care in dentistry. J Clin Diagn Res 2013; 7(8): 1827-9.
[PMID: 24086929]
[83]
Parthiban S, Arnold J, Shankarram V, Kumar T, Kadhiresan R. Antioxidants in vitro is it a need for oral precancerous lesion. J Int Oral Health 2016; 8: 220-3.
[84]
Xu DP, Li Y, Meng X, et al. Natural antioxidants in foods and medicinal plants: Extraction, assessment and resources. Int J Mol Sci 2017; 18(1): 96.
[http://dx.doi.org/10.3390/ijms18010096] [PMID: 28067795]
[85]
Ara N, Nur H. In vitro antioxidant activity of methanolic leaves and flowers of Lippia alba. Res J Med Med Sci 2009; 4(1): 107-10.
[86]
Sharma OP, Bhat TK. DPPH antioxidant assay revisited. Food Chem 2009; 113(4): 1202-5.
[http://dx.doi.org/10.1016/j.foodchem.2008.08.008]
[87]
Blasa M, Candiracci M, Accorsi A, Piacentini MP, Albertini MC, Piatti E. Raw Millefiori honey is packed full of antioxidants. Food Chem 2006; 97(2): 217-22.
[http://dx.doi.org/10.1016/j.foodchem.2005.03.039]
[88]
Vichitphan S, Vichitphanl K. Flavonoid content Lavonoid content and antioxidant activity of Kaempferia parviflora wine. Kmttl Sci Tech J 2007; 7: 97-105.
[89]
Jayasri MA, Mathew L, Radha AA. A report on the antioxidant activity of leaves and rhizomes of Costus pictms. Int J Integr Biol 2009; 5(1): 1-7.
[90]
Rach PR, Patel SR. In vitro evaluation of antioxidant in vitro evaluation of antioxidant activity of Gymnema sylvestre leaf extract. Plant Biol 2009; 54(2): 141-8.
[91]
Shukla S, Mehta A, John J, Singh S, Mehta P, Vyas SP. Antioxidant activity and total phenolic content of ethanolic extract of Caesalpinia bonducella seeds. Food Chem Toxicol 2009; 47(8): 1848-51.
[http://dx.doi.org/10.1016/j.fct.2009.04.040] [PMID: 19422871]
[92]
Agrawal SS, Talele Gokul S. Free radical scavenging activity of Capparis zeylanica, medicinal plants. Int J Phytomed Related Ind 2009; 1(2): 405-25.
[93]
Balakrishnam N, Panda AB, Raj NR, Shrivastava A, Prathani R. The evaluation of nitric oxide scavenging activity of Acalypha Indica Liin root. Asian J Res Chem 2009; 2(2): 148-50.
[94]
Payet B, Shum CSA, Smadja J. Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: Determination of their polyphenolic and volatile constituents. J Agric Food Chem 2005; 53(26): 10074-9.
[http://dx.doi.org/10.1021/jf0517703] [PMID: 16366697]
[95]
Teow CC, Truong VD, McFeeters RF, Thompson RL, Pecota KV, Yencho GC. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem 2007; 103(3): 829-38.
[http://dx.doi.org/10.1016/j.foodchem.2006.09.033]
[96]
Asghar MN, Ullah KI. Evaluation of antioxidant activity using an improved DMBD radical action decolorization assay. Acta Chim Slov 2007; 54(2): 295-300.
[97]
Ehlenfeldt MK, Prior RL. Oxygen Radical Absorbance Capacity (ORAC) and phenolic and anthocyanin concentrations in fruit and leaf tissues of highbush blueberry. J Agric Food Chem 2001; 49(5): 2222-7.
[http://dx.doi.org/10.1021/jf0013656] [PMID: 11368580]
[98]
Xu BJ, Yuan SH, Chang SKC. Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. J Food Sci 2007; 72(2): S167-77.
[http://dx.doi.org/10.1111/j.1750-3841.2006.00261.x] [PMID: 17995859]
[99]
Kadifkova PT, Kulevanova S, Stefova M. In vitro antioxidant activity of some Teucrium species (Lamiaceae). Acta Pharm 2005; 55(2): 207-14.
[PMID: 16179134]
[100]
Zahin M, Aqil A. The in vitro antioxidant activity and total phenolic content of four Indian medicinal plants. Int J Pharm Pharm Sci 2009; 1: 88-95.
[101]
Shahrajabian MH, Sun W, Cheng Q. Traditional herbal medicinefor the prevention and treatment of cold and flu in the autumn of 2020, overlapped with COVID-19. Nat Prod Commun 2020; 15(8): 1934578X2095143..
[http://dx.doi.org/10.1177/1934578X20951431]
[102]
Shahrajabian MH, Sun W, Cheng Q. Product of natural evolution (SARS, MERS and SARS-CoV-2); deadly diseases, from SARS to SARS-CoV-2. Hum Vaccin Immunother 2020; 17(1): 62-83.
[http://dx.doi.org/10.1080/21645515.2020.1797369]
[103]
Shahrajabian MH, Sun W, Shen H, Cheng Q. Chinese herbal medicine for SARS and SARS-CoV-2 treatment and prevention, encouraging using herbal medicine for COVID-19 outbreak. Acta Agric Scand B Soil Plant Sci 2020; 70(5): 437-43.
[http://dx.doi.org/10.1080/09064710.2020.1763448]
[104]
Shahrajabian MH, Sun W, Cheng Q. Chinese star anise (Illicium verum) and pyrethrum (Chrysanthemum cinerariifolium) as natural alternatives for organic farming and health care- A review. Aust J Crop Sci 2020; 14(3): 517-23.
[http://dx.doi.org/10.21475/ajcs.20.14.03.p2209]
[105]
Ao C, Zhou W, Gao L, Dong B, Yu L. Prediction of antioxidant proteins using hybrid feature representation method and random forest. Genomics 2020; 112(6): 4666-74.
[http://dx.doi.org/10.1016/j.ygeno.2020.08.016] [PMID: 32818637]
[106]
Leite KCS, Garcia LF, Lobón GS, et al. Antioxidant activity evaluation of dried herbal extracts: An electroanalytical approach. Rev Bras Farmacogn 2018; 28(3): 325-32.
[http://dx.doi.org/10.1016/j.bjp.2018.04.004]
[107]
Abouseadaa HH, Atia MAM, Younis IY, et al. Gene-targeted molecular phylogeny, phytochemical profiling, and antioxidant activity of nine species belonging to family Cactaceae. Saudi J Biol Sci 2020; 27(6): 1649-58.
[http://dx.doi.org/10.1016/j.sjbs.2020.03.007] [PMID: 32489307]
[108]
Sharma K, Guleria S, Razdan VK, Babu V. Synergistic antioxidant and antimicrobial activities of essential oils of some selected medicinal plants in combination and with synthetic compounds. Ind Crops Prod 2020; 154: 112569.
[http://dx.doi.org/10.1016/j.indcrop.2020.112569]
[109]
Bhavaniramya S, Vishnupriya S, Al-Aboody MS, Vijayakumar R, Baskaran D. Role of essential oils in food safety: Antimicrobial and antioxidant applications. Grain Oil Sci Technol 2019; 2(2): 49-55.
[http://dx.doi.org/10.1016/j.gaost.2019.03.001]
[110]
Caldefie-Chézet F, Fusillier C, Jarde T, et al. Potential anti-inflammatory effects of Melaleuca alternifolia essential oil on human peripheral blood leukocytes. Phytother Res 2006; 20(5): 364-70.
[http://dx.doi.org/10.1002/ptr.1862] [PMID: 16619364]
[111]
Aruoma OI. Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc 1998; 75(2): 199-212.
[http://dx.doi.org/10.1007/s11746-998-0032-9] [PMID: 32287334]
[112]
Modzelewska A, Sur S, Kumar S, Khan S. Sesquiterpenes: Natural products that decrease cancer growth. Curr Med Chem Anticancer Agents 2005; 5(5): 477-99.
[http://dx.doi.org/10.2174/1568011054866973] [PMID: 16178774]
[113]
Noon J, Mills TB, Norton IT. The use of natural antioxidants to combat lipid oxidation in O/W emulsions. J Food Eng 2020; 281: 110006.
[http://dx.doi.org/10.1016/j.jfoodeng.2020.110006]
[114]
Aoussar N, Rhallabi N, Ait MR, et al. Seasonal variation of antioxidant activity and phenolic content of Pseudevernia furfuracea, Evernia prunastri and Ramalina farinacea from Morocco. J Saudi Soc Agric Sci 2020; 19(1): 1-6.
[http://dx.doi.org/10.1016/j.jssas.2018.03.004]
[115]
Crespo YA, Bravo SLR, Quintana YG, Cabrera AST, Bermúdez del Sol A, Mayancha DMG. Evaluation of the synergistic effects of antioxidant activity on mixtures of the essential oil from Apium graveolens L., Thymus vulgaris L. and Coriandrum sativum L. using simplex-lattice design. Heliyon 2019; 5(6): e01942.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01942] [PMID: 31245650]
[116]
Krüzselyi D, Móricz ÁM, Vetter J. Comparison of different morphological mushroom parts based on the antioxidant activity. Lebensm Wiss Technol 2020; 127: 109436.
