Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Emerging Applications of Polymeric Nanoparticles in Tumor Targeting

Author(s): Minakshi Gupta Marwaha, Rajendra Awasthi, Rakesh Kumar Marwaha, Parteek Prasher, Monica Gulati, Sachin Kumar Singh, Krishnan Anand, Gaurav Gupta, Dinesh Kumar Chellappan, Kamal Dua and Harish Dureja*

Volume 19, Issue 5, 2023

Published on: 20 October, 2022

Page: [677 - 696] Pages: 20

DOI: 10.2174/1573413718666220928114233

Price: $65

Abstract

Nanoparticles are well-established carriers for targeted delivery of bioactive polymeric nanoparticles (PNPs). They have attracted significant attention from pharmaceutical scientists globally due to their wide range of applications in the medical field. The encapsulation of drugs into the nanoparticles offers several unique characteristics leading to prolonged circulation, improved drug localization, and thus enhanced drug efficacy. It also provides a better understanding of the molecular basis of the disease. Nanoparticles allow efficient maintenance of medication cycles at the target site, with less exposure to normal cells and thus decreasing the rehabilitation period. Despite extensive developments in the field of nanotechnology, specifically in drug delivery, only a few nanotechnology- based products are currently available in the market. Thus, further advanced exploration is necessary to make nanoparticles useful for the betterment of mankind. This review is focused on recent advancements in pharmaceutical nanotechnology with special emphasis on polymers used for the preparation of PNPs and their emerging applications in tumor-targeting. This manuscript also highlights the recent patents disclosing PNPs for tumor targeting.

Keywords: Nanoparticles, active targeting, passive targeting, polymeric nanoparticles, tumor targeting

[1]
Fymat, A.L. Nanooncology: Perspective on promising anti-tumor therapies. J. Tumor. Med. Pr., 2017, 1(1), 1-10.
[2]
Dang, Y.; Guan, J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater. Med., 2020, 1, 10-19.
[http://dx.doi.org/10.1016/j.smaim.2020.04.001] [PMID: 34553138]
[3]
Jain, S.; Jain, V.; Mahajan, S.C. Lipid based vesicular drug delivery systems. Adv. Pharm., 2014, 7, 1-12.
[4]
Din, F.; Aman, W.; Ullah, I.; Qureshi, O.S.; Mustapha, O.; Shafique, S.; Zeb, A. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int. J. Nanomedicine, 2017, 12, 7291-7309.
[http://dx.doi.org/10.2147/IJN.S146315]
[5]
Rizvi, S.A.A.; Saleh, A.M. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm. J., 2018, 26(1), 64-70.
[http://dx.doi.org/10.1016/j.jsps.2017.10.012] [PMID: 29379334]
[6]
Attia, M.F.; Anton, N.; Wallyn, J.; Omran, Z.; Vandamme, T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol., 2019, 71(8), 1185-1198.
[http://dx.doi.org/10.1111/jphp.13098] [PMID: 31049986]
[7]
Li, H.; Wang, Y.; Tang, Q.; Yin, D.; Tang, C.; He, E.; Zou, L.; Peng, Q. The protein corona and its effects on nanoparticle-based drug delivery systems. Acta Biomater., 2021, 129, 57-72.
[http://dx.doi.org/10.1016/j.actbio.2021.05.019] [PMID: 34048973]
[8]
Zhang, T.; Zhu, G.; Lu, B.; Qian, Z.; Peng, Q. Protein corona formed in the gastrointestinal tract and its impacts on oral delivery of nanoparticles. Med. Res. Rev., 2021, 41(3), 1835-1850.
[http://dx.doi.org/10.1002/med.21767] [PMID: 33296090]
[9]
Bertrand, N.; Grenier, P.; Mahmoudi, M.; Lima, E.M.; Appel, E.A.; Dormont, F.; Lim, J.M.; Karnik, R.; Langer, R.; Farokhzad, O.C. Mechanistic understanding of in vivo protein corona formation on polymeric nanoparticles and impact on pharmacokinetics. Nat. Commun., 2017, 8(1), 1-8.
[http://dx.doi.org/10.1038/s41467-017-00600-w]
[10]
Pino, P.; Pelaz, B.; Zhang, Q.; Maffre, P.; Nienhaus, G.U.; Parak, W.J. Protein corona formation around nanoparticles – from the past to the future. Mater. Horiz., 2014, 1(3), 301-313.
[http://dx.doi.org/10.1039/C3MH00106G]
[11]
Zhang, T.X.; Zhu, G.Y.; Lu, B.Y.; Zhang, C.L.; Peng, Q. Concentration-dependent protein adsorption at the nano–bio interfaces of polymeric nanoparticles and serum proteins. Nanomedicine (Lond.), 2017, 12(22), 2757-2769.
[http://dx.doi.org/10.2217/nnm-2017-0238] [PMID: 29017387]
[12]
Peng, Q.; Liu, J.; Zhang, T.; Zhang, T.X.; Zhang, C.L.; Mu, H. Digestive enzyme corona formed in the gastrointestinal tract and its impact on epithelial cell uptake of nanoparticles. Biomacromolecules, 2019, 20(4), 1789-1797.
[http://dx.doi.org/10.1021/acs.biomac.9b00175] [PMID: 30893550]
[13]
Liu, J.; Peng, Q. Protein-gold nanoparticle interactions and their possible impact on biomedical applications. Acta Biomater., 2017, 55, 13-27.
[http://dx.doi.org/10.1016/j.actbio.2017.03.055] [PMID: 28377307]
[14]
Peng, Q.; Mu, H. The potential of protein–nanomaterial interaction for advanced drug delivery. J. Control. Release, 2016, 225, 121-132.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.041] [PMID: 26812004]
[15]
Raju, D. Case studies of enhanced pharmacodynamic activity of poorly oral bioavailable drugs via solid lipid nanoparticles. J. Drug Deliv. Ther., 2021, 11(2), 204-208.
[http://dx.doi.org/10.22270/jddt.v11i2.4582]
[16]
Gagliardi, A.; Cosco, D.; Udongo, B.P.; Dini, L.; Viglietto, G.; Paolino, D. Design and characterization of glyceryl monooleate-nanostructures containing doxorubicin hydrochloride. Pharmaceutics, 2020, 12(11), 1017.
[http://dx.doi.org/10.3390/pharmaceutics12111017] [PMID: 33114287]
[17]
Heinz, H.; Pramanik, C.; Heinz, O.; Ding, Y.; Mishra, R.K.; Marchon, D.; Flatt, R.J.; Estrela-Lopis, I.; Llop, J.; Moya, S.; Ziolo, R.F. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surf. Sci. Rep., 2017, 72(1), 1-58.
[http://dx.doi.org/10.1016/j.surfrep.2017.02.001]
[18]
Xin, Y.; Yin, M.; Zhao, L.; Meng, F.; Luo, L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol. Med., 2017, 14(3), 228-241.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0052] [PMID: 28884040]
[19]
Kobayashi, H.; Watanabe, R.; Choyke, P.L. Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics, 2014, 4(1), 81-89.
[http://dx.doi.org/10.7150/thno.7193] [PMID: 24396516]
[20]
Ni, X.L.; Chen, L.X.; Zhang, H.; Yang, B.; Xu, S.; Wu, M.; Liu, J.; Yang, L.L.; Chen, Y.; Fu, S.Z.; Wu, J.B. In vitro and in vivo antitumor effect of gefitinib nanoparticles on human lung cancer. Drug Deliv., 2017, 24(1), 1501-1512.
[http://dx.doi.org/10.1080/10717544.2017.1384862] [PMID: 28961023]
[21]
Lee, W.H.; Loo, C.Y.; Young, P.M.; Traini, D.; Mason, R.S.; Rohanizadeh, R. Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin. Drug Deliv., 2014, 11(8), 1183-1201.
[http://dx.doi.org/10.1517/17425247.2014.916686] [PMID: 24857605]
[22]
Lee, W.H.; Loo, C.Y.; Traini, D.; Young, P.M. Inhalation of nanoparticle-based drug for lung cancer treatment: Advantages and challenges. Asian J Pharm Sci, 2015, 10(6), 481-489.
[http://dx.doi.org/10.1016/j.ajps.2015.08.009]
[23]
Qi, L.; Xu, Z.; Jiang, X.; Li, Y.; Wang, M. Cytotoxic activities of chitosan nanoparticles and copper-loaded nanoparticles. Bioorg. Med. Chem. Lett., 2005, 15(5), 1397-1399.
[http://dx.doi.org/10.1016/j.bmcl.2005.01.010] [PMID: 15713395]
[24]
Yan, F.; Zhang, C.; Zheng, Y.; Mei, L.; Tang, L.; Song, C.; Sun, H.; Huang, L. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomedicine, 2010, 6(1), 170-178.
[http://dx.doi.org/10.1016/j.nano.2009.05.004] [PMID: 19447200]
[25]
Jawahar, N.; Meyyanathan, S.N. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int. J. Health Allied Sci., 2012, 1(4), 217-223.
[http://dx.doi.org/10.4103/2278-344X.107832]
[26]
Gagliardi, A.; Giuliano, E.; Venkateswararao, E.; Fresta, M.; Bulotta, S.; Awasthi, V.; Cosco, D. Biodegradable polymeric nanoparticles for drug delivery to solid tumors. Front. Pharmacol., 2021, 12, 601626.
[http://dx.doi.org/10.3389/fphar.2021.601626] [PMID: 33613290]
[27]
Kim, K.Y.; Kim, M.A. Nanotechnology platforms and physiological challenges for cancer therapeutics. Nanomedicine, 2007, 3(2), 103-110.
[http://dx.doi.org/10.1016/j.nano.2006.12.002] [PMID: 17442621]
[28]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[29]
Krishna, R.S.; Shivakumar, H.G.; Gowda, D.V.; Banerjee, S. Nanoparticles: A novel colloidal drug delivery system. Ind. J. Edu. Res., 2006, 40, 15-21.
[30]
Pandey, S.; Kumar, S. An overview on multi-functional nanomedicines for targeted drug delivery. IJPI’s J. Pharm. Cosmet, 2011, 1(3), 119-128.
[31]
Belete, T.M. The current status of gene therapy for the treatment of cancer. Biologics, 2021, 15, 67-77.
[PMID: 33776419]
[32]
Kaul, G.; Amiji, M. Biodistribution and targeting potential of poly(ethylene glycol)-modified gelatin nanoparticles in subcutaneous murine tumor model. J. Drug Target., 2004, 12(9-10), 585-591.
[http://dx.doi.org/10.1080/10611860400013451] [PMID: 15621684]
[33]
Cascante, M.; Centelles, J.J.; Veech, R.L.; Lee, W.N.P.; Boros, L.G. Role of thiamin (vitamin B-1) and transketolase in tumor cell proliferation. Nutr. Cancer, 2000, 36(2), 150-154.
[http://dx.doi.org/10.1207/S15327914NC3602_2] [PMID: 10890024]
[34]
Harivardhan Reddy, L.; Murthy, R.S.R. Etoposide-loaded nanoparticles made from glyceride lipids: Formulation, characterization, in vitro drug release, and stability evaluation. AAPS PharmSciTech, 2005, 6(2), E158-E166.
[http://dx.doi.org/10.1208/pt060224] [PMID: 16353973]
[35]
Park, J.W.; Benz, C.C.; Martin, F.J. Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin. Oncol., 2004, 31(6)(Suppl. 13), 196-205.
[http://dx.doi.org/10.1053/j.seminoncol.2004.08.009] [PMID: 15717745]
[36]
Patel, K.; Shrimanker, M.; Dave, R.; Modi, H.; Anand, J.; Bhadani, S. Preparation and in vivo study of doxorubicin HCl loaded chitosan nanoparticles prepared by w/o emulsion method. Int. J. Curr. Res., 2012, 4(12), 438-440.
[37]
Nanoparticles approved in the United States (US) and Europe (EU) for medical applications. Available from: https://nanohybrids.net/pages/cleared-nanoparticles-for-medical-use [Last accessed on: May 21, 2020].
[38]
Koo, H.; Huh, M.S.; Sun, I.C.; Yuk, S.H.; Choi, K.; Kim, K.; Kwon, I.C. In vivo targeted delivery of nanoparticles for theranosis. Acc. Chem. Res., 2011, 44(10), 1018-1028.
[http://dx.doi.org/10.1021/ar2000138] [PMID: 21851104]
[39]
Neha, B.; Ganesh, B.; Preeti, K. Drug delivery to the brain using polymeric nanoparticles: A review. Int. J. Phar. Life Sci., 2013, 2(3), 107-132.
[http://dx.doi.org/10.3329/ijpls.v2i3.15457]
[40]
Ali, I. Rahis-Uddin; Salim, K.; Rather, M.A.; Wani, W.A.; Haque, A. Advances in nano drugs for cancer chemotherapy. Curr. Cancer Drug Targets, 2011, 11(2), 135-146.
[http://dx.doi.org/10.2174/156800911794328493] [PMID: 21158724]
[41]
Saad, M.; Garbuzenko, O.B.; Ber, E.; Chandna, P.; Khandare, J.J.; Pozharov, V.P.; Minko, T. Receptor targeted polymers, dendrimers, liposomes: Which nanocarrier is the most efficient for tumor-specific treatment and imaging? J. Control. Release, 2008, 130(2), 107-114.
[http://dx.doi.org/10.1016/j.jconrel.2008.05.024] [PMID: 18582982]
[42]
Heidel, J.D.; Davis, M.E. Clinical developments in nanotechnology for cancer therapy. Pharm. Res., 2011, 28(2), 187-199.
[http://dx.doi.org/10.1007/s11095-010-0178-7] [PMID: 20549313]
[43]
Mainardes, R.; Urban, M.; Cinto, P.; Khalil, N.; Chaud, M.; Evangelista, R.; Daflon Gremiao, M. Colloidal carriers for ophthalmic drug delivery. Curr. Drug Targets, 2005, 6(3), 363-371.
[http://dx.doi.org/10.2174/1389450053765914] [PMID: 15857294]
[44]
de Jong, W.H.; Borm, P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[45]
Amiri, M.S.; Mohammadzadeh, V.; Yazdi, M.E.T.; Barani, M.; Rahdar, A.; Kyzas, G.Z. Plant-based gums and mucilages applications in pharmacology and nanomedicine: A review. Molecules, 2021, 26(6), 1770.
[http://dx.doi.org/10.3390/molecules26061770] [PMID: 33809917]
[46]
Iravani, S.; Varma, R.S. Plants and plant-based polymers as scaffolds for tissue engineering. Green Chem., 2019, 21(18), 4839-4867.
[http://dx.doi.org/10.1039/C9GC02391G]
[47]
Gagliardi, A.; Paolino, D.; Costa, N.; Fresta, M.; Cosco, D. Zein- vs. PLGA-based nanoparticles containing rutin: A comparative investigation. Mater. Sci. Eng. C, 2021, 118, 111538.
[http://dx.doi.org/10.1016/j.msec.2020.111538] [PMID: 33255091]
[48]
Gagliardi, A.; Froiio, F.; Salvatici, M.C.; Paolino, D.; Fresta, M.; Cosco, D. Characterization and refinement of zein-based gels. Food Hydrocoll., 2020, 101, 105555.
[http://dx.doi.org/10.1016/j.foodhyd.2019.105555]
[49]
Sailaja, A.K.; Amareshwar, P.; Chakravarty, P. Different techniques used for the preparation of nanoparticles using natural polymers and their application. Int. J. Pharm. Pharm. Sci., 2011, 3(2), 45-50.
[50]
Abbasov, I.B. Biodegradable polymer materials in medicine. J. Compos Bio Polymers, 2021, 9, 1-6.
[51]
Shukla, S.K.; Shukla, S.K.; Govender, P.P.; Giri, N.G. Biodegradable polymeric nano structures in therapeutic applications: Opportunities and challenges. RSC Advances, 2016, 97, 1-27.
[52]
Ikram, S.; Ahmed, S. Chitosan and its derivatives: A review in recent innovations. Int. J. Pharm. Sci. Res., 2015, 6(1), 14-30.
[53]
Na, J.H.; Lee, S.Y.; Lee, S.; Koo, H.; Min, K.H.; Jeong, S.Y.; Yuk, S.H.; Kim, K.; Kwon, I.C. Effect of the stability and deformability of self-assembled glycol chitosan nanoparticles on tumor-targeting efficiency. J. Control. Release, 2012, 163(1), 2-9.
[http://dx.doi.org/10.1016/j.jconrel.2012.07.028] [PMID: 22846988]
[54]
Nam, T.; Park, S.; Lee, S.Y.; Park, K.; Choi, K.; Song, I.C.; Han, M.H.; Leary, J.J.; Yuk, S.A.; Kwon, I.C.; Kim, K.; Jeong, S.Y. Tumor targeting chitosan nanoparticles for dual-modality optical/MR cancer imaging. Bioconjug. Chem., 2010, 21(4), 578-582.
[http://dx.doi.org/10.1021/bc900408z] [PMID: 20201550]
[55]
Singh, K.; Mishra, A. Gelatin nanoparticle: Preparation, characterization and application in drug delivery. Int. J. Pharm. Sci. Res., 2014, 5(6), 2149-2157.
[56]
Lee, S.J.; Yhee, J.Y.; Kim, S.H.; Kwon, I.C.; Kim, K. Biocompatible gelatin nanoparticles for tumor-targeted delivery of polymerized siRNA in tumor-bearing mice. J. Control. Release, 2013, 172(1), 358-366.
[http://dx.doi.org/10.1016/j.jconrel.2013.09.002] [PMID: 24036198]
[57]
Wang, X.; Wei, B.; Cheng, X.; Wang, J.; Tang, R. Phenylboronic acid-decorated gelatin nanoparticles for enhanced tumor targeting and penetration. Nanotechnology, 2016, 27(38), 385101.
[http://dx.doi.org/10.1088/0957-4484/27/38/385101] [PMID: 27514078]
[58]
Kommareddy, S.; Amiji, M. Biodistribution and pharmacokinetic analysis of long-circulating thiolated gelatin nanoparticles following systemic administration in breast cancer-bearing mice. J. Pharm. Sci., 2007, 96(2), 397-407.
[http://dx.doi.org/10.1002/jps.20813] [PMID: 17075865]
[59]
Xu, J.; Gattacceca, F.; Amiji, M. Biodistribution and pharmacokinetics of EGFR-targeted thiolated gelatin nanoparticles following systemic administration in pancreatic tumor-bearing mice. Mol. Pharm., 2013, 10(5), 2031-2044.
[http://dx.doi.org/10.1021/mp400054e] [PMID: 23544877]
[60]
Merodio, M.; Arnedo, A.; Renedo, M.J.; Irache, J.M. Ganciclovir-loaded albumin nanoparticles: Characterization and in vitro release properties. Eur. J. Pharm. Sci., 2001, 12(3), 251-259.
[http://dx.doi.org/10.1016/S0928-0987(00)00169-X] [PMID: 11113644]
[61]
Kolluru, L.P.; Rizvi, S.A.A.; D’Souza, M.; D’Souza, M.J. Formulation development of albumin based theragnostic nanoparticles as a potential delivery system for tumor targeting. J. Drug Target., 2013, 21(1), 77-86.
[http://dx.doi.org/10.3109/1061186X.2012.729214] [PMID: 23036042]
[62]
Zu, Y.; Zhang, Y.; Zhao, X.; Zhang, Q.; Liu, Y.; Jiang, R. Optimization of the preparation process of vinblastine sulfate (VBLS)-loaded folate-conjugated bovine serum albumin (BSA) nanoparticles for tumor-targeted drug delivery using response surface methodology (RSM). Int. J. Nanomedicine, 2009, 4, 321-333.
[http://dx.doi.org/10.2147/IJN.S8501] [PMID: 20054435]
[63]
Arıca, B.; Çalış, S.; Kaş, H.S.; Sargon, M.F.; Hıncal, A.A. 5-Fluorouracil encapsulated alginate beads for the treatment of breast cancer. Int. J. Pharm., 2002, 242(1-2), 267-269.
[http://dx.doi.org/10.1016/S0378-5173(02)00172-2] [PMID: 12176261]
[64]
Wang, X.; Chang, Z.; Nie, X.; Li, Y.; Hu, Z.; Ma, J.; Wang, W.; Song, T.; Zhou, P.; Wang, H.; Yuan, Z. A conveniently synthesized Pt (IV) conjugated alginate nanoparticle with ligand self-shielded property for targeting treatment of hepatic carcinoma. Nanomedicine, 2019, 15(1), 153-163.
[http://dx.doi.org/10.1016/j.nano.2018.09.012] [PMID: 30308299]
[65]
Guo, H.; Lai, Q.; Wang, W.; Wu, Y.; Zhang, C.; Liu, Y.; Yuan, Z. Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy. Int. J. Pharm., 2013, 451(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.025] [PMID: 23618965]
[66]
Zhang, C.; Wang, W.; Liu, T.; Wu, Y.; Guo, H.; Wang, P.; Tian, Q.; Wang, Y.; Yuan, Z. Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials, 2012, 33(7), 2187-2196.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.045] [PMID: 22169820]
[67]
Martini, L.G.; Collett, J.H.; Attwood, D. The release of 5-fluorouracil from microspheres of poly(epsilon-caprolactone-co-ethylene oxide). Drug Dev. Ind. Pharm., 2000, 26(1), 7-12.
[http://dx.doi.org/10.1081/DDC-100100321] [PMID: 10677804]
[68]
Chawla, J.S.; Amiji, M.M. Biodegradable poly(ε-caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int. J. Pharm., 2002, 249(1-2), 127-138.
[http://dx.doi.org/10.1016/S0378-5173(02)00483-0] [PMID: 12433441]
[69]
Chawla, J.S.; Amiji, M.M. Cellular uptake and concentrations of tamoxifen upon administration in poly(ε-caprolactone) nanoparticles. AAPS PharmSci, 2003, 5(1), 28-34.
[http://dx.doi.org/10.1208/ps050103] [PMID: 12713275]
[70]
Sathyamoorthy, N.; Magharla, D.; Chintamaneni, P.; Vankayalu, S. Optimization of paclitaxel loaded poly (ε-caprolactone) nanoparticles using Box Behnken design. Beni. Suef Univ. J. Basic Appl. Sci., 2017, 6(4), 362-373.
[http://dx.doi.org/10.1016/j.bjbas.2017.06.002]
[71]
Nikam, V.K.; Kotade, K.B.; Gaware, V.M.; Dolas, R.T. Eudragit a versatile polymer: A review. Pharmacol. Online, 2011, 1, 152-164.
[72]
Yurtdaş-Kırımlıoğlu, G.; Güleç, K.; Görgülü, Ş.; Kıyan, H.T. Oseltamivir phosphate loaded pegylated-Eudragit nanoparticles for lung cancer therapy: Characterization, prolonged release, cytotoxicity profile, apoptosis pathways and in vivo anti-angiogenic effect by using CAM assay. Microvasc. Res., 2022, 139, 104251.
[http://dx.doi.org/10.1016/j.mvr.2021.104251] [PMID: 34520775]
[73]
Saraf, A.; Dubey, N.; Dubey, N.; Sharma, M. Enhancement of cytotoxicty of diallyl disulfide toward colon cancer by Eudragit S100/PLGA nanoparticles. J. Drug Deliv. Sci. Technol., 2021, 64, 102580.
[http://dx.doi.org/10.1016/j.jddst.2021.102580]
[74]
Bibi, N. ur Rehman, A.; Rana, N.F.; Akhtar, H.; Khan, M.I.; Faheem, M.; Jamal, S.B.; Ahmed, N. Formulation and characterization of curcumin nanoparticles for skin cancer treatment. Appl. Nanosci., 2022, 1-16.
[http://dx.doi.org/10.1007/s13204-022-02346-4]
[75]
Krishnaiah, Y.S.R.; Satyanarayana, V.; Dinesh Kumar, B.; Karthikeyan, R.S.; Bhaskar, P. In vivo pharmacokinetics in human volunteers: Oral administered guar gum-based colon-targeted 5-fluorouracil tablets. Eur. J. Pharm. Sci., 2003, 19(5), 355-362.
[http://dx.doi.org/10.1016/S0928-0987(03)00139-8] [PMID: 12907286]
[76]
Sharma, M.; Malik, R.; Verma, A.; Dwivedi, P.; Banoth, G.S.; Pandey, N.; Sarkar, J.; Mishra, P.R.; Dwivedi, A.K. Folic acid conjugated guar gum nanoparticles for targeting methotrexate to colon cancer. J. Biomed. Nanotechnol., 2013, 9(1), 96-106.
[http://dx.doi.org/10.1166/jbn.2013.1474] [PMID: 23627072]
[77]
Sarmah, J.K.; Mahanta, R.; Bhattacharjee, S.K.; Mahanta, R.; Biswas, A. Controlled release of tamoxifen citrate encapsulated in cross-linked guar gum nanoparticles. Int. J. Biol. Macromol., 2011, 49(3), 390-396.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.05.020] [PMID: 21641924]
[78]
Reddy, L.H. Novel drug delivery strategies for effective treatment of cancer: Implications of nanoparticulate carrier systems. Handbook of Particulate Drug Delivery; RaviKumar, M.N.V., Ed.; American Scientific Publishers: California, USA, 2008; 2, pp. 41- 64.
[79]
Arias, J.L.; Ruiz, M.A.; Gallardo, V.; Delgado, Á.V. Tegafur loading and release properties of magnetite/poly(alkylcyanoacrylate) (core/shell) nanoparticles. J. Control. Release, 2008, 125(1), 50-58.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.008] [PMID: 17949844]
[80]
Sairam, M.; Babu, V.; Naidu, B.; Aminabhavi, T.; Aminabhavi, T.M. Encapsulation efficiency and controlled release characteristics of crosslinked polyacrylamide particles. Int. J. Pharm., 2006, 320(1-2), 131-136.
[http://dx.doi.org/10.1016/j.ijpharm.2006.05.001] [PMID: 16766148]
[81]
Qin, M.; Hah, H.J.; Kim, G.; Nie, G.; Lee, Y.E.K.; Kopelman, R. Methylene blue covalently loaded polyacrylamide nanoparticles for enhanced tumor-targeted photodynamic therapy. Photochem. Photobiol. Sci., 2011, 10(5), 832-841.
[http://dx.doi.org/10.1039/c1pp05022b] [PMID: 21479315]
[82]
Jo, J.; Lee, C.H.; Folz, J.; Tan, J.W.Y.; Wang, X.; Kopelman, R. In vivo photoacoustic lifetime based oxygen imaging with tumor targeted G2 polyacrylamide nanosonophores. ACS Nano, 2019, 13(12), 14024-14032.
[http://dx.doi.org/10.1021/acsnano.9b06326] [PMID: 31820930]
[83]
Venkatraman, S.S.; Jie, P.; Min, F.; Freddy, B.Y.C.; Leong-Huat, G. Micelle-like nanoparticles of PLA–PEG–PLA triblock copolymer as chemotherapeutic carrier. Int. J. Pharm., 2005, 298(1), 219-232.
[http://dx.doi.org/10.1016/j.ijpharm.2005.03.023] [PMID: 15946811]
[84]
Karavelidis, V.; Bikiaris, D.; Avgoustakis, K. New thermosensitive nanoparticles prepared by biocompatible pegylated aliphatic polyester block copolymers for local cancer treatment. J. Pharm. Pharmacol., 2015, 67(2), 215-230.
[http://dx.doi.org/10.1111/jphp.12337] [PMID: 25616209]
[85]
Tsolou, A.; Angelou, E.; Didaskalou, S.; Bikiaris, D.; Avgoustakis, K.; Agianian, B.; Koffa, M.D. Folate and pegylated aliphatic polyester nanoparticles for targeted anticancer drug delivery. Int. J. Nanomedicine, 2020, 15, 4899-4918.
[http://dx.doi.org/10.2147/IJN.S244712] [PMID: 32764924]
[86]
Singh, K.; Singh, A.; Mishra, A. Synthesis, characterization and in vitro release profile of gentamicin loaded chitosan nanoparticle. Int. J. Pharm. Tech, 2017, 9(1), 29189-29198.
[87]
Wang, H.; George, G.; Bartlett, S.; Gao, C.; Islam, N. Nicotine hydrogen tartrate loaded chitosan nanoparticles: Formulation, characterization and in vitro delivery from dry powder inhaler formulation. Eur. J. Pharm. Biopharm., 2017, 113, 118-131.
[http://dx.doi.org/10.1016/j.ejpb.2016.12.023] [PMID: 28088005]
[88]
Ding, R.L.; Xie, F.; Hu, Y.; Fu, S.Z.; Wu, J.B.; Fan, J.; He, W.F.; He, Y.; Yang, L.L.; Lin, S.; Wen, Q.L. Preparation of endostatin-loaded chitosan nanoparticles and evaluation of the antitumor effect of such nanoparticles on the Lewis lung cancer model. Drug Deliv., 2017, 24(1), 300-308.
[http://dx.doi.org/10.1080/10717544.2016.1247927] [PMID: 28165807]
[89]
Jin, B.; Zhou, X.; Chen, C.; Zhang, X.; Chen, S. Preparation, characterization and in vitro evaluation of theophylline nanoparticles prepared with dextran-conjugated soy protein. Trop. J. Pharm. Res., 2015, 14(8), 1323-1332.
[http://dx.doi.org/10.4314/tjpr.v14i8.2]
[90]
Mohammadinejad, S.; Akbarzadeh, A.; Rahmati-Yamchi, M.; Hatam, S.; Kachalaki, S.; Zohreh, S.; Zarghami, N. Preparation and evaluation of chrysin encapsulated in PLGA-PEG nanoparticles in the T47-D breast cancer cell line. Asian Pac. J. Cancer Prev., 2015, 16(9), 3753-3758.
[http://dx.doi.org/10.7314/APJCP.2015.16.9.3753] [PMID: 25987033]
[91]
Kumar, V.; Seth, N.; Banerji, A. Formulation and characterization of polymeric nanoparticles of diclofenac sodium. Int. J. Recent Adv. Pharm. Res, 2015, 5(3), 77-86.
[92]
Parvin, S.; Rafshanjani, M.A.S.; Kader, M.A. Formulation and evaluation of dexamethasone loaded stearic acid nanoparticles by hot homogenization method. Int. Curr. Pharm. J., 2014, 3(12), 331-335.
[http://dx.doi.org/10.3329/icpj.v3i12.20829]
[93]
Ghaderi, S.; Ghanbarzadeh, S.; Mohammadhassani, Z.; Hamishehkar, H. Formulation of gammaoryzanol-loaded nanoparticles for potential application in fortifying food products. Adv. Pharm. Bull., 2014, 4(2)(Suppl. 2), 549-554.
[PMID: 25671188]
[94]
Srinivas, P.; Sai, P.K. Formulation and evaluation of Gemcitabine hydrochloride loaded solid lipid nanoparticles. J. Glob. Trends Pharm. Sci., 2014, 5(4), 2017-2023.
[95]
Shinde, S.S.; Hosmani, A.H. Preparation and evaluation lipid nanoparticles of fenofibrate obtained by spray drying technique. Pharmacophore, 2014, 5(1), 85-93.
[96]
Musmade, K.P.; Deshpande, P.B.; Musmade, P.B.; Maliyakkal, M.N.; Kumar, A.R.; Reddy, M.S.; Udupa, N. Methotrexate-loaded biodegradable nanoparticles: Preparation, characterization and evaluation of its cytotoxic potential against U-343 MGa human neuronal glioblastoma cells. Bull. Mater. Sci., 2014, 37(4), 945-951.
[http://dx.doi.org/10.1007/s12034-014-0030-5]
[97]
Akbari, Z.; Amanlou, M.; Karimi-Sabet, J.; Golestani, A.; Niasar, M.S. Characterization of carbamazepine-loaded solid lipid nanoparticles prepared by rapid expansion of supercritical solution. Trop. J. Pharm. Res., 2015, 13(12), 1955-1961.
[http://dx.doi.org/10.4314/tjpr.v13i12.1]
[98]
Jana, U.; Mohanty, A.K.; Pal, S.L.; Manna, P.K.; Mohanta, G.P. Felodipine loaded PLGA nanoparticles: Preparation, physicochemical characterization and in vivo toxicity study. Nano Converg., 2014, 1(1), 31.
[http://dx.doi.org/10.1186/s40580-014-0031-5]
[99]
Ahmed, I.S.; Nour, S.; Hosay, R.E.; Shalaby, S. Preparation and in vitro evaluation of Poly-ε-Caprolactone nanoparticles containing Atorvastatin calcium. Proceedings of the 5th International Conference on Nanotechnology: Fundamentals and Applications, August 11-13, 2014
[100]
Halayqa, M.; Domańska, U. PLGA biodegradable nanoparticles containing perphenazine or chlorpromazine hydrochloride: Effect of formulation and release. Int. J. Mol. Sci., 2014, 15(12), 23909-23923.
[http://dx.doi.org/10.3390/ijms151223909] [PMID: 25535080]
[101]
Patel, K.C.; Pramanik, S. Formulation and characterization of mefenamic acid loaded polymeric nanoparticles. World J. Pharm. Pharm. Sci., 2014, 3(6), 1391-1405.
[102]
Dandagi, P.M.; Rath, S.P.; Gadad, A.P.; Mastiholimath, V.S. Taste masked quinine sulphate loaded solid lipid nanoparticles for flexible pediatric dosing. Indian J. Pharm. Educ. Res., 2014, 48(Suppl.), 93-99.
[http://dx.doi.org/10.5530/ijper.48.4s.12]
[103]
Amirah, M.G.; Amirul, A.A.; Wahab, H.A. Formulation and characterization of Rifampicin loaded P(3HB-co-4HB) nanoparticles. Int. J. Pharm. Pharm. Sci., 2014, 6(4), 140-146.
[104]
Moradhaseli, S.; Mirakabadi, A.Z.; Sarzaeem, A.; Dounighi, N.M.; Soheily, S.; Borumand, M.R. Preparation and characterization of sodium alginate nanoparticles containing ICD-85 (venom derived peptides). Int. J. Innov. Appl. Stud., 2013, 4(3), 534-542.
[105]
Verma, A.; Ratnawat, S.; Gupta, A.K.; Jain, S. PLGA nanoparticles for delivery of losartan potassium through intranasal route: Development and characterization. Int. J. Drug Dev. Res, 2013, 5(1), 185-196.
[106]
Aygul, G.; Yerlikaya, F.; Caban, S.; Vural, I.; Capan, Y. Formulation and in vitro evaluation of paclitaxel loaded nanoparticles. Hacettepe. Uni. J. Facul. Pharm, 2013, 33(1), 25-40.
[107]
Dinda, A.; Biswal, I.; Chowdhury, P.; Mohapatra, R. Formulation, development and evaluation of paclitaxel loaded solid lipid nanoparticles using glyceryl monostearate. J. Appl. Pharm. Sci., 2013, 3(08), 133-138.
[108]
Wu, Z.M.; Ling, L.; Zhou, L.Y.; Guo, X.D.; Jiang, W.; Qian, Y.; Luo, K.Q.; Zhang, L.J. Novel preparation of PLGA/HP55 nanoparticles for oral insulin delivery. Nanoscale Res. Lett., 2012, 7(1), 299.
[http://dx.doi.org/10.1186/1556-276X-7-299] [PMID: 22682064]
[109]
Patel, P. Formulation and evaluation of anticancer activity of etoposide loaded freeze dried PLGA nanoparticles (nanocarrier). J. Nanomed. Nanotechnol., 2012, 3(9), 141-150.
[110]
Kharia, A.A.; Singhai, A.K.; Verma, R. Formulation and evaluation of polymeric nanoparticles of an antiviral drug for gastroretention. Int. J. Pharm. Sci and Nanotechnology, 2012, 4(4), 1557-1562.
[http://dx.doi.org/10.37285/ijpsn.2011.4.4.6]
[111]
Paruchuri, R.; Trivedi, S.; Joshi, V.K.; Pavuluri, G.; Senthil, K.M. Formulation, optimization and characterization of Irinotecan nanoparticles. IJPI’s J. Pharm. Cosmet, 2012, 2(1), 1-10.
[112]
Kotikalapudi, L.S.; Adepu, L.; Ratna, J.V.; Diwan, P.V. Formulation and in vitro characterization of domperidone loaded solid lipid nanoparticles. Int. J. Pharm. Biomed. Res, 2012, 3(1), 22-29.
[113]
Srinivas, P.; Pragna, S. Formulation and evaluation of moxifloxacin hydrochloride ocular nanoparticles. Int. J. Nanodimens., 2012, 3(2), 105-113.
[114]
Surolia, R.; Pachauri, M.; Ghosh, P.C. Preparation and characterization of monensin loaded PLGA nanoparticles: In vitro anti-malarial activity against Plasmodium falciparum. J. Biomed. Nanotechnol., 2012, 8(1), 172-181.
[http://dx.doi.org/10.1166/jbn.2012.1366] [PMID: 22515105]
[115]
Dubey, N.; Varshney, R.; Shukla, J.; Ganeshpurkar, A.; Hazari, P.P.; Bandopadhaya, G.P.; Mishra, A.K.; Trivedi, P. Synthesis and evaluation of biodegradable PCL/PEG nanoparticles for neuroendocrine tumor targeted delivery of somatostatin analog. Drug Deliv., 2012, 19(3), 132-142.
[http://dx.doi.org/10.3109/10717544.2012.657718] [PMID: 22428685]
[116]
Ankarao, A.; Naik, V.V.; Rao, K.H. Formulation and in vitro evaluation of oral sustained release nanoparticulate delivery system of carvedilol. Int. J. Res. Pharm. Biomed. Sci., 2012, 3(2), 924-928.
[117]
Vaculikova, E.; Grunwaldova, V.; Kral, V.; Dohnal, J.; Jampilek, J. Preparation of candesartan and atorvastatin nanoparticles by solvent evaporation. Molecules, 2012, 17(11), 13221-13234.
[http://dx.doi.org/10.3390/molecules171113221] [PMID: 23132139]
[118]
Bharathi, M.; Prasad, S.C.M.; Eswari, R.L.; Raja, S.W.; Allena, R.T.; Raj, S.B.; Reddy, K.B. Preparation and in vitro and in vivo characterization of valsartan loaded eudragit nanoparticles. Pharm. Sin., 2012, 3(5), 516-525.
[119]
Cetin, M.; Aktas, M.S.; Vural, I.; Ozturk, M. Salmon calcitonin-loaded Eudragit® and Eudragit®-PLGA nanoparticles: In vitro and in vivo evaluation. J. Microencapsul., 2012, 29(2), 156-166.
[http://dx.doi.org/10.3109/02652048.2011.635426] [PMID: 22126314]
[120]
Aboutaleb, E.; Noori, M.; Gandomi, N.; Atyabi, F.; Fazeli, M.R.; Jamalifar, H.; Dinarvand, R. Improved antimycobacterial activity of rifampin using solid lipid nanoparticles. Int. Nano Lett., 2012, 2(1), 33.
[http://dx.doi.org/10.1186/2228-5326-2-33]
[121]
Suganeswari, M.; Shering, A.; Raj, K.A.; Bharathi, P.; Sathish, B. Preparation, characterization and evaluation of nanoparticles containing hypolipidemic drug and antihypertensive drug. Int. J. Pharm. Biol. Arch., 2011, 2(3), 949-953.
[122]
Tamizhrasi, S.; Shukla, A.; Shivkumar, T.; Rathi, V.; Rathi, J.C. Formulation and evaluation of lamivudine loaded polymethacrylic acid nanoparticles. Int. J. Pharm. Tech. Res., 2009, 1(3), 411-415.
[123]
Jin, H.; Pi, J.; Zhao, Y.; Jiang, J.; Li, T.; Zeng, X.; Yang, P.; Evans, C.E.; Cai, J. EGFR-targeting PLGA-PEG nanoparticles as a curcumin delivery system for breast cancer therapy. Nanoscale, 2017, 9(42), 16365-16374.
[http://dx.doi.org/10.1039/C7NR06898K] [PMID: 29052674]
[124]
Agrawal, S.; Ahmad, H.; Dwivedi, M.; Shukla, M.; Arya, A.; Sharma, K.; Lal, J.; Dwivedi, A.K. PEGylated chitosan nanoparticles potentiate repurposing of ormeloxifene in breast cancer therapy. Nanomedicine, 2016, 11(16), 2147-2169.
[http://dx.doi.org/10.2217/nnm-2016-0095] [PMID: 27463533]
[125]
Shen, S.; Du, X.J.; Liu, J.; Sun, R.; Zhu, Y.H.; Wang, J. Delivery of bortezomib with nanoparticles for basal-like triple-negative breast cancer therapy. J. Control. Release, 2015, 208, 14-24.
[http://dx.doi.org/10.1016/j.jconrel.2014.12.043] [PMID: 25575864]
[126]
Kubetzko, S.; Balic, E.; Zangemeister-Wittke, W.U.; Pluckthun, A. PEGylation and multimerization of the anti-p185-HER-2 single-chain Fv fragment 4D5: Effects on tumor targeting. J. Biol. Chem., 2006, 28, 35186-35201.
[http://dx.doi.org/10.1074/jbc.M604127200] [PMID: 16963450]
[127]
Fang, C.; Shi, B.; Pei, Y.Y.; Hong, M.H.; Wu, J.; Chen, H.Z. In vivo tumor targeting of tumor necrosis factor-α-loaded stealth nanoparticles: Effect of MePEG molecular weight and particle size. Eur. J. Pharm. Sci., 2006, 27(1), 27-36.
[http://dx.doi.org/10.1016/j.ejps.2005.08.002] [PMID: 16150582]
[128]
Shenoy, D.B.; Amiji, M.M. Poly(ethylene oxide)-modified poly(ɛ-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int. J. Pharm., 2005, 293(1-2), 261-270.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.010] [PMID: 15778064]
[129]
Kleemann, E.; Neu, M.; Jekel, N.; Fink, L.; Schmehl, T.; Gessler, T.; Seeger, W.; Kissel, T. Nano-carriers for DNA delivery to the lung based upon a TAT-derived peptide covalently coupled to PEG–PEI. J. Control. Release, 2005, 109(1-3), 299-316.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.036] [PMID: 16298009]
[130]
Bibby, D.C.; Talmadge, J.E.; Dalal, M.K.; Kurz, S.G.; Chytil, K.M.; Barry, S.E.; Shand, D.G.; Steiert, M. Pharmacokinetics and biodistribution of RGD-targeted doxorubicin-loaded nanoparticles in tumor-bearing mice. Int. J. Pharm., 2005, 293(1-2), 281-290.
[http://dx.doi.org/10.1016/j.ijpharm.2004.12.021] [PMID: 15778066]
[131]
Li, B.; Li, Q.; Mo, J.; Dai, H. Drug-loaded polymeric nanoparticles for cancer stem cell targeting. Front. Pharmacol., 2017, 8(51), 51.
[http://dx.doi.org/10.3389/fphar.2017.00051] [PMID: 28261093]
[132]
Brigger, I.; Morizet, J.; Laudani, L.; Aubert, G.; Appel, M.; Velasco, V.; Terrier-Lacombe, M.J.; Desmaële, D.; d’Angelo, J.; Couvreur, P.; Vassal, G. Negative preclinical results with stealth® nanospheres-encapsulated Doxorubicin in an orthotopic murine brain tumor model. J. Control. Release, 2004, 100(1), 29-40.
[http://dx.doi.org/10.1016/j.jconrel.2004.07.019] [PMID: 15491808]
[133]
Oyewumi, M.O.; Yokel, R.A.; Jay, M.; Coakley, T.; Mumper, R.J. Comparison of cell uptake, biodistribution and tumor retention of folate-coated and PEG-coated gadolinium nanoparticles in tumor-bearing mice. J. Control. Release, 2004, 95(3), 613-626.
[http://dx.doi.org/10.1016/j.jconrel.2004.01.002] [PMID: 15023471]
[134]
Schiffelers, R.M.; Ansari, A.; Xu, J.; Zhou, Q.; Tang, Q.; Storm, G.; Molema, G.; Lu, P.Y.; Scaria, P.V.; Woodle, M.C. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res., 2004, 32(19), e149.
[http://dx.doi.org/10.1093/nar/gnh140] [PMID: 15520458]
[135]
Kwon, H.Y.; Lee, J.Y.; Choi, S.W.; Jang, Y.; Kim, J.H. Preparation of PLGA nanoparticles containing estrogen by emulsification–diffusion method. Colloids Surf. A Physicochem. Eng. Asp., 2001, 182(1-3), 123-130.
[http://dx.doi.org/10.1016/S0927-7757(00)00825-6]
[136]
Zakeri-Milani, P.; Shirani, A.; Nokhodchi, A.; Mussa Farkhani, S.; Mohammadi, S.; Shahbazi Mojarrad, J.; Mahmoudian, M.; Gholikhani, T.; Farshbaf, M.; Valizadeh, H. Self-assembled peptide nanoparticles for efficient delivery of methotrexate into cancer cells. Drug Dev. Ind. Pharm., 2020, 46(4), 521-530.
[http://dx.doi.org/10.1080/03639045.2020.1734017] [PMID: 32116040]
[137]
Kim, E.J.; Lim, K.M.; Kim, K.Y.; Bae, O.N.; Noh, J.Y.; Chung, S.M.; Shin, S.; Yun, Y.P.; Chung, J.H. Doxorubicin-induced platelet cytotoxicity: A new contributory factor for doxorubicin-mediated thrombocytopenia. J. Thromb. Haemost., 2009, 7(7), 1172-1183.
[http://dx.doi.org/10.1111/j.1538-7836.2009.03477.x] [PMID: 19426282]
[138]
Cheng, J.; Teply, B.; Sherifi, I.; Sung, J.; Luther, G.; Gu, F.; Levynissenbaum, E.; Radovicmoreno, A.; Langer, R.; Farokhzad, O. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials, 2007, 28(5), 869-876.
[http://dx.doi.org/10.1016/j.biomaterials.2006.09.047] [PMID: 17055572]
[139]
Molpeceres, J.; Aberturas, M.R.; Guzman, M. Biodegradable nanoparticles as a delivery system for cyclosporine: Preparation and characterization. J. Microencapsul., 2000, 17(5), 599-614.
[http://dx.doi.org/10.1080/026520400417658] [PMID: 11038119]
[140]
Rao, A.; Schoenenberger, M.; Gnecco, E.; Glatzel, T.; Meyer, E.; Brändlin, D.; Scandella, L. Characterization of nanoparticles using atomic force microscopy. J. Phys. Conf. Ser., 2007, 61(1), 971-976.
[http://dx.doi.org/10.1088/1742-6596/61/1/192]
[141]
Garbett, N.C.; Brock, G.N. Differential scanning calorimetry as a complementary diagnostic tool for the evaluation of biological samples. Biochim. Biophys. Acta, 2015, 4, 3-12.
[PMID: 26459005]
[142]
Jores, K.; Mehnert, W.; Drechsler, M.; Bunjes, H.; Johann, C.; Mäder, K. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J. Control. Release, 2004, 95(2), 217-227.
[http://dx.doi.org/10.1016/j.jconrel.2003.11.012] [PMID: 14980770]
[143]
Pignatello, R.; Ricupero, N.; Bucolo, C.; Maugeri, F.; Maltese, A.; Puglisi, G. Preparation and characterization of Eudragit Retard nanosuspensions for the ocular delivery of cloricromene. AAPS PharmSciTech, 2006, 7(1), E192-E198.
[http://dx.doi.org/10.1208/pt070127] [PMID: 16584158]
[144]
Ballare, J.; Banerjee, R.; Das, S. Aspirin loaded albumin nanoparticles by coacervation, implications in drug delivery. Trends Biomater. Artif. Organs, 2005, 18, 203-211.
[145]
Patel, J.; Patel, M. Stomach specific anti-helicobacter pylori therapy: Preparation and evaluation of amoxicillin-loaded chitosan mucoadhesive microspheres. Curr. Drug Deliv., 2007, 4(1), 41-50.
[http://dx.doi.org/10.2174/156720107779314811] [PMID: 17269916]
[146]
Patil, Y.B.; Toti, U.S.; Khdair, A.; Ma, L.; Panyam, J. Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials, 2009, 30(5), 859-866.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.056] [PMID: 19019427]
[147]
Jünemann, D.; Dressman, J. Analytical methods for dissolution testing of nanosized drugs. J. Pharm. Pharmacol., 2012, 64(7), 931-943.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01520.x] [PMID: 22686341]
[148]
das Neves, J.; Amiji, M.; Bahia, M.F.; Sarmento, B. Assessing the physical–chemical properties and stability of dapivirine-loaded polymeric nanoparticles. Int. J. Pharm., 2013, 456(2), 307-314.
[http://dx.doi.org/10.1016/j.ijpharm.2013.08.049] [PMID: 24012910]
[149]
Lee, M.K.; Lim, S.J.; Kim, C.K. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials, 2007, 28(12), 2137-2146.
[http://dx.doi.org/10.1016/j.biomaterials.2007.01.014] [PMID: 17257668]
[150]
Lin, W.; Huang, Y.; Zhou, X.D.; Ma, Y. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol. Appl. Pharmacol., 2006, 217(3), 252-259.
[http://dx.doi.org/10.1016/j.taap.2006.10.004] [PMID: 17112558]
[151]
van Vlerken, L.E.; Vyas, T.K.; Amiji, M.M. Poly(ethylene glycol)-modified Nanocarriers for Tumor-targeted and Intracellular Delivery. Pharm. Res., 2007, 24(8), 1405-1414.
[http://dx.doi.org/10.1007/s11095-007-9284-6] [PMID: 17393074]
[152]
Mahapatro, A.; Singh, D.K. Biodegradable nanoparticles are excellent vehicle for site directed in vivo delivery of drugs and vaccines. J. Nanobiotechnology, 2011, 9(1), 55.
[http://dx.doi.org/10.1186/1477-3155-9-55] [PMID: 22123084]
[153]
Yu, M.K.; Park, J.; Jon, S. Targeting strategies for multifunctional nanoparticles in cancer imaging and therapy. Theranostics, 2012, 2(1), 3-44.
[http://dx.doi.org/10.7150/thno.3463] [PMID: 22272217]
[154]
Awasthi, R.; Roseblade, A.; Hansbro, P.M.; Rathbone, M.J.; Dua, K.; Bebawy, M. Nanoparticles in cancer treatment: Opportunities and obstacles. Curr. Drug Targets, 2018, 19(14), 1696-1709.
[http://dx.doi.org/10.2174/1389450119666180326122831] [PMID: 29577855]
[155]
Xu, Z.; Gu, W.; Huang, J.; Sui, H.; Zhou, Z.; Yang, Y.; Yan, Z.; Li, Y. In vitro and in vivo evaluation of actively targetable nanoparticles for paclitaxel delivery. Int. J. Pharm., 2005, 288(2), 361-368.
[http://dx.doi.org/10.1016/j.ijpharm.2004.10.009] [PMID: 15620876]
[156]
Oyewumi, M.O.; Liu, S.; Moscow, J.A.; Mumper, R.J. Specific association of thiamine-coated gadolinium nanoparticles with human breast cancer cells expressing thiamine transporters. Bioconjug. Chem., 2003, 14(2), 404-411.
[http://dx.doi.org/10.1021/bc0340013] [PMID: 12643751]
[157]
Kim, S.H.; Jeong, J.H.; Chun, K.W.; Park, T.G. Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate. Langmuir, 2005, 21(19), 8852-8857.
[http://dx.doi.org/10.1021/la0502084] [PMID: 16142970]
[158]
Bellocq, N.C.; Pun, S.H.; Jensen, G.S.; Davis, M.E. Transferrin-containing, cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjug. Chem., 2003, 14(6), 1122-1132.
[http://dx.doi.org/10.1021/bc034125f] [PMID: 14624625]
[159]
Gao, X.; Tao, W.; Lu, W.; Zhang, Q.; Zhang, Y.; Jiang, X.; Fu, S. Lectin-conjugated PEG–PLA nanoparticles: Preparation and brain delivery after intranasal administration. Biomaterials, 2006, 27(18), 3482-3490.
[http://dx.doi.org/10.1016/j.biomaterials.2006.01.038] [PMID: 16510178]
[160]
Hayes, M.E.; Drummond, D.C.; Hong, K.; Zheng, W.W.; Khorosheva, V.A.; Cohen, J.A. Noble; Park, J.W.; Marks, J.D.; Benz, C.C.; Kirpotin, D.B. Increased target specificity of anti-HER2 genospheres by modification of surface charge and degree of PEGylation. Mol. Pharm., 2006, 3(6), 726-736.
[http://dx.doi.org/10.1021/mp060040v] [PMID: 17140260]
[161]
Jeong, Y.; Seo, S.; Park, I.; Lee, H.; Kang, I.; Akaike, T.; Cho, C. Cellular recognition of paclitaxel-loaded polymeric nanoparticles composed of poly(γ-benzyl l-glutamate) and poly(ethylene glycol) diblock copolymer endcapped with galactose moiety. Int. J. Pharm., 2005, 296(1-2), 151-161.
[http://dx.doi.org/10.1016/j.ijpharm.2005.02.027] [PMID: 15885467]
[162]
Farokhzad, O.C.; Cheng, J.; Teply, B.A.; Sherifi, I.; Jon, S.; Kantoff, P.W.; Richie, J.P.; Langer, R. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. Proc. Natl. Acad. Sci. USA, 2006, 103(16), 6315-6320.
[http://dx.doi.org/10.1073/pnas.0601755103] [PMID: 16606824]
[163]
Russell-Jones, G.; McTavish, K.; McEwan, J.; Rice, J.; Nowotnik, D. Vitamin-mediated targeting as a potential mechanism to increase drug uptake by tumours. J. Inorg. Biochem., 2004, 98(10), 1625-1633.
[http://dx.doi.org/10.1016/j.jinorgbio.2004.07.009] [PMID: 15458825]
[164]
Soe, Z.C.; Poudel, B.K.; Nguyen, H.T.; Thapa, R.K.; Ou, W.; Gautam, M.; Poudel, K.; Jin, S.G.; Jeong, J.H.; Ku, S.K.; Choi, H.G.; Yong, C.S.; Kim, J.O. Folate-targeted nanostructured chitosan/chondroitin sulfate complex carriers for enhanced delivery of bortezomib to colorectal cancer cells. Asian Journal of Pharmaceutical Sciences, 2019, 14(1), 40-51.
[http://dx.doi.org/10.1016/j.ajps.2018.09.004] [PMID: 32104437]
[165]
Hattori, Y.; Maitani, Y. Enhanced in vitro DNA transfection efficiency by novel folate-linked nanoparticles in human prostate cancer and oral cancer. J. Control. Release, 2004, 97(1), 173-183.
[http://dx.doi.org/10.1016/j.jconrel.2004.03.007] [PMID: 15147814]
[166]
Pun, S.H.; Tack, F.; Bellocq, N.C.; Cheng, J.; Grubbs, B.H.; Jensen, G.S.; Davis, M.E.; Brewster, M.; Janicot, M.; Janssens, B.; Floren, W.; Bakker, A. Targeted delivery of RNA-cleaving DNA enzyme (DNAzyme) to tumor tissue by transferrin-modified, cyclodextrin-based particles. Cancer Biol. Ther., 2004, 3(7), 641-650.
[http://dx.doi.org/10.4161/cbt.3.7.918] [PMID: 15136766]
[167]
Yoo, J.; Park, C.; Yi, G.; Lee, D.; Koo, H. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers (Basel), 2019, 11(5), 640-653.
[http://dx.doi.org/10.3390/cancers11050640] [PMID: 31072061]
[168]
Mao, S.; Neu, M.; Germershaus, O.; Merkel, O.; Sitterberg, J.; Bakowsky, U.; Kissel, T. Influence of polyethylene glycol chain length on the physicochemical and biological properties of poly(ethylene imine)-graft-poly(ethylene glycol) block copolymer/SiRNA polyplexes. Bioconjug. Chem., 2006, 17(5), 1209-1218.
[http://dx.doi.org/10.1021/bc060129j] [PMID: 16984130]
[169]
Mishra, S.; Webster, P.; Davis, M.E. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur. J. Cell Biol., 2004, 83(3), 97-111.
[http://dx.doi.org/10.1078/0171-9335-00363] [PMID: 15202568]
[170]
Li, W.; Huang, Z.; MacKay, J.A.; Grube, S.; Szoka, F.C. Jr Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipoparticles: Effects of PEG chain length, lipid composition and assembly conditions on gene delivery. J. Gene Med., 2005, 7(1), 67-79.
[http://dx.doi.org/10.1002/jgm.634] [PMID: 15515149]
[171]
Shi, Y.; Su, C.; Cui, W.; Li, H.; Liu, L.; Feng, B.; Liu, M.; Su, R.; Zhao, L. Gefitinib loaded folate decorated bovine serum albumin conjugated carboxymethyl- betacyclodextrin nanoparticles enhance drug delivery and attenuate autophagy in folate receptor-positive cancer cells. J. Nanobiotech, 2014, 12(43), 1-12.
[172]
Choi, S.W.; Kim, J.H. Design of surface-modified poly(d,l-lactide-co-glycolide) nanoparticles for targeted drug delivery to bone. J. Control. Release, 2007, 122(1), 24-30.
[http://dx.doi.org/10.1016/j.jconrel.2007.06.003] [PMID: 17628158]
[173]
Dreis, S.; Rothweiler, F.; Michaelis, M.; Cinatl, J., Jr; Kreuter, J.; Langer, K. Preparation, characterisation and maintenance of drug efficacy of doxorubicin-loaded human serum albumin (HSA) nanoparticles. Int. J. Pharm., 2007, 341(1-2), 207-214.
[http://dx.doi.org/10.1016/j.ijpharm.2007.03.036] [PMID: 17478065]
[174]
Wong, H.L.; Rauth, A.M.; Bendayan, R.; Wu, X.Y. In vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model. Eur. J. Pharm. Biopharm., 2007, 65(3), 300-308.
[http://dx.doi.org/10.1016/j.ejpb.2006.10.022] [PMID: 17156986]
[175]
Schnyder, A.; Krähenbühl, S.; Drewe, J.; Huwyler, J. Targeting of daunomycin using biotinylated immunoliposomes: Pharmacokinetics, tissue distribution and in vitro pharmacological effects. J. Drug Target., 2005, 13(5), 325-335.
[http://dx.doi.org/10.1080/10611860500206674] [PMID: 16199376]
[176]
Liu, J.; Zeng, F.; Allen, C. Influence of serum protein on polycarbonate-based copolymer micelles as a delivery system for a hydrophobic anti-cancer agent. J. Control. Release, 2005, 103(2), 481-497.
[http://dx.doi.org/10.1016/j.jconrel.2004.12.013] [PMID: 15763628]
[177]
Kukowska-Latallo, J.F.; Candido, K.A.; Cao, Z.; Nigavekar, S.S.; Majoros, I.J.; Thomas, T.P.; Balogh, L.P.; Khan, M.K.; Baker, J.R., Jr Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer. Cancer Res., 2005, 65(12), 5317-5324.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3921] [PMID: 15958579]
[178]
Vinogradov, S.V.; Batrakova, E.V.; Kabanov, A.V. Nanogels for oligonucleotide delivery to the brain. Bioconjug. Chem., 2004, 15(1), 50-60.
[http://dx.doi.org/10.1021/bc034164r] [PMID: 14733583]
[179]
Gupta, M.; Marwaha, R.K.; Dureja, H. Formulation and characterization of gefitinib-loaded polymeric nanoparticles using Box-Behnken design. Curr. Nanomed., 2018, 8, 1-15.
[180]
Cho, C.S.; Cho, K.Y.; Park, I.K.; Kim, S.H.; Sasagawa, T.; Uchiyama, M.; Akaike, T. Receptor-mediated delivery of all trans-retinoic acid to hepatocyte using poly(l-lactic acid) nanoparticles coated with galactose-carrying polystyrene. J. Control. Release, 2001, 77(1-2), 7-15.
[http://dx.doi.org/10.1016/S0168-3659(01)00390-X] [PMID: 11689255]
[181]
Liu, X.; Yaszemski, M.J.; Lu, L. Expansile crosslinked polymersome for pH-sensitive delivery of anticancer drugs. US10188606B2, 2019.
[182]
Battaglia, G. Chemotactic, drug-containing polymersomes. US20190046445A1, 2020.
[183]
Nallani, M.; Decaillot, F.; Cornell, T.A.; Khan, A.K. Polymersomes comprising a soluble encapsulated antigen as well as methods of making and uses thereof. Patent WO2019145475A2, 2019.
[184]
Graham, O.R.; Bruns, N. Force-responsive polymersomes and nanoreactors; processes utilizing the same. Patent WO2019034597A1, 2019.
[185]
Battaglia, G.; Poma, A.; Cecchin, D. Metabolisable pH sensitive polymersomes. Patent WO2019197834A1, 2019.
[186]
Spulber, M.; Tvermoes, D.C.; Gorecki, R.; Haugsted, F. Vesicle incorporating transmembrane protein. Patent WO2019081371A1, 2019.
[187]
Massadeh, S.; Alaamery, M. Method for delivering pharmaceutical nanoparticles to cancer cells. US20190298856A1, 2020.
[188]
Battaglia, G. Fumarate polymerosomes. Patent US20190076359A1, 2021.
[189]
Greenspan, M.H. Topical composition and delivery system and its use. Patent WO2017135948A1, 2017.
[190]
Scott, E.A.; Allen, S.D. Facile assembly of soft nanoarchitectures and co-loading of hydrophilic and hydrophobic molecules via flash nanoprecipitation. US20180022878A1, 2020.
[191]
Fenghua, M.; Yan, Z.; Zhiyuan, Z. Ovarian cancer specifically targeted biodegradable amphiphilic polymer, polymer vesicle prepared from same and application of amphiphilic polymer. Patent CN105669964A, 2017.
[192]
Fenghua, M.; Weijing, Y.; Yuan, F.; Yan, Z.; Zhiyuan, Z. Antitumor nano medicine based on cross-linking biodegradable polymer vesica and preparation method of anti-tumor nano medicine. Patent CN105997880A, 2019.
[193]
Teesalu, T.; Scodeller, P.; Rouslahti, E. Compositions that target tumor-associated macrophages and methods of use thereof. W02019067984A2, 2019.
[194]
Jianxun, D.; Ying, Z.; Xiuli, Z.; Xuesi, C. Drug-loaded polymer vesicle and preparation method thereof. Patent CN104997755A, 2018.
[195]
Ghoroghchian, P.P. Compositions and methods for inducing nanoparticle-mediated microvascular embolization of tumors. Patent WO2016022805A1, 2016.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy