Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Letter Article

Learning from the In Vitro Biological Activity Data of Current Antiviral Medicines for the Successful Development of New Antiviral Drug Candidates

Author(s): Murilo Barboza Fontoura and Fernando Fumagalli*

Volume 21, Issue 2, 2024

Published on: 21 October, 2022

Page: [203 - 208] Pages: 6

DOI: 10.2174/1570180819666220928151734

Price: $65

Abstract

Background: Although evaluating in vitro biological activity is an important part of the drug discovery process, few publications discuss the ideal inhibitory activity in these tests.

Objective: To analyze the in vitro biological activity data from antiviral drugs to establish parameters that could increase success in developing new antiviral drug candidates.

Methods: Information from in vitro tests for each antiviral medicine was obtained from the Thomson Reuters Integrity platform for antiviral drugs approved by FDA between 1963 and 2020 (35 years). The inhibitory activity data was collected from three references using the same determination method, and the values were reported as means.

Results: 82 antiviral drugs were found to treat 11 different viruses. Most of these drugs were developed to treat HIV infections (33 of 82), followed by anti-HCV medicines (20 of 82). The anti-HIV phenotypic activities of most HIV-approved drugs had an IC50 < 50 nM; for the anti-HCV it was verified as IC50 < 0.2 μM. Combining the data for all drugs analyzed, the antiviral phenotypic activity in most cases exhibited an IC50 < 0.2 μM.

Conclusion: The limited availability of antiviral drugs and in vitro activity data imposed limitations on this study. However, it could be inferred that an antiviral drug candidate would have more success in drug development when the IC50 was in the range of low micromolar. Ultimately, in vitro activity must be considered in combination with other factors in drug development processes.

Keywords: drug development, drug discovery, in vitro, pandemic, virus, new chemical entities