[http://dx.doi.org/10.1016/j.lwt.2020.109436]
[117]
Ngoua-Meye-Misso RL, Sima-Obiang C, Ndong JDLC, Ondo JP, Ovono Abessolo F, Obame-Engonga LC. Phytochemical screening, antioxidant, anti-inflammatory and antiangiogenic activities of Lophira procera A. Chev. (Ochnaceae) medicinal plant from Gabon. Egyptian J Basic Appl Sci 2018; 5(1): 80-6.
[http://dx.doi.org/10.1016/j.ejbas.2017.11.003]
[118]
Bakasatae N, Kunworarath N, Takahashi Yupanqui C, Voravuthikunchai SP, Joycharat N. Bioactive components, antioxidant, and anti-inflammatory activities of the wood of Albizia myriophylla. Rev Bras Farmacogn 2018; 28(4): 444-50.
[http://dx.doi.org/10.1016/j.bjp.2018.05.010]
[119]
Kolawole AO, Olaleye MT, Ajele JO. Antioxidant properties and glutathione S-transferases inhibitory activity of Alchornea cordifolia leaf extract in acetaminophen-induced liver injury. Iran J Pharmacol Ther 2007; 6(1): 63-6.
[120]
Kumar S, Yadav M, Yadav A, Yadav JP. Impact of spatial and climatic conditions on phytochemical diversity and in vitro antioxidant activity of Indian Aloe vera (L.) Burm.f. S Afr J Bot 2017; 111: 50-9.
[http://dx.doi.org/10.1016/j.sajb.2017.03.012]
[121]
Kumar S, Yadav A, Yadav M, Yadav JP. Effect of climate change on phytochemical diversity, total phenolic content and in vitro antioxidant activity of Aloe vera (L.) Burm.f. BMC Res Notes 2017; 10(1): 60.
[http://dx.doi.org/10.1186/s13104-017-2385-3] [PMID: 28057050]
[122]
Benzidia B, Barbouchi M, Hammouch H, et al. Chemical composition and antioxidant activity of tannins extract from green rind of Aloe vera (L.) Burm. J King Saud Sci 2019; 31: 1175-81.
[123]
Adegbola PI, Adetutu A, Olaniyi TD. Antioxidant activity of Amaranthus species from the Amaranthaceae family- A review. A Afr. J Bot 2020; 133: 111-7.
[124]
Sánchez-López F, Robles-Olvera VJ, Hidalgo-Morales M, Tsopmo A. Characterization of Amaranthus hypochondriacus seed protein fractions, and their antioxidant activity after hydrolysis with lactic acid bacteria. J Cereal Sci 2020; 95: 103075.
[http://dx.doi.org/10.1016/j.jcs.2020.103075]
[125]
Zhang J, Li Z, Zhou L, Bao J, Xu J. The modifications of a fructan from Anemarrhena asphodeloides Bunge and their antioxidant activities. Int J Biol Macromol 2020; 164: 4435-43.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.024] [PMID: 32910965]
[126]
Song R, Liang T, Shen Q, et al. The optimization of production and characterization of antioxidant peptides from protein hydrolysates of Agrocybe aegerita. Lebensm Wiss Technol 2020; 134: 109987.
[http://dx.doi.org/10.1016/j.lwt.2020.109987]
[127]
Bandli JK, Heidari R. The evaluation of antioxidant activities and phenolic compounds in leaves and inflorescence of Artemisia dracunculus L. by HPLC. J Med Plant 2014; 13(51): 41-50.
[128]
Ghosh T, Maity TK, Das M, Bose A, Dash DK. In vitro antioxidant and hepatoprotective activity of ethanolic extract of Bacopa monnieri Linn aerial parts. Iran J Pharmacol Ther 2007; 6(1): 77-85.
[129]
Ahmed AF, Attia FAK, Liu Z, Li C, Wei J, Kang W. Antioxidant activity and total phenolic content of essential oils and extracts of sweet basil (Ocimum basilicum L.) plants. Food Sci Hum Wellness 2019; 8(3): 299-305.
[http://dx.doi.org/10.1016/j.fshw.2019.07.004]
[130]
Gupta M, Mazumder UK, Kumar TS, Gomathi P, Kumar RS. Antioxidant and hepatoprotective effects of Bauhinia racemosa against paracetamol and carbon tetrachloride induced liver damage in rats. Iran J Pharmacol Ther 2004; 3(1): 12-20.
[131]
Fernández NJ, Damiani N, Podaza EA, et al. Laurus nobilis L. Extracts against Paenibacillus larvae: Antimicrobial activity, antioxidant capacity, hygienic behavior and colony strength. Saudi J Biol Sci 2019; 26(5): 906-12.
[http://dx.doi.org/10.1016/j.sjbs.2018.04.008] [PMID: 31303818]
[132]
Suryawanshi JAS. An overview of Citrus aurantium used in treatment of various diseases. Afr J Plant Sci 2011; 7: 390-5.
[133]
Djenane D. Chemical profile, antibacterial and antioxidant activity of Algerian citrus essential oils and their application in Sardina pilchardus. Foods 2015; 4(4): 208-28.
[http://dx.doi.org/10.3390/foods4020208] [PMID: 28231199]
[134]
Değirmenci H, Erkurt H. Relationship between volatile components, antimicrobial and antioxidant properties of the essential oil, hydrosol and extracts of Citrus aurantium L. flowers. J Infect Public Health 2020; 13(1): 58-67.
[http://dx.doi.org/10.1016/j.jiph.2019.06.017] [PMID: 31296479]
[135]
Jitvaropas R, Saenthaweesuk S, Somparn N, Thuppia A, Sireeratawong S, Phoolcharoen W. Antioxidant, antimicrobial and wound healing activities of Boesenbergia rotunda Nat Prod Commun. 2012; 7(7): 1934578X1200700..
[http://dx.doi.org/10.1177/1934578X1200700727] [PMID: 22908579 ]
[136]
Fidelis M, de Oliveira SM, Sousa SJ, et al. From byproduct to a functional ingredient: Camu-camu (Myrciaria dubia) seed extract as an antioxidant agent in a yogurt model. J Dairy Sci 2020; 103(2): 1131-40.
[http://dx.doi.org/10.3168/jds.2019-17173] [PMID: 31759605]
[137]
Fırtın B, Yenipazar H, Saygün A, Şahin-Yeşilçubuk N. Encapsulation of chia seed oil with curcumin and investigation of release behaivour & antioxidant properties of microcapsules during in vitro digestion studies. Lebensm Wiss Technol 2020; 134: 109947.
[http://dx.doi.org/10.1016/j.lwt.2020.109947] [PMID: 32834119]
[138]
Özen T, Korkmaz H. Modulatory effect of Urtica dioica L. (Urticaceae) leaf extract on biotransformation enzyme systems, antioxidant enzymes, lactate dehydrogenase and lipid peroxidation in mice. Phytomedicine 2003; 10(5): 405-15.
[http://dx.doi.org/10.1078/0944-7113-00275] [PMID: 12834006]
[139]
Chahardehi AM, Ibrahim D, Sulaiman SF. Antioxidant activity and total phenloc content of some medicinal plants in Urticaceae family. J Applied Biol Sci 2009; 3(2): 27-31.
[140]
Yener Z, Celik I, Ilhan F, Bal R. Effects of Urtica dioica L. seed on lipid peroxidation, antioxidants and liver pathology in aflatoxin-induced tissue injury in rats. Food Chem Toxicol 2009; 47(2): 418-24.
[http://dx.doi.org/10.1016/j.fct.2008.11.031] [PMID: 19073231]
[141]
Güder A, Korkmaz H. Evaluation of in vitro antioxidant properties of hydroalcoholic solution extracts Urtica dioica L., Malva neglecta Wallr. and their mixture. Iran J Pharm Res 2012; 11(3): 913-23.
[PMID: 24250519]
[142]
Kukric Z, Topalic-Trivunovic L, Kukavica B, et al. Characterization of antioxidant and antimicrobial activities of nettle leaves (Urtica dioica L.). Acta Period Technol 2012; 43(43): 257-72.
[http://dx.doi.org/10.2298/APT1243257K]
[143]
Al Habsi AAS, Hossain MA. Isolation, structure characterization and prediction of antioxidant activity of two new compounds from the leaves of Dodonaea viscosa native to the Sultanate of Oman. Egyptian J Basic Appl Sci 2018; 5(2): 157-64.
[http://dx.doi.org/10.1016/j.ejbas.2018.04.004]
[144]
Hassan MM, Joshi N. Hydrothermal effects on physicochemical, sensory attributes, vitamin C, and antioxidant activity of frozen immature Dolichos lablab. Heliyon 2020; 6(1): e03136.
[http://dx.doi.org/10.1016/j.heliyon.2019.e03136] [PMID: 31909287]
[145]
Molan AL, De S, Meagher L. Antioxidant activity and polyphenol content of green tea flavan-3-ols and oligomeric proanthocyanidins. Int J Food Sci Nutr 2009; 60(6): 497-506.
[http://dx.doi.org/10.1080/09637480701781490] [PMID: 18608546]
[146]
de Oliveira SQ, Kappel VD, Pires VS, et al. Antioxidant properties of phenolic compounds from Baccharis articulata and B usterii Nat Prod Commun 2014; 9(7): 1934578X1400900.
[http://dx.doi.org/ 10.1177/1934578X1400900714] [PMID: 25230498 ]
[147]
Sonowal S, Bordoloi M, Gogoi R, Tamuly C. Antioxidant activity of flower buds of Musa spp. sold and consumed as vegetables. Int J Veg Sci 2016; 22(6): 564-9.
