Abstract
In Gram-negative pathogens, β-lactamase production remains the most important contributing factor to β- lactam resistance. β-lactamases are bacterial enzymes that inactivate β-lactam antibiotics by hydrolysis, which results in ineffective compounds. The three major groups usually referred to as the newer β-lactamases are plasmid-mediated AmpC enzymes, extended-spectrum β-lactamases (ESBLs) and carbapenem-hydrolyzing enzymes (including metallo-β- lactamases [MBLs]). Molecular methods that include simple and multiplex PCR, real-time PCR, DNA sequencing and various hybridization-based techniques are used widely in research and reference laboratories for the detection of organisms producing newer β-lactamases. The routine screening in clinical diagnostic laboratories of organisms producing TEM, SHV and OXA types of ESBLs using genotypic methods remains problematic, while the detection of CTX-Ms, plasmid-mediated AmpCs and MBLs shows clinical usefulness. Molecular methods have advantages over phenotypic tests by accurately detecting resistant genes in a rapid fashion and by defining the precise genetic basis of the resistance mechanism providing important information valuable to the early introduction of infection control practices. Molecular assays have the potential to complement conventional phenotypic susceptibility techniques and impact directly on patient care.
Keywords: Molecular assays, detection, extended-spectrum β-lactamases, plasmid-mediated AmpC β-lactamases, metallo-β-lactamases
Current Genomics
Title: Molecular Detection of Bacteria Producing Newer Types of β-Lactamases
Volume: 7 Issue: 3
Author(s): Johann D. D.Pitout
Affiliation:
Keywords: Molecular assays, detection, extended-spectrum β-lactamases, plasmid-mediated AmpC β-lactamases, metallo-β-lactamases
Abstract: In Gram-negative pathogens, β-lactamase production remains the most important contributing factor to β- lactam resistance. β-lactamases are bacterial enzymes that inactivate β-lactam antibiotics by hydrolysis, which results in ineffective compounds. The three major groups usually referred to as the newer β-lactamases are plasmid-mediated AmpC enzymes, extended-spectrum β-lactamases (ESBLs) and carbapenem-hydrolyzing enzymes (including metallo-β- lactamases [MBLs]). Molecular methods that include simple and multiplex PCR, real-time PCR, DNA sequencing and various hybridization-based techniques are used widely in research and reference laboratories for the detection of organisms producing newer β-lactamases. The routine screening in clinical diagnostic laboratories of organisms producing TEM, SHV and OXA types of ESBLs using genotypic methods remains problematic, while the detection of CTX-Ms, plasmid-mediated AmpCs and MBLs shows clinical usefulness. Molecular methods have advantages over phenotypic tests by accurately detecting resistant genes in a rapid fashion and by defining the precise genetic basis of the resistance mechanism providing important information valuable to the early introduction of infection control practices. Molecular assays have the potential to complement conventional phenotypic susceptibility techniques and impact directly on patient care.
Export Options
About this article
Cite this article as:
D.Pitout D. Johann, Molecular Detection of Bacteria Producing Newer Types of β-Lactamases, Current Genomics 2006; 7 (3) . https://dx.doi.org/10.2174/138920206777780238
DOI https://dx.doi.org/10.2174/138920206777780238 |
Print ISSN 1389-2029 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5488 |
Call for Papers in Thematic Issues
Current Genomics in Cardiovascular Research
Cardiovascular diseases are the main cause of death in the world, in recent years we have had important advances in the interaction between cardiovascular disease and genomics. In this Research Topic, we intend for researchers to present their results with a focus on basic, translational and clinical investigations associated with ...read more
Deep learning in Single Cell Analysis
The field of biology is undergoing a revolution in our ability to study individual cells at the molecular level, and to integrate data from multiple sources and modalities. This has been made possible by advances in technologies for single-cell sequencing, multi-omics profiling, spatial transcriptomics, and high-throughput imaging, as well as ...read more
New insights on Pediatric Tumors and Associated Cancer Predisposition Syndromes
Because of the broad spectrum of children cancer susceptibility, the diagnosis of cancer risk syndromes in children is rarely used in direct cancer treatment. The field of pediatric cancer genetics and genomics will only continue to expand as a result of increasing use of genetic testing tools. It's possible that ...read more
Related Journals

- Author Guidelines
- Bentham Author Support Services (BASS)
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
- Announcements
Related Articles
-
Editorial [ Carbonic Anhydrases as Drug Targets Executive Editor: Claudiu T. Supuran ]
Current Pharmaceutical Design Structure-Activity Relationships of 2-Benzylsulfanylbenzothiazoles: Synthesis and Selective Antimycobacterial Properties
Medicinal Chemistry Fc-independent Phagocytosis: Implications for IVIG and other Therapies in Immune-mediated Thrombocytopenia
Cardiovascular & Hematological Disorders-Drug Targets Salmonella as Live Trojan Horse for Vaccine Development and Cancer Gene Therapy
Current Gene Therapy Neuro-psychopharmacogenetics and Neurological Antecedents of Posttraumatic Stress Disorder: Unlocking the Mysteries of Resilience and Vulnerability
Current Neuropharmacology Accessing Highly-Halogenated Flavanones Using Protic Ionic Liquids and Microwave Irradiation
Current Organic Chemistry The Role of Autophagy in Rheumatic Disease
Current Drug Targets Adenovirus-based Immunotherapy for Prostate Cancer
Current Cancer Therapy Reviews New Potential Biologically Active Compounds: Synthesis and Characterization of Urea and Thiourea Derivativpes Bearing 1,2,4-oxadiazole Ring
Current Organic Synthesis Does Phosphodiesterase 11A (PDE11A) Hold Promise as a Future Therapeutic Target?
Current Pharmaceutical Design Editorial [Hot Topic: Structure Based Drug Design (Guest Editor: K.V. Radha Kishan)]
Current Protein & Peptide Science Pharmacokinetics and Pharmacokinetic Variability of Heroin and its Metabolites: Review of the Literature
Current Clinical Pharmacology Immunomodulatory Drugs as a Therapy for Multiple Myeloma
Current Pharmaceutical Biotechnology The Urokinase Receptor System, A Key Regulator at the Intersection between Inflammation, Immunity, and Coagulation
Current Pharmaceutical Design Editorial (Special Board Members Issue)
Protein & Peptide Letters State of the Art of Nanobiotechnology Applications in Neglected Diseases
Current Nanoscience p38 MAPK: A Potential Target of Chronic Pain
Current Medicinal Chemistry A Real-world Evidence-based Management of HIV by Differential Duration HAART Treatment and its Association with Incidence of Oral Lesions
Current HIV Research Molecular Dynamics Assisted Mechanistic Insight of Val430-Ala Mutation of Rv1592c Protein in Isoniazid Resistant <i>Mycobacterium Tuberculosis</i>
Current Computer-Aided Drug Design EDITORIAL: Validation Techniques for Therapeutic Molecules in Drug Discovery
Current Topics in Medicinal Chemistry