Next »
Graphical Abstract

[1]
Wouters, O.J.; McKee, M.; Luyten, J. Estimated research and development investment needed to bring a new medicine to market, 2009-2018. JAMA, 2020, 323(9), 844-853.
[http://dx.doi.org/10.1001/jama.2020.1166] [PMID: 32125404]
[2]
Ekert, J.E.; Deakyne, J.; Pribul-Allen, P.; Terry, R.; Schofield, C.; Jeong, C.G.; Storey, J.; Mohamet, L.; Francis, J.; Naidoo, A.; Amador, A.; Klein, J.L.; Rowan, W. Recommended guidelines for developing, qualifying, and implementing complex in vitro models (CIVMs) for drug discovery. SLAS Discov., 2020, 25(10), 1174-1190.
[http://dx.doi.org/10.1177/2472555220923332] [PMID: 32495689]
[3]
Astashkina, A.; Mann, B.; Grainger, D.W. A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol. Ther., 2012, 134(1), 82-106.
[http://dx.doi.org/10.1016/j.pharmthera.2012.01.001] [PMID: 22252140]
[4]
Saeidnia, S.; Manayi, A.; Abdollahi, M. From in vitro experiments to in vivo and clinical studies; pros and cons. Curr. Drug Discov. Technol., 2016, 12(4), 218-224.
[http://dx.doi.org/10.2174/1570163813666160114093140] [PMID: 26778084]
[5]
Gotlieb, N.; Rosenne, E.; Matzner, P.; Shaashua, L.; Sorski, L.; Ben-Eliyahu, S. The misleading nature of in vitro and ex vivo findings in studying the impact of stress hormones on NK cell cytotoxicity. Brain Behav. Immun., 2015, 45, 277-286.
[http://dx.doi.org/10.1016/j.bbi.2014.12.020] [PMID: 25546569]
[6]
Caly, L.; Druce, J.D.; Catton, M.G.; Jans, D.A.; Wagstaff, K.M. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res., 2020, 178, 104787.
[http://dx.doi.org/10.1016/j.antiviral.2020.104787] [PMID: 32251768]
[7]
Schmith, V.D.; Zhou, J.J.; Lohmer, L.R.L. The approved dose of ivermectin alone is not the ideal dose for the treatment of COVID‐19. Clin. Pharmacol. Ther., 2020, 108(4), 762-765.
[http://dx.doi.org/10.1002/cpt.1889] [PMID: 32378737]
[8]
Bunnage, M.E.; Chekler, E.L.P.; Jones, L.H. Target validation using chemical probes. Nat. Chem. Biol., 2013, 9(4), 195-199.
[http://dx.doi.org/10.1038/nchembio.1197] [PMID: 23508172]
[9]
Chaudhuri, S.; Symons, J.A.; Deval, J. Innovation and trends in the development and approval of antiviral medicines: 1987-2017 and beyond. Antiviral Res., 2018, 155, 76-88.
[http://dx.doi.org/10.1016/j.antiviral.2018.05.005] [PMID: 29758235]
[10]
Mullard, A. 2017 FDA drug approvals. Nat. Rev. Drug Discov., 2018, 17(2), 81-85.
[http://dx.doi.org/10.1038/nrd.2018.4] [PMID: 29348678]
[11]
Mullard, A. 2018 FDA drug approvals. Nat. Rev. Drug Discov., 2019, 18(2), 85-89.
[http://dx.doi.org/10.1038/d41573-019-00014-x] [PMID: 30710142]
[12]
Mullard, A. 2019 FDA drug approvals. Nat. Rev. Drug Discov., 2020, 19(2), 79-84.
[http://dx.doi.org/10.1038/d41573-020-00001-7] [PMID: 32020068]
[13]
Mullard, A. 2020 FDA drug approvals. Nat. Rev. Drug Discov., 2021, 20(2), 85-90.
[http://dx.doi.org/10.1038/d41573-021-00002-0] [PMID: 33402709]
[14]
Kallings, L.O. HIV infection in the nineties. Vaccine, 1993, 11(5), 525-528.
[http://dx.doi.org/10.1016/0264-410X(93)90223-K] [PMID: 8488703]
[15]
Vieira, F.S. Ministry of health’s spending on drugs: program trends from 2002 to 2007. Rev. Saude Publica, 2000, 34(2), 206-209.
[PMID: 10881160]
[16]
Kaitin, K.I.; DiMasi, J.A. Pharmaceutical innovation in the 21st century: new drug approvals in the first decade, 2000-2009. Clin. Pharmacol. Ther., 2011, 89(2), 183-188.
[http://dx.doi.org/10.1038/clpt.2010.286] [PMID: 21191382]
[17]
Burstow, N.J.; Mohamed, Z.; Gomaa, I. A.; Sonderup, M.; Cook, N.; Waked, I.; Spearman, C.W.; Taylor-Robinson, S.; Hepatitis, C. Hepatitis C treatment: where are we now? Int. J. Gen. Med., 2017, 10, 39-52.
[http://dx.doi.org/10.2147/IJGM.S127689] [PMID: 28255252]
[18]
Geddawy, A.; Ibrahim, Y.F.; Elbahie, N.M.; Ibrahim, M.A. Direct acting anti-hepatitis C virus drugs: Clinical pharmacology and future direction. J. Transl. Int. Med., 2017, 5(1), 8-17.
[http://dx.doi.org/10.1515/jtim-2017-0007] [PMID: 28680834]
[19]
Holzmann, I.; Tovo, C.V.; Minmé, R.; Leal, M.P.; Kliemann, M.P.; Ubirajara, C.; Aquino, A.A.; Araujo, B.; Almeida, P.R.L. Effectiveness of chronic hepatitis C treatment with direct-acting antivirals in the Public Health System in Brazil. Braz. J. Infect. Dis., 2018, 22(4), 317-322.
[http://dx.doi.org/10.1016/j.bjid.2018.06.004] [PMID: 30036490]
[20]
Kalidindi, Y.; Jung, J.; Feldman, R. Riley III T. Association of direct-acting antiviral treatment with mortality among medicare beneficiaries with hepatitis C. JAMA Netw. Open, 2020, 3(7), e2011055-e2011055.
[http://dx.doi.org/10.1001/jamanetworkopen.2020.11055] [PMID: 32692371]
[21]
Samanen, J. Chapter 5 - Similarities and differences in the discovery and use of biopharmaceuticals and small-molecule chemotherapeutics. In: Introduction to Biological and Small Molecule Drug Research and Development - Theory and Case Studies; Robin, G.; Stanley, R.; Roy, J., Eds.; Elsevier: Oxford, 2013; pp. 161-203.
[22]
Kalliokoski, T.; Kramer, C.; Vulpetti, A.; Gedeck, P. Comparability of mixed IC₅₀ data - a statistical analysis. PLoS One, 2013, 8(4), e61007.
[http://dx.doi.org/10.1371/journal.pone.0061007] [PMID: 23613770]
[23]
García-Contreras, R.; Vos, P.; Westerhoff, H.V.; Boogerd, F.C. Why in vivo may not equal in vitro - new effectors revealed by measurement of enzymatic activities under the same in vivo -like assay conditions. FEBS J., 2012, 279(22), 4145-4159.
[http://dx.doi.org/10.1111/febs.12007] [PMID: 22978366]
[24]
Lacerda, J.S.; Paulo, R.G.; Aoyam, E.A.; Rodrigues, G.M.M. Evolução medicamentosa do hiv no brasil desde o azt até o coquetel disponibilizado pelo sistema único de saúde medicinal. Rev. Bras. Interdiscip. Saúde, 2019, 1(4), 83-91.
[25]
Mullard, A. 2021 FDA approvals. Nat. Rev. Drug Discov., 2022, 21(2), 83-88.
[http://dx.doi.org/10.1038/d41573-022-00001-9] [PMID: 34983958]
[26]
Zhu, J.D.; Meng, W.; Wang, X.J.; Wang, H.C.R. Broad-spectrum antiviral agents. Front. Microbiol., 2015, 6, 517.
[http://dx.doi.org/10.3389/fmicb.2015.00517] [PMID: 26052325]

© 2024 Bentham Science Publishers | Privacy Policy