[http://dx.doi.org/10.1080/19315260.2015.1093574]
[148]
Amri FSA, Hossain MA. Comparison of total phenols, flavonoids and antioxidant potential of local and imported ripe bananas. Egyptian J Basic Appl Sci 2018; 5(4): 245-51.
[http://dx.doi.org/10.1016/j.ejbas.2018.09.002]
[149]
Raheel R, Saddiqe Z, Iram M, Afzal S. In vitro antimitotic, antiproliferative and antioxidant activity of stem bark extracts of Ficus benghalensis L. S Afr J Bot 2017; 111: 248-57.
[http://dx.doi.org/10.1016/j.sajb.2017.03.037]
[150]
Sabatini L, Fraternale D, Di Giacomo B, et al. Chemical composition, antioxidant, antimicrobial and anti-inflammatory activity of Prunus spinosa L. fruit ethanol extract. J Funct Foods 2020; 67: 103885.
[http://dx.doi.org/10.1016/j.jff.2020.103885]
[151]
Duan Y, Melo SFE, dos Reis AR, et al. Genotypic variation of flavonols and antioxidant capacity in broccoli. Food Chem 2010.
[http://dx.doi.org/10.1016/j.foodchem.2020.127997] [PMID: 33091988]
[152]
Guan Y, Hu W, Jiang A, et al. The effect of cutting style on the biosynthesis of phenolics and cellular antioxidant capacity in wounded broccoli. Food Res Int 2020; 137: 109565.
[http://dx.doi.org/10.1016/j.foodres.2020.109565] [PMID: 33233182]
[153]
Ma Q, Zhao Y, Wang HL, et al. Comparative study on the effects of buckwheat by roasting: Antioxidant properties, nutrients, pasting, and thermal properties. J Cereal Sci 2020; 95: 103041.
[http://dx.doi.org/10.1016/j.jcs.2020.103041]
[154]
Vidal-Gutiérrez M, Robles-Zepeda RE, Vilegas W, Gonzalez-Aguilar GA, Torres-Moreno H, López-Romero JC. Phenolic composition and antioxidant activity of Bursera microphylla A. Gray. Ind Crops Prod 2020; 152: 112412.
[http://dx.doi.org/10.1016/j.indcrop.2020.112412]
[155]
Nguyen TMH, Le HL, Ha TT, et al. Inhibitory effect on human platelet aggregation and coagulation and antioxidant activity of C. edulis Ker Gawl rhizome and its secondary metabolites. J Ethnopharmacol 2020; 263: 113136.
[http://dx.doi.org/10.1016/j.jep.2020.113136] [PMID: 32758576]
[156]
Rokosik E, Siger A. Rudzińska M, Dwiecki K. Antioxidant activity and synergism of canolol and α-tocopherol in rapeseed oil is affected by the presence of phospholipid association colloids. Lebensm Wiss Technol 2020; 133: 110095.
[http://dx.doi.org/10.1016/j.lwt.2020.110095]
[157]
Esterhuizen LL, Meyer R, Dubery IA. Antioxidant activity of metabolites from Coleonema album (Rutaceae) Nat Prod Commun 2006; 1(5): 1934578X0600100..
[http://dx.doi.org/10.1177/1934578X0600100505]
[158]
Muthukrishnan S, Kumar TS, Gangaprasad A, Maggi F, Rao MV. Phytochemical analysis, antioxidant and antimicrobial activity of wild and in vitro derived plants of Ceropegia thwaitesii Hook – An endemic species from Western Ghats, India. J Genet Eng Biotechnol 2018; 16(2): 621-30.
[http://dx.doi.org/10.1016/j.jgeb.2018.06.003] [PMID: 30733781]
[159]
Gao N, Sun X, Li D, et al. Optimization of anthocyanidins conversion using Chokeberry pomace rich in polymeric proanthocyanidins and cellular antioxidant activity analysis. Lebensm Wiss Technol 2020; 133: 109889.
[http://dx.doi.org/10.1016/j.lwt.2020.109889]
[160]
Murugesu S, Perumal V, Balan T, et al. The investigation of antioxidant and antidiabetic activities of Christia vespertilionis leaves extracts. S Afr J Bot 2020; 133: 227-35.
[http://dx.doi.org/10.1016/j.sajb.2020.07.015]
[161]
Muhammad DRA, Tuenter E, Patria GD, Foubert K, Pieters L, Dewettinck K. Phytochemical composition and antioxidant activity of Cinnamomum burmannii Blume extracts and their potential application in white chocolate. Food Chem 2021; 340: 127983.
[http://dx.doi.org/10.1016/j.foodchem.2020.127983] [PMID: 32919354]
[162]
Kar P, Dutta S, Chakraborty AK, et al. The antioxidant rich active principles of Clerodendrum sp. controls haloalkane xenobiotic induced hepatic damage in murine model. Saudi J Biol Sci 2019; 26(7): 1539-47.
[http://dx.doi.org/10.1016/j.sjbs.2018.12.006] [PMID: 31762623]
[163]
Miranda Pedroso TF, Bonamigo TR, da Silva J, et al. Chemical constituents of Cochlospermum regium (Schrank) Pilg. root and its antioxidant, antidiabetic, antiglycation, and anticholinesterase effects in Wistar rats. Biomed Pharmacother 2019; 111: 1383-92.
[http://dx.doi.org/10.1016/j.biopha.2019.01.005] [PMID: 30841453]
[164]
de Abreu Pinheiro F, Ferreira Elias L, de Jesus Filho M, et al. Arabica and Conilon coffee flowers: Bioactive compounds and antioxidant capacity under different processes. Food Chem 2021; 336: 127701.
[http://dx.doi.org/10.1016/j.foodchem.2020.127701] [PMID: 32781354]
[165]
Zhu Y, Yu X, Ge Q, et al. Antioxidant and anti-aging activities of polysaccharides from Cordyceps cicadae. Int J Biol Macromol 2020; 157: 394-400.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.04.163] [PMID: 32339570]
[166]
Atere TG, Akinloye OA, Ugbaja RN, Ojo DA, Dealtry G. In vitro antioxidant capacity and free radical scavenging evaluation of standardized extract of Costus afer leaf. Food Sci Hum Wellness 2018; 7(4): 266-72.
[http://dx.doi.org/10.1016/j.fshw.2018.09.004]
[167]
Goswami S, Das R, Ghosh P, Chakraborty T, Barman A, Ray S. Comparative antioxidant and antimicrobial potentials of leaf successive extract fractions of poison bulb, Crinum asiaticum L. Ind Crops Prod 2020; 154: 112667.
[http://dx.doi.org/10.1016/j.indcrop.2020.112667]
[168]
Paudel MR, Joshi PR, Chand K, et al. Antioxidant, anticancer and antimicrobial effects of In vitro developed protocorms of Dendrobium longicornu. Biotechnol Rep 2020; 28: e00527.
[http://dx.doi.org/10.1016/j.btre.2020.e00527] [PMID: 32983924]
[169]
Yang L, Liu S, Liu R, He J. Bioassay-guided isolation of cyclooxygenase-2 inhibitory and antioxidant phenylpropanoid derivatives from the roots of Dendropanax dentiger. Bioorg Chem 2020; 104: 104211.
[http://dx.doi.org/10.1016/j.bioorg.2020.104211] [PMID: 32920357]
[170]
Barak TH, Celep E. , İnan Y, Yeşilada E. In vitro human digestionsimulation of the bioavailability and antioxidant activity of phenolics from Sambucus ebulus L fruit extracts Food Biosci 2020; 37: 100711.
[http://dx.doi.org/10.1016/j.fbio.2020.100711]
[171]
Kiyekbayeva L, Mohamed NM, Yerkebulan O, et al. Phytochemical constituents and antioxidant activity of Echinops albicaulis. Nat Prod Res 2018; 32(10): 1203-7.
[http://dx.doi.org/10.1080/14786419.2017.1323213] [PMID: 28475371]
[172]
Haddad M, Zein S, Shahrour H, Hamadeh K, Karaki N, Kanaan H. Antioxidant activity of water-soluble polysaccharide extracted from Eucalyptus cultivated in Lebanon. Asian Pac J Trop Biomed 2017; 7(2): 157-60.
[http://dx.doi.org/10.1016/j.apjtb.2016.11.024]
[173]
Li W, Zhang X, He Z, et al. In vitro and in vivo antioxidant activity of eucalyptus leaf polyphenols extract and its effect on chicken meat quality and cecum microbiota. Food Res Int 2020; 136: 109302.
[http://dx.doi.org/10.1016/j.foodres.2020.109302] [PMID: 32846514]
[174]
Badaoui MI, Magid AA, Voutquenne-Nazabadioko L, et al. Antioxidant activity-guided isolation of constituents from Euphorbia gaditana Coss. and their antioxidant and tyrosinase inhibitory activities. Phytochem Lett 2020; 39: 99-104.
[http://dx.doi.org/10.1016/j.phytol.2020.07.012]
[175]
Acemi RK, Acemi A. Çakır M, Polat EG, Özen F. Preliminary screening the antioxidant potential of in vitro-propagated Amsonia orientalis: An example to sustainable use of rare medicinal plants in pharmaceutical studies. Sustain Chem Pharm 2020; 17: 100302.
[http://dx.doi.org/10.1016/j.scp.2020.100302]
[176]
Samaei SP, Ghorbani M, Tagliazucchi D, et al. Functional, nutritional, antioxidant, sensory properties and comparative peptidomic profile of faba bean (Vicia faba, L.) seed protein hydrolysates and fortified apple juice. Food Chem 2020; 330: 127120.
[http://dx.doi.org/10.1016/j.foodchem.2020.127120] [PMID: 32526646]
[177]
Abdellaoui M, Bouhlali ET, Kasrati A, El Rhaffari L. The effect of domestication on seed yield, essential oil yield and antioxidant activities of fennel seed (Foeniculum vulgare Mill) grown in Moroccan oasis. J Assoc Arab Uni Basic Appl Sci 2017; 24(1): 107-14.
[http://dx.doi.org/10.1016/j.jaubas.2017.06.005]
[178]
Ahmed AF, Shi M, Liu C, Kang W. Comparative analysis of antioxidant activities of essential oils and extracts of fennel (Foeniculum vulgare Mill.) seeds from Egypt and China. Food Sci Hum Wellness 2019; 8(1): 67-72.
[http://dx.doi.org/10.1016/j.fshw.2019.03.004]
[179]
Mukthamba P, Srinivasan K. Dietary fenugreek (Trigonella foenum-graecum) seeds and garlic (Allium sativum) alleviates oxidative stress in experimental myocardial infarction. Food Sci Hum Wellness 2017; 6(2): 77-87.
[http://dx.doi.org/10.1016/j.fshw.2017.04.001]
[180]
Baba WN, Tabasum Q, Muzzaffar S, et al. Some nutraceutical properties of fenugreek seeds and shoots (Trigonella foenum-graecum L.) from the high Himalayan region. Food Biosci 2018; 23: 31-7.
[http://dx.doi.org/10.1016/j.fbio.2018.02.009]
[181]
Akbari S, Abdurahman NH, Yunus RM, Alara OR, Abayomi OO. Extraction, characterization and antioxidant activity of fenugreek (Trigonella-Foenum Graecum) seed oil. Mater Sci Energy Technol 2019; 2(2): 349-55.
[http://dx.doi.org/10.1016/j.mset.2018.12.001]
[182]
Alkhalaf MI, Hussein RH, Hamza A. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi J Biol Sci 2020; 27(9): 2410-9.
[http://dx.doi.org/10.1016/j.sjbs.2020.05.005] [PMID: 32884424]
[183]
Viuda-Martos M, Sendra E, Sayas E, Pérez-Alvarez JA, Fernández-López J. Fig (Ficus carica) liquid co-products as new potentialfunctional ingredient: Physico-chemical and in vitro antioxidant properties. Nat Prod Commun 2015; 10(7): 1934578X1501000.
[http://dx.doi.org/10.1177/1934578X1501000721] [PMID: 26411015]
[184]
Lan W, Zhaojun Z, Zesheng Z. Characterization of antioxidant activity of extracts from Flos Lonicerae. Drug Dev Ind Pharm 2007; 33(8): 841-7.
[http://dx.doi.org/10.1080/03639040701378019] [PMID: 17729101]
[185]
Muhammad H, Qasim M, Ikram A, et al. Antioxidant and antimicrobial activities of Ixora coccinea root and quantification of phenolic compounds using HPLC. S Afr J Bot 2020; 135: 71-9.
[http://dx.doi.org/10.1016/j.sajb.2020.08.012]
[186]
Alqahtani FY, Aleanizy FS, Mahmoud AZ, et al. Chemical composition and antimicrobial, antioxidant, and anti-inflammatory activities of Lepidium sativum seed oil. Saudi J Biol Sci 2019; 26(5): 1089-92.
[http://dx.doi.org/10.1016/j.sjbs.2018.05.007] [PMID: 31303845]
[187]
Chen IN, Ng CC, Wang CY, Chang TL. Lactic fermentation and antioxidant activity of Zingiberaceae plants in Taiwan. Int J Food Sci Nutr 2009; 60(S2): 57-66.
[http://dx.doi.org/10.1080/09637480802375531] [PMID: 18946800]
[188]
Ali AMA, El-Nour MEM, Yagi SM. Total phenolic and flavonoid contents and antioxidant activity of ginger (Zingiber officinale Rosc.) rhizome, callus and callus treated with some elicitors. J Genet Eng Biotechnol 2018; 16(2): 677-82.
[http://dx.doi.org/10.1016/j.jgeb.2018.03.003] [PMID: 30733788]
[189]
An K, Zhao D, Wang Z, Wu J, Xu Y, Xiao G. Comparison of different drying methods on Chinese ginger (Zingiber officinale Roscoe) Changes in volatiles, chemical profile, antioxidant properties,and microstructure. Food Chem 2016; 197((Part B)): 1292-300.
[190]
Idris NA, Yasin HM, Usman A. Voltammetric and spectroscopic determination of polyphenols and antioxidants in ginger (Zingiber officinale Roscoe). Heliyon 2019; 5(5): e01717.
[http://dx.doi.org/10.1016/j.heliyon.2019.e01717] [PMID: 31193231]
[191]
Jiang B, Chen H, Zhao H, Wu W, Jin Y. Structural features and antioxidant behavior of lignins successively extracted from ginkgo shells (Ginkgo biloba L). Int J Biol Macromol 2020; 163: 694-701.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.07.027] [PMID: 32645494]
[192]
Saba E, Lee YY, Kim M, Kim SH, Hong SB, Rhee MH. A comparative study on immune-stimulatory and antioxidant activities of various types of ginseng extracts in murine and rodent models. J Ginseng Res 2018; 42(4): 577-84.
[http://dx.doi.org/10.1016/j.jgr.2018.07.004] [PMID: 30344431]
[193]
Kedage VV, Tilak JC, Dixit GB, Devasagayam TPA, Mhatre M. A study of antioxidant properties of some varieties of grapes (Vitis vinifera L.). Crit Rev Food Sci Nutr 2007; 47(2): 175-85.
[http://dx.doi.org/10.1080/10408390600634598] [PMID: 17364701]
[194]
Wang S, Amigo-Benavent M, Mateos R, Bravo L, Sarriá B. Effects of in vitro digestion and storage on the phenolic content and antioxidant capacity of a red grape pomace. Int J Food Sci Nutr 2017; 68(2): 188-200.
[http://dx.doi.org/10.1080/09637486.2016.1228099] [PMID: 27609024]
[195]
Sandoval G, Thenoux G, Molenaar AAA, Gonzalez M. The antioxidant effect of grape pomace in asphalt binder. Int J Pavement Eng 2019; 20(2): 163-71.
[http://dx.doi.org/10.1080/10298436.2017.1279483]
[196]
Rajakumari R, Volova T, Oluwafemi OS, Rajesh KS, Thomas S, Kalarikkal N. Grape seed extract-soluplus dispersion and its antioxidant activity. Drug Dev Ind Pharm 2020; 46(8): 1219-29.
[http://dx.doi.org/10.1080/03639045.2020.1788059] [PMID: 32643446]
[197]
Arteaga-Crespo Y, Radice M, Bravo-Sanchez LR, García-Quintana Y, Scalvenzi L. Optimisation of ultrasound-assisted extraction of phenolic antioxidants from Ilex guayusa Loes. leaves using response surface methodology. Heliyon 2020; 6(1): e03043.
[http://dx.doi.org/10.1016/j.heliyon.2019.e03043] [PMID: 31909247]
[198]
Tirillini B, Menghini L, Leporini L, Scanu N, Marino S, Pintore G. Antioxidant activity of methanol extract of Helichrysum foetidum Moench. Nat Prod Res 2013; 27(16): 1484-7.
[http://dx.doi.org/10.1080/14786419.2012.722085] [PMID: 22963343]
[199]
Gökbulut A, Orhan N, Deliorman OD. Phenolic compounds characterization, carbohydrate digestive enzyme inhibitory and antioxidant activities of Hieracium pannosum Boiss. S Afr J Bot 2017; 108: 387-92.
[http://dx.doi.org/10.1016/j.sajb.2016.08.021]
[200]
Vidya R, Masilla BRP, Saranya J, Eganathan P, Jithin MM, Kumar NPA. Antioxidant activities of wood and leaf extracts of Hopea erosa. J Biol Active Prod Nat 2013; 3(2): 14-160.
[201]
Du L, Li D, Zhang J, Du J, Luo Q, Xiong J. Elicitation of Lonicera japonica Thunb suspension cell for enhancement of secondary metabolites and antioxidant activity. Ind Crops Prod 2020; 156: 112877.
[http://dx.doi.org/10.1016/j.indcrop.2020.112877]
[202]
Takuli P, Khulbe K, Kumar P, Parki A, Syed A, Elgorban AM. Phytochemical profiling, antioxidant and antibacterial efficacy of a native Himalayan Fern: Woodwardia unigemmata (Makino) Nakai. Saudi J Biol Sci 2020; 27(8): 1961-7.
[http://dx.doi.org/10.1016/j.sjbs.2020.06.006] [PMID: 32714019]
[203]
Oboh G, Raddatz H, Henle T. Characterization of the antioxidant properties of hydrophilic and lipophilic extracts of Jute (Corchorus olitorius) leaf. Int J Food Sci Nutr 2009; 60(S2): 124-34.
[http://dx.doi.org/10.1080/09637480902824131] [PMID: 19391031]
[204]
Salleh WMNHW, Ahmad F, Yen KH, Sirat HM. Chemical compositions,antioxidant and antimicrobial activity of the essential oils of Piper officinarum (Piperaceae). Nat Prod Commun 2012; 7(12): 1934578X1200701.
[http://dx.doi.org/ 10.1177/1934578X1200701229] [PMID: 23413576]
[205]
Bouayed J, Piri K, Rammal H, et al. Comparative evaluation of the antioxidant potential of some Iranian medicinal plants. Food Chem 2007; 104(1): 364-8.
[http://dx.doi.org/10.1016/j.foodchem.2006.11.069]
[206]
Pande J, Chanda S. Determination of phytochemical profile and antioxidant efficacy of Lavendula bipinnata leaves collected during Magha Nakshatra days and Normal days using LC-QTOF-MS technique. J Pharm Biomed Anal 2020; 186: 113347.
[http://dx.doi.org/10.1016/j.jpba.2020.113347] [PMID: 32388222]
[207]
Sakulnarmrat K, Konczak I. Composition of native Australian herbs polyphenolic-rich fractions and in vitro inhibitory activities against key enzymes relevant to metabolic syndrome. Food Chem 2012; 134(2): 1011-9.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.217] [PMID: 23107721]
[208]
Sakulnarmrat K, Fenech M, Thomas P, Konczak I. Cytoprotective and pro-apoptotic activities of native Australian herbs polyphenolic-rich extracts. Food Chem 2013; 136(1): 9-17.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.089] [PMID: 23017386]
[209]
Saifullah M, McCullum R, McCluskey A, Vuong Q. Effects of different drying methods on extractable phenolic compounds and antioxidant properties from Lemon myrtle dried leaves. Heliyon 2019; 5(12): e03044.
[http://dx.doi.org/10.1016/j.heliyon.2019.e03044] [PMID: 31890968]
[210]
Zhou W, Lv T, Hu Y, et al. Effect of nitrogen limitation on antioxidant qualities is highly associated with genotypes of lettuce (Lactuca sativa L.). Pedosphere 2020; 30(3): 414-25.
[http://dx.doi.org/10.1016/S1002-0160(19)60833-7]
[211]
Wang N, Pei D, Yu P, et al. Strategy for the separation of strongly polar antioxidant compounds from Lycium barbarum L. via high-speed counter-current chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1153: 122268.
[http://dx.doi.org/10.1016/j.jchromb.2020.122268] [PMID: 32739789]
[212]
Thomasson MJ, Diego-Taboada A, Barrier S, et al. Sporopollenin exine capsules (SpECs) derived from Lycopodium clavatum provide practical antioxidant properties by retarding rancidification of an ω-3 oil. Ind Crops Prod 2020; 154: 112714.
[http://dx.doi.org/10.1016/j.indcrop.2020.112714]
[213]
Lobo FA, Nascimento MA, Domingues JR, et al. Foam mat drying of Tommy Atkins mango: Effects of air temperature and concentrations of soy lecithin and carboxymethylcellulose on phenolic composition, mangiferin, and antioxidant capacity. Food Chem 2017; 221: 258-66.
[http://dx.doi.org/10.1016/j.foodchem.2016.10.080] [PMID: 27979201]
[214]
Ling JKU, Chan YS, Nandong J, Chin SF, Ho BK. Formulation of choline chloride/ascorbic acid natural deep eutectic solvent: Characterization, solubilization capacity and antioxidant property. Lebensm Wiss Technol 2020; 133: 110096.
[http://dx.doi.org/10.1016/j.lwt.2020.110096]
[215]
Nndwammbi M, Ligavha-Mbelengwa MH, Anokwuru CP, Ramaite IDI. The effects of seasonal debarking on physical structure, polyphenolic content and antibacterial and antioxidant activities of Sclerocarya birrea in the Nylsvley nature reserve. S Afr J Bot 2018; 118: 138-43.
[http://dx.doi.org/10.1016/j.sajb.2018.06.018]
[216]
Mohammad NA, Abang Zaidel DN, Muhamad II, Abdul Hamid M, Yaakob H, Mohd Jusoh YM. Optimization of the antioxidant-rich xanthone extract from mangosteen (Garcinia mangostana L.) pericarp via microwave-assisted extraction. Heliyon 2019; 5(10): e02571.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02571] [PMID: 31667409]
[217]
Sarikurkcu C, Zengin G, Oskay M, Uysal S, Ceylan R, Aktumsek A. Composition, antioxidant, antimicrobial and enzyme inhibition activities of two Origanum vulgare subspecies (subsp. vulgare and subsp. hirtum) essential oils. Ind Crops Prod 2015; 70: 178-84.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.030]
[218]
Akinloye DI, Sunmonu TO, Omotainse SO, Balogun EA. Evaluation of antioxidant potentials of Morinda morindoides leaf extract. Toxicol Environ Chem 2015; 97(2): 155-69.
[http://dx.doi.org/10.1080/02772248.2015.1031667]
[219]
Aju BY, Rajalakshmi R, Mini S. Protective role of Moringa oleifera leaf extract on cardiac antioxidant status and lipid peroxidation in streptozotocin induced diabetic rats. Heliyon 2019; 5(12): e02935.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02935] [PMID: 31872118]
[220]
Harun H, Daud A, Hadju V, et al. Antioxidant effect of Moringa oleifera leaves in hemoglobin oxidation compare with vitamin C. Enferm Clin 2020; 30(4): 18-21.
[http://dx.doi.org/10.1016/j.enfcli.2019.10.033]
[221]
Kekana TW, Marume U, Muya MC, Nherera-Chokuda FV. Periparturient antioxidant enzymes, haematological profile and milk production of dairy cows supplemented with Moringa oleifera leaf meal. Anim Feed Sci Technol 2020; 268: 114606.
[http://dx.doi.org/10.1016/j.anifeedsci.2020.114606]
[222]
Sargowo D, Ovianti N, Susilowati E, et al. The role of polysaccharide peptide of Ganoderma lucidum as a potent antioxidant against atherosclerosis in high risk and stable angina patients. Indian Heart J 2018; 70(5): 608-14.
[http://dx.doi.org/10.1016/j.ihj.2017.12.007] [PMID: 30392496]
[223]
Thummajitsakul S, Samaikam S, Tacha S, Silprasit K. Study on FTIR spectroscopy, total phenolic content, antioxidant activity and anti-amylase activity of extracts and different tea forms of Garcinia schomburgkiana leaves. Lebensm Wiss Technol 2020; 134: 110005.
[http://dx.doi.org/10.1016/j.lwt.2020.110005]
[224]
Li M, Chen X, Deng J, et al. Effect of thermal processing on free and bound phenolic compounds and antioxidant activities of hawthorn. Food Chem 2020; 332: 127429.
[http://dx.doi.org/10.1016/j.foodchem.2020.127429] [PMID: 32645678]
[225]
Ajiboye TO, Salawu NA, Yakubu MT, Oladiji AT, Akanji MA, Okogun JI. Antioxidant and drug detoxification potentials of Hibiscus sabdariffa anthocyanin extract. Drug Chem Toxicol 2011; 34(2): 109-15.
[http://dx.doi.org/10.3109/01480545.2010.536767] [PMID: 21314460]
[226]
Guthrie F, Wang Y, Neeve N, Quek SY, Mohammadi K, Baroutian S. Recovery of phenolic antioxidants from green kiwifruit peel using subcritical water extraction. Food Bioprod Process 2020; 122: 136-44.
[http://dx.doi.org/10.1016/j.fbp.2020.05.002]
[227]
Jiang Y, Ng TB, Wang CR, et al. First isolation of tryptophan from edible lotus (Nelumbo nucifera Gaertn) rhizomes and demonstration of its antioxidant effects. Int J Food Sci Nutr 2010; 61(4): 346-56.
[http://dx.doi.org/10.3109/09637480903427913] [PMID: 20465432]
[228]
Wathoni N, Yuan Shan C, Yi Shan W, et al. Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind. Heliyon 2019; 5(8): e02299.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02299] [PMID: 31453406]
[229]
Dutta S, Ray S. Evaluation of in vitro free radical scavenging activity of leaf extract fractions of Manilkara hexandra (Roxb) Dubard in relation to total phenolic contents. Int J Pharm Pharm Sci 2015; 7(10): 296-301.
[230]
Dutta S, Ray S. Comparative assessment of total phenolic content and in vitro antioxidant activities of bark and leaf methanolic extracts of Manilkara hexandra (Roxb.) Dubard. J King Saud Univ Sci 2020; 32(1): 643-7.
[http://dx.doi.org/10.1016/j.jksus.2018.09.015]
[231]
Chick CN, Misawa-Suzuki T, Suzuki Y, Usuki T. Preparation and antioxidant study of silver nanoparticles of Microsorum pteropus methanol extract. Bioorg Med Chem Lett 2020; 30(22): 127526.
[http://dx.doi.org/10.1016/j.bmcl.2020.127526] [PMID: 32882415]
[232]
Wang F, Long S, Zhang J, et al. Antioxidant activities and anti-proliferative effects of Moringa oleifera L. extracts with head and neck cancer. Food Biosci 2020; 37: 100691.
[http://dx.doi.org/10.1016/j.fbio.2020.100691]
[233]
Sangsopha J, Moongngarm A, Johns NP, Grigg NP. Optimization of pasteurized milk with soymilk powder and mulberry leaf tea based on melatonin, bioactive compounds and antioxidant activity using response surface methodology. Heliyon 2019; 5(11): e02939.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02939] [PMID: 31844777]
[234]
Krishna H, Singh D, Singh RS, Kumar L, Sharma BD, Saroj PL. Morphological and antioxidant characteristics of mulberry (Morus spp.) genotypes. J Saudi Soc Agric Sci 2020; 19(2): 136-45.
[http://dx.doi.org/10.1016/j.jssas.2018.08.002]
[235]
Yao XH, Shen YS, Hu RZ, et al. The antioxidant activity and composition of the seed oil of mulberry cultivars. Food Biosci 2020; 37: 100709.
[http://dx.doi.org/10.1016/j.fbio.2020.100709]
[236]
Keshari AK, Srivastava R, Singh P, Yadav VB, Nath G. Antioxidant and antibacterial activity of silver nanoparticles synthesized by Cestrum nocturnum. J Ayurveda Integr Med 2020; 11(1): 37-44.
[http://dx.doi.org/10.1016/j.jaim.2017.11.003] [PMID: 30120058]
[237]
Yakubu OF, Adebayo AH, Iweala EEJ, Adelani IB, Ishola TA, Zhang YJ. Anti-inflammatory and antioxidant activities of fractions and compound from Ricinodendron heudelotii (Baill.). Heliyon 2019; 5(11): e02779.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02779] [PMID: 31844713]
[238]
Gupta M, Mazumder UK, Thamilselvan V, et al. Potential hepatoprotective effect and antioxidant role of methanol extract of Oldenlandia umbellate in carbon tetrachloride induced hepatotoxicity in wistar rats. Iran J Pharmacol Ther 2007; 6(1): 5-9.
[239]
Arami S, Ahmadi A, Haeri SA. The radioprotective effects of Origanum vulgare extract against genotoxicity induced by (131)I in human blood lymphocyte. Cancer Biother Radiopharm 2013; 28(3): 201-6.
[http://dx.doi.org/10.1089/cbr.2012.1284] [PMID: 23413802]
[240]
Habibi E, Shokrzadeh M, Ahmadi A, Chabra A, Naghshvar F, Keshavarz-Maleki R. Genoprotective effects of Origanum vulgare ethanolic extract against cyclophosphamide-induced genotoxicity in mouse bone marrow cells. Pharm Biol 2015; 53(1): 92-7.
[http://dx.doi.org/10.3109/13880209.2014.910674] [PMID: 25519883]
[241]
Habibi E, Shokrzadeh M, Chabra A, Naghshvar F, Keshavarz-Maleki R, Ahmadi A. Protective effects of Origanum vulgare ethanol extract against cyclophosphamide-induced liver toxicity in mice. Pharm Biol 2015; 53(1): 10-5.
[http://dx.doi.org/10.3109/13880209.2014.908399] [PMID: 25026348]
[242]
Zengin G, Ferrante C, Orlando G, et al. Chemical profiling and pharmaco-toxicological activity of Origanum spiyleum extracts: Exploring for novel sources for potential therapeutic agents. J Food Biochem 2019; 43.
[243]
de Torre MP, Vizmanos JL, Cavero RY, Calvo MI. Improvement of antioxidant activity of oregano (Origanum vulgare L.) with an oral pharmaceutical form. Biomed Pharmacother 2020; 129: 110424.
[http://dx.doi.org/10.1016/j.biopha.2020.110424] [PMID: 32563980]
[244]
Sokmen A, Abdel-Baki AAS, Al-Malki ES, Al-Quraishy S, Abdel-Haleem HM. Constituents of essential oil of Origanum minutiflorum and its in vitro antioxidant, scolicidal and anticancer activities. J King Saud Univ Sci 2020; 32(4): 2377-82.
[http://dx.doi.org/10.1016/j.jksus.2020.03.018]
[245]
Liu Y, Li Y, Ke Y, et al. Processing of four different cooking methods of Oudemansiella radicata: Effects on in vitro bioaccessibility of nutrients and antioxidant activity. Food Chem 2021; 337: 128007.
[http://dx.doi.org/10.1016/j.foodchem.2020.128007] [PMID: 32919278]
[246]
Nipate SS, Tiwari AH. Antioxidant and immunomodulatory properties of Spilanthes oleracea with potential effect in chronic fatigue syndrome infirmity. J Ayurveda Integr Med 2020; 11(2): 124-30.
[http://dx.doi.org/10.1016/j.jaim.2017.08.008] [PMID: 30455072]
[247]
Zhang X, Li X, Su M, et al. A comparative UPLC-Q-TOF/MS-based metabolomics approach for distinguishing peach (Prunus persica (L.) Batsch) fruit cultivars with varying antioxidant activity. Food Res Int 2020; 137: 109531.
[http://dx.doi.org/10.1016/j.foodres.2020.109531] [PMID: 33233161]
[248]
Wee JH, Park KH. Isolation of 4-Hydroxycinnamic acid, 3-methoxy-4-hydroxycinnamic acid, and 3, 4-dihydroxybenzoic acid with antioxidative and antimicrobial activity from peanut (Arachis hypogaea). Food Sci Biotechnol 2001; 10(5): 84-9.
[249]
Wee JH, Moon JH, Eun JB, Chung JH, Kim YG, Park KH. Isolation and identification of antioxidants from peanut shells and the relationship between structure and antioxidant activity. Food Sci Biotechnol 2007; 16(1): 116-22.
[250]
Adhikari B, Dhungana SK, Waqas AM, Adhikari A, Kim ID, Shin DH. Antioxidant activities, polyphenol, flavonoid, and amino acid contents in peanut shell. J Saudi Soc Agric Sci 2019; 18(4): 437-42.
[http://dx.doi.org/10.1016/j.jssas.2018.02.004]
[251]
Edziri H, Mastouri M, Mahjoub MA, et al. Antibacterial, antiviral and antioxidant activities of aerial part extracts of Peganum harmala L. grown in Tunisia. Toxicol Environ Chem 2010; 92(7): 1283-92.
[http://dx.doi.org/10.1080/02772240903450736]
[252]
Gallia MC, Bachmeier E, Ferrari A, Queralt I, Mazzeo MA, Bongiovanni GA. Pehuén (Araucaria araucana) seed residues are a valuable source of natural antioxidants with nutraceutical, chemoprotective and metal corrosion-inhibiting properties. Bioorg Chem 2020; 104: 104175.
[http://dx.doi.org/10.1016/j.bioorg.2020.104175] [PMID: 32920353]
[253]
Biswas A, Bhattacharya A, Chattopadhyay A, Chakravarty A, Pal S. Antioxidants and antioxidant activity in green pungent peppers. Int J Veg Sci 2011; 17(3): 224-32.
[http://dx.doi.org/10.1080/19315260.2010.543451]
[254]
Barbouchi M, Elamrani K, El Idrissi M, Choukrad M. A comparativestudy on phytochemical screening, quantification of phenolic contents and antioxidant properties of different solvent extracts from various parts of Pistacia lentiscus L J King Saud Uni 2020; 32: 302-6.
[255]
Djebari S, Wrona M, Boudria A, et al. Study of bioactive volatile compounds from different parts of Pistacia lentiscus L. extracts and their antioxidant and antibacterial activities for new active packaging application. Food Control 2021; 120: 107514.
[http://dx.doi.org/10.1016/j.foodcont.2020.107514]
[256]
Fraga LN, Oliveira AKDS, Aragao BP, et al. Mass spectrometry characterization, antioxidant activity, and cytotoxicity of the peel and pulp extracts of Pitomba. Food Chem 2020.
[http://dx.doi.org/10.1016/j.foodchem.2020.127929] [PMID: 32920302]
[257]
Barbosa JRS, Freitas MM, Oliveira LC, et al. Obtaining extracts rich in antioxidant polysaccharides from the edible mushroom Pleurotus ostreatus using binary system with hot water and supercritical CO2. Food Chem 2020; 330: 127173.
[http://dx.doi.org/10.1016/j.foodchem.2020.127173] [PMID: 32569930]
[258]
Lee YH, Choo C, Waisundara VY. Antioxidant and starch hydrolase inhibitory properties of extracts of the antidiabetic herb Pterocarpus marsupium. Isr J Plant Sci 2016; 63(2): 124-33.
[http://dx.doi.org/10.1080/07929978.2015.1105477]
[259]
Chen Y, Wang Y, Xu L, et al. Ultrasound-assisted modified pectin from unripe fruit pomace of raspberry (Rubus chingii Hu): Structural characterization and antioxidant activities. Lebensm Wiss Technol 2020; 134: 110007.
[http://dx.doi.org/10.1016/j.lwt.2020.110007]
[260]
Boussahel S, Cacciola F, Dahamna S, et al. Flavonoid profile, antioxidant and antiglycation properties of Retama sphaerocarpa fruits extracts. Nat Prod Res 2018; 32(16): 1911-9.
[http://dx.doi.org/10.1080/14786419.2017.1356835] [PMID: 28738692]
[261]
Gözlekçi S, Saraçoglu O, Onursal E, Özgen M. Total phenolic distribution of juice, peel, and seed extracts of four pomegranate cultivars. Pharmacogn Mag 2011; 7(26): 161-4.
[http://dx.doi.org/10.4103/0973-1296.80681] [PMID: 21716925]
[262]
Kam A, Li KM, Razmovski-Naumovski V, Nammi S, Chan K, Li GQ. Variability of the polyphenolic content and antioxidant capacity of methanolic extracts of pomegranate peel. Nat Prod Commun 2013; 8(6): 1934578X1300800..
[http://dx.doi.org/10.1177/1934578X1300800607]
[263]
Desta M, Molla A, Yusuf Z. Characterization of physico-chemical properties and antioxidant activity of oil from seed, leaf and stem of purslane (Portulaca oleracea L.). Biotechnol Rep (Amst) 2020; 27: e00512.
[http://dx.doi.org/10.1016/j.btre.2020.e00512] [PMID: 32817842]
[264]
Gautam V, Sharma A, Arora S, et al. In-vitro antioxidant, antimutagenic and cancer cell growth inhibition activities of Rhododendron arboreum leaves and flowers. Saudi J Biol Sci 2020; 27(7): 1788-96.
[http://dx.doi.org/10.1016/j.sjbs.2020.01.030] [PMID: 32565697]
[265]
Dolek U, Gunes M, Genc N, Elmastas M. Total phenolic compound and antioxidant activity changes in rosehip (Rosa sp.) during ripening. J Agric Sci Technol 2018; 20: 817-28.
[266]
Belmokhtar Z, Harche MK. In vitro antioxidant activity of Retama monosperma (L.) Boiss. Nat Prod Res 2014; 28(24): 2324-9.
[http://dx.doi.org/10.1080/14786419.2014.934237] [PMID: 25033217]
[267]
Pintore G, Marchetti M, Chessa M, et al. Rosmarinus officinalis L.:Chemical modifications of the essential oil and evaluation of antioxidant and antimicrobial activity. Nat Prod Commun 2009; 4(12): 1934578X0900401.
[http://dx.doi.org/ 10.1177/1934578X0900401215] [PMID: 20120107]
[268]
Li P, Yang X, Lee WJ, Huang F, Wang Y, Li Y. Comparison between synthetic and rosemary-based antioxidants for the deep frying of French fries in refined soybean oils evaluated by chemical and non-destructive rapid methods. Food Chem 2021; 335: 127638.
[http://dx.doi.org/10.1016/j.foodchem.2020.127638] [PMID: 32736158]
[269]
Calderon-Chiu C, Calderon-Santoyo M, Herman-Lara E, Ragazzo-Sanchez JA. Jackfruit (Artocarpus heterophyllus Lam) leaf as a new source to obtain protein hydrolysates: Physicochemical characterization, technofunctional properties and antioxidant capacity. Food Hydrocoll 2021; 112: 106319.
[http://dx.doi.org/10.1016/j.foodhyd.2020.106319]
[270]
Chai TT, Xiao J, Mohana DS, et al. Identification of antioxidant peptides derived from tropical jackfruit seed and investigation of the stability profiles. Food Chem 2021; 340: 127876.
[http://dx.doi.org/10.1016/j.foodchem.2020.127876] [PMID: 32871354]
[271]
Dkhil MA, Thagfan FA, Hassan AS, Al-Shaebi EM, Abdel-Gaber R, Al-Quraishy S. Anthelmintic, anticoccidial and antioxidant activity of Salvadora persica root extracts. Saudi J Biol Sci 2019; 26(6): 1223-6.
[http://dx.doi.org/10.1016/j.sjbs.2019.02.006] [PMID: 31516352]
[272]
Woźniak D, Dryś A, Matkowski A. Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix. Nat Prod Res 2015; 29(16): 1567-70.
[http://dx.doi.org/10.1080/14786419.2014.983920] [PMID: 25427178]
[273]
Ruslan K, Happyniar S, Fidrianny I. Antioxidant potential of two varieties of Sesamum indicum L. collected from Indonesia. J Taibah Univ Med Sci 2018; 13(3): 211-8.
[http://dx.doi.org/10.1016/j.jtumed.2018.02.004] [PMID: 31435326]
[274]
Rutkowska M, Balcerczak E. , Świechowski R, Dubicka M, Olszewska MA. Seasonal variation in phenylpropanoid biosynthesis and invitro antioxidant activity of Sorbus domestica leaves: Harvesting time optimisation for medicinal application. Ind Crops Prod 2020; 156: 112858.
[http://dx.doi.org/10.1016/j.indcrop.2020.112858]
[275]
Dykes L, Rooney WL, Rooney LW. Evaluation of phenolics and antioxidant activity of black sorghum hybrids. J Cereal Sci 2013; 58(2): 278-83.
[http://dx.doi.org/10.1016/j.jcs.2013.06.006]
[276]
Irondi EA, Adegoke BM, Effion ES, Oyewo SO, Alamu EO, Boligon AA. Enzymes inhibitory property, antioxidant activity and phenolics profile of raw and roasted red sorghum grains in vitro. Food Sci Hum Wellness 2019; 8(2): 142-8.
[http://dx.doi.org/10.1016/j.fshw.2019.03.012]
[277]
Cui J, Xia P, Zhang L, Hu Y, Xie Q, Xiang H. A novel fermented soybean, inoculated with selected Bacillus, Lactobacillus and Hansenula strains, showed strong antioxidant and anti-fatigue potential activity. Food Chem 2020; 333: 127527.
[http://dx.doi.org/10.1016/j.foodchem.2020.127527] [PMID: 32683263]
[278]
Bursal E, Taslimi P, Gören AC. Gülçin İ. Assessments of anticholinergic, antidiabetic, antioxidant activities and phenolic content of Stachys annua. Biocatal Agric Biotechnol 2020; 28: 101711.
[http://dx.doi.org/10.1016/j.bcab.2020.101711]
[279]
Leporini L, Menghini L, Foddai M, et al. Antioxidant and antiproliferative activity of Stachys glutinosa L. ethanol extract. Nat Prod Res 2015; 29(10): 899-907.
[http://dx.doi.org/10.1080/14786419.2014.955490] [PMID: 25205114]
[280]
Şöhretoğlu D, Gença Y, Harput ÜŞ, et al. Phytochemical content,antioxidant and cytotoxic activities of Sedum spurium. Nat ProdCommun 2016; 11(11): 1934578X1601101..
[http://dx.doi.org/10.1177/1934578X1601101117] [PMID: 30475509]
[281]
Ahouagi VB, Mequelino DB, Tavano OL, Garcia JAD, Nachtigall AM, Vilas Boas BM. Physicochemical characteristics, antioxidant activity, and acceptability of strawberry-enriched ketchup sauces. Food Chem 2021; 340: 127925.
[http://dx.doi.org/10.1016/j.foodchem.2020.127925] [PMID: 32889213]
[282]
Ji J, Yang X, Flavel M, Shields ZPI, Kitchen B. Antioxidant and anti-diabetic functions of a polyphenol-rich sugarcane extract. J Am Coll Nutr 2019; 38(8): 670-80.
[http://dx.doi.org/10.1080/07315724.2019.1587323] [PMID: 31008696]
[283]
Mehdi WA, Yusof F, Farhan LO, Mehde AA, Raus RA. Levels of antioxidant enzymes and alkaline protease from pulp and peel of sunflower. Asian Pac J Trop Biomed 2017; 7(6): 533-7.
[http://dx.doi.org/10.1016/j.apjtb.2017.05.002]
[284]
Rahimmalek M, Afshari M, Sarfaraz D, Miroliaei M. Using HPLC and multivariate analyses to investigate variations in the polyphenolic compounds as well as antioxidant and antiglycative activities of some Lamiaceae species native to Iran. Ind Crops Prod 2020; 154: 112640.
[http://dx.doi.org/10.1016/j.indcrop.2020.112640]
[285]
Vladić J, Zeković Z, Cvejin A, Adamović D, Vidović SS. Optimizing of Satureja montana extraction process considering phenolic antioxidants and antioxidant activity. Sep Sci Technol 2014; 49(13): 2066-72.
[http://dx.doi.org/10.1080/01496395.2014.908218]
[286]
Almeida IF, Maleckova J, Saffi R, et al. Characterization of an antioxidant surfactant-free topical formulation containing Castanea sativa leaf extract. Drug Dev Ind Pharm 2015; 41(1): 148-55.
[http://dx.doi.org/10.3109/03639045.2013.850712] [PMID: 24188328]
[287]
Habinshuti I, Mu TH, Zhang M. Ultrasound microwave-assisted enzymatic production and characterisation of antioxidant peptides from sweet potato protein. Ultrason Sonochem 2020; 69: 105262.
[http://dx.doi.org/10.1016/j.ultsonch.2020.105262] [PMID: 32707458]
[288]
Franco-Arnedo G, Buelvas-Puello LM, Miranda-Lasprilla D, Martínez-Correa HA, Parada-Alfonso F. Obtaining antioxidant extracts from tangerine (C. Reticulata var. arrayana) peels by modified supercritical CO2 and their use as protective agent against the lipid oxidation of a mayonnaise. J Supercrit Fluids 2020; 165: 104957.
[http://dx.doi.org/10.1016/j.supflu.2020.104957]
[289]
Juan-Badaturuge M, Habtemariam S, Jackson C, Thomas MJK. Antioxidant principles of Tanacetum vulgare L. aerial parts. NatProd Commun 2009; 4(11): 1934578X0900401.
[http://dx.doi.org/ 10.1177/1934578X0900401121] [PMID: 19967991]
[290]
Robinson EE, Maxwell SRJ, Thorpe GHG. An investigation of the antioxidant activity of black tea using enhanced chemiluminescence. Free Radic Res 1997; 26(3): 291-302.
[http://dx.doi.org/10.3109/10715769709097807] [PMID: 9161850]
[291]
Enko J. Gliszczyńska-Świgło A. Influence of the interactions between tea (Camellia sinensis) extracts and ascorbic acid on their antioxidant activity: Analysis with interaction indexes and isobolograms. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32(8): 1234-42.
[http://dx.doi.org/10.1080/19440049.2015.1049218] [PMID: 26035225]
[292]
Nibir YM, Sumit AF, Akhand AA, Ahsan N, Hossain MS. Comparative assessment of total polyphenols, antioxidant and antimicrobial activity of different tea varieties of Bangladesh. Asian Pac J Trop Biomed 2017; 7(4): 352-7.
[http://dx.doi.org/10.1016/j.apjtb.2017.01.005]
[293]
Gulua L, Nikolaishvili L, Jgenti M, Turmanidze T, Dzneladze G. Polyphenol content, anti-lipase and antioxidant activity of teas made in Georgia. Ann Agrar Sci 2018; 16(3): 357-61.
[http://dx.doi.org/10.1016/j.aasci.2018.06.006]
[294]
Chen N, Han B, Fan X, et al. Uncovering the antioxidant characteristics of black tea by coupling in vitro free radical scavenging assay with UHPLC–HRMS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1145: 122092.
[http://dx.doi.org/10.1016/j.jchromb.2020.122092] [PMID: 32305712]
[295]
Makanjuola SA, Enujiugha VN, Omoba OS, Sanni DM. Modelling and predicting of antioxidant properties of tea (Camellia sinensis (L.) Kuntze) leaf. Sci Afr 2020; 8: e00455.
[296]
Paiva L, Lima E, Motta M, Marcone M, Baptista J. Variability of antioxidant properties, catechins, caffeine, L-theanine and other amino acids in different plant parts of Azorean Camellia sinensis. Current Research in Food Science 2020; 3: 227-34.
[http://dx.doi.org/10.1016/j.crfs.2020.07.004] [PMID: 33426532]
[297]
Yan Z, Zhong Y, Duan Y, Chen Q, Li F. Antioxidant mechanism of tea polyphenols and its impact on health benefits. Anim Nutr 2020; 6(2): 115-23.
[http://dx.doi.org/10.1016/j.aninu.2020.01.001] [PMID: 32542190]
[298]
Spencer JPE, Kuhnle GGC, Hajirezaei M, Mock HP, Sonnewald U, Rice-Evans C. The genotypic variation of the antioxidant potential of different tomato varieties. Free Radic Res 2005; 39(9): 1005-16.
[http://dx.doi.org/10.1080/10715760400022293] [PMID: 16087482]
[299]
Kelkel M, Schumacher M, Dicato M, Diederich M. Antioxidant and anti-proliferative properties of lycopene. Free Radic Res 2011; 45(8): 925-40.
[http://dx.doi.org/10.3109/10715762.2011.564168] [PMID: 21615277]
[300]
Mahieddine B, Amina B, Faouzi SM, Sana B, Wided D. Effects of microwave heating on the antioxidant activities of tomato (Solanum lycopersicum). Ann Agric Sci 2018; 63(2): 135-9.
[http://dx.doi.org/10.1016/j.aoas.2018.09.001]
[301]
Alenazi MM, Shafiq M, Alsadon AA, et al. Non-destructive assessment of flesh firmness and dietary antioxidants of greenhouse-grown tomato (Solanum lycopersicum L.) at different fruit maturity stages. Saudi J Biol Sci 2020; 27(10): 2839-46.
[http://dx.doi.org/10.1016/j.sjbs.2020.07.004] [PMID: 32994744]
[302]
Azabou S, Sebii H, Taheur FB, Abid Y, Jridi M, Nasri M. Phytochemical profile and antioxidant properties of tomato by-products as affected by extraction solvents and potential application in refined olive oils. Food Biosci 2020; 36: 100664.
[http://dx.doi.org/10.1016/j.fbio.2020.100664]
[303]
Bhat NA, Wani IA, Hamdani AM. Tomato powder and crude lycopene as a source of natural antioxidants in whole wheat flour cookies. Heliyon 2020; 6(1): e03042.
[http://dx.doi.org/10.1016/j.heliyon.2019.e03042] [PMID: 31989047]
[304]
Karthika K, Gargi G, Jamuna S, et al. The potential of antioxidant activity of methanolic extract of Coscinium fenestratum (Goetgh.) Colebr (Menispermaceae). Saudi J Biol Sci 2019; 26(5): 1037-42.
[http://dx.doi.org/10.1016/j.sjbs.2018.08.010] [PMID: 31303838]
[305]
Rodrigues JS, do Valle CP, Uchoa AFJ, et al. Comparative study of synthetic and natural antioxidants on the oxidative stability of biodiesel from Tilapia oil. Renew Energy 2020; 156: 1100-6.
[http://dx.doi.org/10.1016/j.renene.2020.04.153]
[306]
Mahboubi M. Antimicrobial and antioxidant activity of Varthemia persica DC extracts. J Biol Act Prod Nat 2016; 6(1): 78-83.
[307]
Dhanasekaran S. Phytochemical characteristics of aerial part of Cissus quadrangularis (L) and its in-vitro inhibitory activity against leukemic cells and antioxidant properties. Saudi J Biol Sci 2020; 27(5): 1302-9.
[http://dx.doi.org/10.1016/j.sjbs.2020.01.005] [PMID: 32346339]
[308]
Voravuthikunchai SP, Kanchanapoom T, Sawangjaroen N, Hutadilok-Towatana N. Antioxidant, antibacterial and antigiardial activities of Walsura robusta Roxb. Nat Prod Res 2010; 24(9): 813-24.
[http://dx.doi.org/10.1080/14786410902819152] [PMID: 20461627]
[309]
Vitalini S, Beretta G, Iriti M, et al. Phenolic compounds from Achillea millefolium L. and their bioactivity. Acta Biochim Pol 2011; 58(2): 203-9.
[http://dx.doi.org/10.18388/abp.2011_2266] [PMID: 21503279]
[310]
Farhadi N, Babaei K, Farsaraei S, Moghaddam M, Ghasemi Pirbalouti A. Changes in essential oil compositions, total phenol, flavonoids and antioxidant capacity of Achillea millefolium at different growth stages. Ind Crops Prod 2020; 152: 112570.
[http://dx.doi.org/10.1016/j.indcrop.2020.112570]
[311]
Marmitt DJ, Shahrajabian MH. Plant species used in Brazil and Asia regions with toxic properties. Phytother Res 2021; 35(9): 4703-26.
[http://dx.doi.org/10.1002/ptr.7100] [PMID: 33793002]
[312]
Shahrajabian MH, Sun W, Marmitt DJ, Cheng Q. Diosgenin and galactomannans, natural products in the pharmaceutical sciences. Clinical Phytoscience 2021; 7(1): 50.
[http://dx.doi.org/10.1186/s40816-021-00288-y]
[313]
Shahrajabian MH, Sun W, Cheng Q. Molecular breeding and the impacts of some important genes families on agronomic traits, a review. Genet Resour Crop Evol 2021; 68(5): 1709-30.
[http://dx.doi.org/10.1007/s10722-021-01148-x]
[314]
Shahrajabian MH, Sun W, Cheng Q. Foliar application of nutrients on medicinal and aromatic plants, the sustainable approaches for higher and better production. Beni Suef Univ J Basic Appl Sci 2022; 11(26): 1-10.
[315]
Shahrajabian MH, Sun W, Cheng Q. Ginkgo Biloba, a famous living fossil tree and an ancient herbal traditional Chinese medicine. Curr Nutr Food Sci 2022; 18(3): 259-64.
[http://dx.doi.org/10.2174/1573401317666210910120735]
[316]
Shahrajabian MH, Marmitt DJ, Cheng Q, Sun W. Natural antioxidants of the underutilized and neglected plant species of Asia and South America. Lett Drug Des Discov 2022; 19: 19.
[http://dx.doi.org/10.2174/1570180819666220616145558]
[317]
Cheeke PR. Biological effects of feed and forage saponins and their impacts on animal production.In: Waller G, Yamasaki K, Eds Saponins used in food and agricultureVol 405 Springer, Boston, MA, pp 377-88.
[318]
Aeri V, Kaushik U, Mir S. Cucurbitacins - An insight into medicinal leads from nature. Pharmacogn Rev 2015; 9(17): 12-8.
[http://dx.doi.org/10.4103/0973-7847.156314] [PMID: 26009687]
[319]
Melough MM, Cho E, Chun OK. Furocoumarins: A review of biochemical activities, dietary sources and intake, and potential health risks. Food Chem Toxicol 2018; 113: 99-107.
[http://dx.doi.org/10.1016/j.fct.2018.01.030] [PMID: 29378230]
[320]
Ernst E. Toxic heavy metals and undeclared drugs in Asian herbal medicines. Trends Pharmacol Sci 2002; 23(3): 136-9.
[http://dx.doi.org/10.1016/S0165-6147(00)01972-6] [PMID: 11879681]
[321]
Kim EJY, Chen Y, Huang JQ, et al. Evidence-based toxicity evaluation and scheduling of Chinese herbal medicines. J Ethnopharmacol 2013; 146(1): 40-61.
[http://dx.doi.org/10.1016/j.jep.2012.12.027] [PMID: 23286904]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy