Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

The Relationship between Serum Iron and Thyroid Function in the Patients with Type 2 Diabetes

Author(s): Congcong Wang, Song Wen, Xinlu Yuan, Mingyue Zhou, Yanyan Li, Min Gong, Jianlan Jin and Ligang Zhou*

Volume 23, Issue 4, 2023

Published on: 16 November, 2022

Page: [558 - 567] Pages: 10

DOI: 10.2174/1871530322666220928144548

Price: $65

Abstract

Purpose: Our primary objective in this study is to determine the relationship between serum iron (Fe3+) and thyroid functions in type 2 diabetes mellitus (T2DM) patients.

Materials and Methods: Glucose metabolic parameters, trace elements, such as Fe3+, and thyroid functions for 1657 type 2 diabetic patients treated at the Shanghai Pudong Hospital's Department of Endocrinology from 2018 to 2021 were assessed.

Results: Variations in free thyroid hormones (FTH) and total thyroid hormones (TTH) were insignificant; however, thyroid-stimulating hormone (TSH) levels were markedly elevated in patients with positive thyroid peroxidase antibody (TPOAb) and/or positive antithyroglobulin antibody (TgAb) (p<0.05). Additionally, gender disparities affected FTH levels (p<0.05) but not TTH and TSH levels. The female gender was significantly negatively correlated with serum Fe levels (r=-0.381, p<0.05). Serum Fe3+ deficiency also had an effect on FT3 in both genders, FT4 and TT4 in males (p<0.05), but not TSH (p>0.05). The multilinear regression model showed that TT3 (β=0.702), eGFR (β=0.109), Fe3+ (β=0.003), female gender (β=-0.061), and age (β=-0.061) were the major determinants for FT3 change. Moreover, renal function, which was represented as the estimated glomerular filtration rate (eGFR), had no effects on Fe3+ and TSH levels but on the levels of FTH and TTH (p<0.05). FT3/FT4 exhibited correlations with Fe3+ (r=0.252) and eGFR (r=0.285). Finally, changes in Fe3+ levels had no significant impact on fasting plasma glucose (FPG), fasting C-peptide, HbA1c, and glycated albumin levels (p>0.05).

Conclusion: In addition to age, gender, and renal functions, serum Fe3+ levels in T2DM patients have a significant relationship with thyroid functions.

Keywords: Type 2 diabetes mellitus, serum iron, thyroid function

Graphical Abstract

[1]
Brent, G.A. Mechanisms of thyroid hormone action. J. Clin. Invest., 2012, 122(9), 3035-3043.
[http://dx.doi.org/10.1172/JCI60047] [PMID: 22945636]
[2]
Rayman, M.P. Multiple nutritional factors and thyroid disease, with particular reference to autoimmune thyroid disease. Proc. Nutr. Soc., 2019, 78(1), 34-44.
[http://dx.doi.org/10.1017/S0029665118001192] [PMID: 30208979]
[3]
Pasricha, S.R.; Tye-Din, J.; Muckenthaler, M.U.; Swinkels, D.W. Iron deficiency. Lancet, 2021, 397(10270), 233-248.
[http://dx.doi.org/10.1016/S0140-6736(20)32594-0] [PMID: 33285139]
[4]
Zimmermann, M.B.; Köhrle, J. The impact of iron and selenium deficiencies on iodine and thyroid metabolism: Biochemistry and relevance to public health. Thyroid, 2002, 12(10), 867-878.
[http://dx.doi.org/10.1089/105072502761016494]
[5]
Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; Pavkov, M.E.; Ramachandaran, A.; Wild, S.H.; James, S.; Herman, W.H.; Zhang, P.; Bommer, C.; Kuo, S.; Boyko, E.J.; Magliano, D.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract., 2022, 183109119.
[http://dx.doi.org/10.1016/j.diabres.2021.109119] [PMID: 34879977]
[6]
Xu, C.; Gong, M.; Wen, S.; Zhou, M.; Li, Y.; Zhou, L. The comparative study on the status of bone metabolism and thyroid function in diabetic patients with or without ketosis or ketoacidosis. Diabetes Metab. Syndr. Obes., 2022, 15, 779-797.
[http://dx.doi.org/10.2147/DMSO.S349769] [PMID: 35309734]
[7]
DeFronzo, R.A. Banting Lecture. From the triumvirate to the ominous octet: A new paradigm for the treatment of type 2 diabetes mellitus. Diabetes, 2009, 58(4), 773-795.
[http://dx.doi.org/10.2337/db09-9028] [PMID: 19336687]
[8]
Zhou, Z.; Sun, B.; Yu, D.; Zhu, C. Gut microbiota: An important player in type 2 diabetes mellitus. Front. Cell. Infect. Microbiol., 2022, 12834485.
[http://dx.doi.org/10.3389/fcimb.2022.834485] [PMID: 35242721]
[9]
Barone, M.; D’Amico, F.; Brigidi, P.; Turroni, S. Gut microbiome-micronutrient interaction: The key to controlling the bioavailability of minerals and vitamins? Biofactors (Oxford, England), 2022, 48(2), 307-314.
[http://dx.doi.org/10.1002/biof.1835]
[10]
Starchl, C.; Scherkl, M.; Amrein, K. Celiac disease and the thyroid: Highlighting the roles of vitamin D and iron. Nutrients, 2021, 13(6), 1755.
[http://dx.doi.org/10.3390/nu13061755] [PMID: 34064075]
[11]
Knezevic, J.; Starchl, C.; Tmava Berisha, A.; Amrein, K. Thyroid-gut-axis: How does the microbiota influence thyroid function? Nutrients, 2020, 12(6), 1769.
[http://dx.doi.org/10.3390/nu12061769] [PMID: 32545596]
[12]
Perros, P.; McCrimmon, R.J.; Shaw, G.; Frier, B.M. Frequency of thyroid dysfunction in diabetic patients: Value of annual screening. Diabet. Med., 1995, 12(7), 622-627.
[http://dx.doi.org/10.1111/j.1464-5491.1995.tb00553.x] [PMID: 7554786]
[13]
Kordonouri, O.; Klinghammer, A.; Lang, E.B.; Grüters-Kieslich, A.; Grabert, M.; Holl, R.W. Thyroid autoimmunity in children and adolescents with type 1 diabetes: A multicenter survey. Diabetes Care, 2002, 25(8), 1346-1350.
[http://dx.doi.org/10.2337/diacare.25.8.1346] [PMID: 12145233]
[14]
Kalra, S.; Aggarwal, S.; Khandelwal, D. Thyroid dysfunction and type 2 diabetes mellitus: Screening strategies and implications for management. Diabetes Ther., 2019, 10(6), 2035-2044.
[http://dx.doi.org/10.1007/s13300-019-00700-4] [PMID: 31583645]
[15]
Duntas, L.H.; Orgiazzi, J.; Brabant, G. The interface between thyroid and diabetes mellitus. Clin. Endocrinol. (Oxf.), 2011, 75(1), 1-9.
[http://dx.doi.org/10.1111/j.1365-2265.2011.04029.x] [PMID: 21521298]
[16]
Biondi, B.; Kahaly, G.J.; Robertson, R.P. Thyroid dysfunction and diabetes mellitus: Two closely associated disorders. Endocr. Rev., 2019, 40(3), 789-824.
[http://dx.doi.org/10.1210/er.2018-00163] [PMID: 30649221]
[17]
Chiovato, L.; Lapi, P.; Fiore, E.; Tonacchera, M.; Pinchera, A. Thyroid autoimmunity and female gender. J. Endocrinol. Invest., 1993, 16(5), 384-391.
[http://dx.doi.org/10.1007/BF03348863] [PMID: 8320432]
[18]
Chen, L.; Zhang, M.; Xiang, S.; Jiang, X.; Gu, H.; Sha, Q.; Qu, M.; Xu, T. Association between thyroid function and body composition in Type 2 Diabetes Mellitus (T2DM) patients: Does sex have a role? Med. Sci. Monit., 2021, 27, e927440.
[http://dx.doi.org/10.12659/MSM.927440] [PMID: 33387440]
[19]
Kerp, H.; Gassen, J.; Führer, D. Age and sex influence thyroid hormone effects in target tissues with organ-specific responses. Exp. Clin. Endocrinol. Diabetes, 2020, 128(6-07), 469-472.
[http://dx.doi.org/10.1055/a-1083-6272]
[20]
Narasaki, Y.; Sohn, P.; Rhee, C.M. The interplay between thyroid dysfunction and kidney disease. Semin. Nephrol., 2021, 41(2), 133-143.
[http://dx.doi.org/10.1016/j.semnephrol.2021.03.008] [PMID: 34140092]
[21]
Yang, S.; Lai, S.; Wang, Z.; Liu, A.; Wang, W.; Guan, H. Thyroid feedback quantile-based index correlates strongly to renal function in euthyroid individuals. Ann. Med., 2021, 53(1), 1945-1955.
[http://dx.doi.org/10.1080/07853890.2021.1993324] [PMID: 34726096]
[22]
Gauthier, B.R.; Sola-García, A.; Cáliz-Molina, M.Á.; Lorenzo, P.I.; Cobo-Vuilleumier, N.; Capilla-González, V.; Martin-Montalvo, A. Thyroid hormones in diabetes, cancer, and aging. Aging Cell, 2020, 19(11), e13260.
[http://dx.doi.org/10.1111/acel.13260] [PMID: 33048427]
[23]
Dubey, P.; Thakur, V.; Chattopadhyay, M. Role of minerals and trace elements in diabetes and insulin resistance. Nutrients, 2020, 12(6), 1864.
[http://dx.doi.org/10.3390/nu12061864] [PMID: 32585827]
[24]
Triggiani, V.; Tafaro, E.; Giagulli, V.; Sabbà, C.; Resta, F.; Licchelli, B.; Guastamacchia, E. Role of iodine, selenium and other micronutrients in thyroid function and disorders. Endocr. Metab. Immune Disord. Drug Targets, 2009, 9(3), 277-294.
[http://dx.doi.org/10.2174/187153009789044392] [PMID: 19594417]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy