Generic placeholder image

Current Green Chemistry

Editor-in-Chief

ISSN (Print): 2213-3461
ISSN (Online): 2213-347X

Review Article

Fungal-Assisted Bioremediation of Agricultural Organic Pollutants (Pesticides and Herbicides)

Author(s): Pankaj Kumar Chaurasia*, Nagendra Sharma, Nagraj, Darshan Maganlal Rudakiya, Sunita Singh* and Shashi Lata Bharati*

Volume 9, Issue 1, 2022

Published on: 19 October, 2022

Page: [14 - 25] Pages: 12

DOI: 10.2174/2213346109666220927121948

Price: $65

Abstract

Extensive use of pesticides and herbicides in the agricultural fields for the safeguard of crops engenders huge concern regarding pollution of these agricultural fields as well as directly or indirectly linked to an aquatic environment. In order to find out the apt bioremediation techniques that could be potentially used against these highly noxious agricultural pollutants, utilization of fungi and their associated enzymes like laccases and others may be an imperative tool against these pesticides, insecticides, and herbicides. A fungal system, including fungal enzymes, has proved their efficacy in the degradation studies of malathion (1), acetamiprid (2), 2, 4-D (3), chlorimuron-ethyl, imidacloprid (4), flubendiamide (5), thiamethoxam (6), pyrimethanil (7), cypermethrin (8), nicosulfuron (9), chlorpyrifos (10), isoproturon (11), chlorothalonil (12), DDT (13), atrazine (14), and alachlor (15) like agricultural organic pollutants which have been meritoriously and succinctly conferred here.

There are limited recent works on fungal system-mediated bioremediation of pesticides and herbicides compared to a bacterial system, that is why, authors have objectively decided to compile the recent promising researches on the topic to provide an effective and informative update on the significant applicability of the fungal system in the removal of such organic pollutants. Herein, authors have best tried to present a clear, subject-centric and compact picture of the operative contribution of fungal systems (fungi and associated enzymes) in the biodegradation of different pesticides/insecticides or herbicides.

Keywords: Fungal-assisted bioremediation, fungal enzymes, agrochemicals, laccases, mediators, biodegradation, pesticides, herbicides

Graphical Abstract

[1]
Sharma, P.; Parakh, S.K.; Singh, S.P.; Parra-Saldivar, R.; Kim, S.H.; Varjani, S.; Tong, Y.W. A critical review on microbes-based treatment strategies for mitigation of toxic pollutants. Sci. Total Environ., 2022, 834, 155444.
[http://dx.doi.org/10.1016/j.scitotenv.2022.155444] [PMID: 35461941]
[2]
Pande, V.; Pandey, S.C.; Sati, D.; Bhatt, P.; Samant, M. Microbial interventions in bioremediation of heavy metal contaminants in agroeco-system. Front. Microbiol., 2022, 13, 824084.
[http://dx.doi.org/10.3389/fmicb.2022.824084] [PMID: 35602036]
[3]
Zhang, T.; Zhang, H. Microbial consortia are needed to degrade soil pollutants. Microorganisms, 2022, 10(2), 261.
[http://dx.doi.org/10.3390/microorganisms10020261] [PMID: 35208716]
[4]
Chaurasia, P.K.; Bharati, S.L. Research Advances in the Fungal World: Culture, Isolation, Identification, Classification, Characterization, Properties and Kinetics; Nova Science Publishers, Inc: USA, 2020, pp. 1-419.
[5]
Bennett, J.W. Mycotechnology: The role of fungi in biotechnology1Based on a lecture held at the symposium, ‘Progress in US Biotechnology’, at the 8th European Congress on Biotechnology (ECB8) in Budapest, Hungary, August 1997.1. J. Biotechnol., 1998, 66(2-3), 101-107.
[http://dx.doi.org/10.1016/S0168-1656(98)00133-3] [PMID: 9866863]
[6]
Füting, P.; Barthel, L.; Cairns, T.C.; Briesen, H.; Schmideder, S. Filamentous fungal applications in biotechnology: A combined bibliometric and patentometric assessment. Fungal Biol. Biotechnol., 2021, 8(1), 23.
[http://dx.doi.org/10.1186/s40694-021-00131-6] [PMID: 34963476]
[7]
Zerva, A.; Simić, S.; Topakas, E.; Nikodinovic-Runic, J. Applications of microbial laccases: Patent review of the past decade (2009-2019). Catalysts, 2019, 9(12), 1023.
[http://dx.doi.org/10.3390/catal9121023]
[8]
Chaurasia, P.K.; Bharati, S.L.; Kumar, S.; Singh, S.; Mani, A.; Yadava, S. Potential involvement of laccases as efficient biocatalysts in the field of organic synthesis: An editorial presenting a short overview on functional applicability and fate. Mini Rev. Org. Chem., 2022, 19(6), 676-680.
[http://dx.doi.org/10.2174/1570193X19666220104093251]
[9]
Chaurasia, P.K.; Bharati, S.L.; Yadava, S. Nano-reduction of gold and silver ions: A perspective on the fate of microbial laccases as potential biocatalysts in the synthesis of metals (gold and silver) nano-particles. Curr. Res. Microb. Sci., 2022, 3, 100098.
[http://dx.doi.org/10.1016/j.crmicr.2021.100098] [PMID: 35024642]
[10]
Chaurasia, P.K.; Bharati, S.L.; Sarma, C. Laccases in pharmaceutical chemistry: A comprehensive appraisal. Mini Rev. Org. Chem., 2016, 13(6), 430-451.
[http://dx.doi.org/10.2174/1570193X13666161019124854]
[11]
Chaurasia, P.K.; Bharati, S.L.; Sharma, M.; Singh, S.K.; Yadav, R.S.S.; Yadava, S. Fungal laccases and their biotechnological significances in the current perspective: A review. Curr. Org. Chem., 2015, 19(19), 1916-1934.
[http://dx.doi.org/10.2174/1385272819666150629175237]
[12]
Chowdhary, P.; Shukla, G.; Raj, G.; Ferreira, L.F.R.; Bharagava, R.N. Microbial manganese peroxidase: A ligninolytic enzyme and its am-ple opportunities in research. SN Appl. Sci., 2019, 1(1), 45.
[http://dx.doi.org/10.1007/s42452-018-0046-3]
[13]
Regalado, C.; García-Almendárez, B.E.; Duarte-Vázquez, M.A. Biotechnological applications of peroxidases. Phytochem. Rev., 2004, 3(1-2), 243-256.
[http://dx.doi.org/10.1023/B:PHYT.0000047797.81958.69]
[14]
El-Gendi, H.; Saleh, A.K.; Badierah, R.; Redwan, E.M.; El-Maradny, Y.A.; El-Fakharany, E.M. A comprehensive insight into fungal enzymes: Structure, classification, and their role in mankind’s challenges. J. Fungi, 2021, 8(1), 23.
[http://dx.doi.org/10.3390/jof8010023] [PMID: 35049963]
[15]
Bharati, S.L.; Chaurasia, P.K. Research Advancements in Pharmaceutical, Nutritional and Industrial Enzymology; IGI Global: USA, 2018, pp. 1-549.
[http://dx.doi.org/10.4018/978-1-5225-5237-6]
[16]
Rajhans, G.; Barik, A.; Sen, S.; Raut, S. Degradation of dyes by fungi: An insight into mycoremediation. Bio. Technol., 2021, 102(4), 445-455.
[http://dx.doi.org/10.5114/bta.2021.111109]
[17]
Chaurasia, P.K.; Lata, B.S.; Kumar, S. Microbes as remediating agents in detoxification of dyes. J. Appl. Biotechnol. Bioeng., 2020, 7(6), 242-244.
[http://dx.doi.org/10.15406/jabb.2020.07.00240]
[18]
Chaurasia, P.K.; Bharati, S.L. Recent myco-dye decolorization studies (mini-review). J. Biotechnol. Bioeng., 2019, 3(4), 27-31.
[19]
Sharma, K.R.; Giri, R.; Sharma, R.K. Efficient bioremediation of metal containing industrial wastewater using white rot fungi. Int. J. Environ. Sci. Technol., 2022.
[http://dx.doi.org/10.1007/s13762-022-03914-5]
[20]
Chaurasia, P.K. Nagraj; Sharma, N.; Kumari, S.; Yadav, M.; Singh, S.; Mani, A.; Yadava, S.; Bharati, S.L. Fungal assisted bio-treatment of environmental pollutants with comprehensive emphasis on noxious heavy metals: Recent updates. Biotechnol. Bioeng., 2022.
[21]
Hamad, A.A.; Moubasher, H.A.; Moustafa, Y.M.; Mohamed, N.H. Petroleum hydrocarbon bioremediation using native fungal isolates and consortia. Sci. World J., 2021, 2021, 6641533.
[http://dx.doi.org/10.1155/2021/6641533]
[22]
Chaurasia, P.K.; Bharati, S.L.; Mani, A. Enzymatic treatment of petroleum based hydrocarbons. In: Microbial Tools and Techniques for Environmental Waste Management; Pathak, V.M.; Navneet, , Eds.; IGI Global Publisher: USA, 2018; pp. 396-408.
[http://dx.doi.org/10.4018/978-1-5225-3540-9.ch019]
[23]
Akerman-Sanchez, G.; Rojas-Jimenez, K. Fungi for the bioremediation of pharmaceutical-derived pollutants: A bioengineering approach to water treatment. Environ. Adv., 2021, 4, 100071.
[http://dx.doi.org/10.1016/j.envadv.2021.100071]
[24]
Zhuo, R.; Fan, F. A comprehensive insight into the application of white rot fungi and their lignocellulolytic enzymes in the removal of organic pollutants. Sci. Total Environ., 2021, 778, 146132.
[http://dx.doi.org/10.1016/j.scitotenv.2021.146132] [PMID: 33714829]
[25]
Chaurasia, P.K.; Bharati, S.L. Applicability of fungi in agriculture and environmental sustainability. In: Microbes in Land Use Change Management; Singh, J.S.; Tiwari, S.; Singh, C.; Singh, A.K., Eds.; Elsevier: Amsterdam, Netherlands, 2021; pp. 155-172.
[http://dx.doi.org/10.1016/B978-0-12-824448-7.00010-3]
[26]
Ayoub, H.A.; Khairy, M.; Rashwan, F.A.; Abdel-Hafez, H.F. Nanomaterial-based agrochemicals new avenue for sustainable agriculture: A short review. J. Chem. Rev, 2022, 4(2), 191-199.
[http://dx.doi.org/10.22034/jcr.2022.336130.1163]
[27]
Itodo, H.U. Controlled release of herbicides using nano-formulation: A review. J. Chem. Rev., 2019, 1(2), 130-138.
[http://dx.doi.org/10.33945/SAMI/JCR.2019.2.4]
[28]
Fazeli-Nasab, B.; Shahraki-Mojahed, L.; Beigomi, Z.; Beigomi, M.; Pahlavan, A. Rapid detection methods of pesticides residues in vegetable foods. Chem. Methodol., 2022, 6(1), 24-40.
[http://dx.doi.org/10.22034/chemm.2022.1.3]
[29]
Abagale, S.A.; Atiemo, S.; Abagale, F.K.; Ampofo, A.; Amoah, C.Y.; Aguree, S.; Osei, Y. Pesticide residues detected in selected crops, fish and soil from irrigation sites in the upper East region of Ghana. Adv. J. Chem. Section A, 2020, 3(2), 221-236.
[http://dx.doi.org/10.33945/SAMI/AJCA.2020.2.10]
[30]
Kumhar, K.C.; Beniwal, B.S.; Jat, R.D.; Patel, B.; Kumar, A.; Raj, H.; Kumar, M.; Kumar, N.; Kumar, S. Plant disease management approaches for organic crop production in Indian scenario: A critical review. J. Plant Bioinformat. Biotechnol., 2022, 2(1), 1-10.
[http://dx.doi.org/10.22034/jpbb.2022.327017.1018]
[31]
Elsoud, M.M.A.; Elmansy, E.A.; Abdelhamid, S.A. Economic and non- seasonal source for production of chitin and chitosan. J. Chem. Rev, 2022, 4(3), 222-240.
[http://dx.doi.org/10.22034/jcr.2022.342454.1173]
[32]
Mohtashami, R.; Naraki, H.; Askari, Y. Improving yield, mucilage and seed oil of the Balangu (Lallemantia spp) landraces in dryland conditions. J. Plant Bioinformat. Biotechnol., 2022, 2(1), 11-17.
[http://dx.doi.org/10.22034/jpbb.2022.339316.1022]
[33]
Ishag, A.E.S.A.; Abdelbagi, A.O.; Hammad, A.M.A.; Elsheikh, E.A.E.; Elsaid, O.E.; Hur, J.H. Biodegradation of endosulfan and pendimethalin by three strains of bacteria isolated from pesticides-polluted soils in the Sudan. Appl. Biol. Chem., 2017, 60(3), 287-297.
[http://dx.doi.org/10.1007/s13765-017-0281-0]
[34]
Ishag, A.E.S.A.; Abdelbagi, A.O.; Hammad, A.M.A.; Elsheikh, E.A.E.; Elsaid, O.E.; Hur, J.H.; Laing, M.D. Biodegradation of chlorpyrifos, malathion, and dimethoate by three strains of bacteria isolated from pesticide-polluted soils in Sudan. J. Agric. Food Chem., 2016, 64(45), 8491-8498.
[http://dx.doi.org/10.1021/acs.jafc.6b03334] [PMID: 27771954]
[35]
Briceño, G.; Lamilla, C.; Leiva, B.; Levio, M.; Donoso-Piñol, P.; Schalchli, H.; Gallardo, F.; Diez, M.C. Pesticide-tolerant bacteria isolated from a biopurification system to remove commonly used pesticides to protect water resources. PLoS One, 2020, 15(6), e0234865.
[http://dx.doi.org/10.1371/journal.pone.0234865] [PMID: 32598366]
[36]
Mehta, A.; Bhardwaj, K.K.; Shaiza, M.; Gupta, R. Isolation, characterization and identification of pesticide degrading bacteria from contaminated soil for bioremediation. Biol. Futur., 2021, 72(3), 317-323.
[http://dx.doi.org/10.1007/s42977-021-00080-6] [PMID: 34554552]
[37]
Akbar, S.; Sultan, S. Soil bacteria showing a potential of chlorpyrifos degradation and plant growth enhancement. Braz. J. Microbiol., 2016, 47(3), 563-570.
[http://dx.doi.org/10.1016/j.bjm.2016.04.009] [PMID: 27266625]
[38]
Li, Q.; Li, J.; Kang, K.L.; Wu, Y.J. A safety type of genetically engineered bacterium that degrades chemical pesticides. AMB Express, 2020, 10(1), 33.
[http://dx.doi.org/10.1186/s13568-020-00967-y] [PMID: 32072335]
[39]
Huang, Y.; Xiao, L.; Li, F.; Xiao, M.; Lin, D.; Long, X.; Wu, Z. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: A review. Molecules, 2018, 23(9), 2313.
[http://dx.doi.org/10.3390/molecules23092313] [PMID: 30208572]
[40]
Singh, B.K.; Walker, A. Microbial degradation of organophosphorus compounds. FEMS Microbiol. Rev., 2006, 30(3), 428-471.
[http://dx.doi.org/10.1111/j.1574-6976.2006.00018.x] [PMID: 16594965]
[41]
Chaussonnerie, S.; Saaidi, P.L.; Ugarte, E.; Barbance, A.; Fossey, A.; Barbe, V.; Gyapay, G.; Brüls, T.; Chevallier, M.; Couturat, L.; Fouteau, S.; Muselet, D.; Pateau, E.; Cohen, G.N.; Fonknechten, N.; Weissenbach, J.; Le Paslier, D. Microbial degradation of a recalcitrant pesticide: Chlordecone Front. Microbiol., 2016, 7, 2025.
[http://dx.doi.org/10.3389/fmicb.2016.02025] [PMID: 28066351]
[42]
Hu, K.; Barbieri, M.V.; López-García, E.; Postigo, C.; De Alda, M.L.; Caminal, G.; Sarrà, M. Fungal degradation of selected medium to highly polar pesticides by Trametes versicolor: Kinetics, biodegradation pathways, and ecotoxicity of treated waters. Anal. Bioanal. Chem., 2022, 414(1), 439-449.
[http://dx.doi.org/10.1007/s00216-021-03267-x] [PMID: 33860335]
[43]
Wang, X.; Zhang, Y.; Li, Z.; Bao, J. Rapid degradation of the sulfonylurea herbicide-chlorimuron-ethyl by three novel strains of fungi. Bioremediat. J., 2022, 1-10.
[http://dx.doi.org/10.1080/10889868.2022.2029822]
[44]
Yada, G.M.; Shiraishi, I.S.; Dekker, R.F.H.; Schirmann, J.G.; Barbosa-Dekker, A.M.; De Araujo, I.C.; Abreu, L.M.; Daniel, J.F.S. Soil and entomopathogenic fungi with potential for biodegradation of insecticides: Degradation of flubendiamide in vivo by fungi and in vitro by laccase. Ann. Microbiol., 2019, 69(13), 1517-1529.
[http://dx.doi.org/10.1007/s13213-019-01536-w]
[45]
Ong, S.Q.; Ahmad, H.; Ab Majid, A.H.; Jaal, Z. Conservation of agricultural soil using entomopathogenic fungi: An agent with insecticides degradation potential. IOP Conf. Ser. Earth Environ. Sci., 2019, 380(1), 012014.
[http://dx.doi.org/10.1088/1755-1315/380/1/012014]
[46]
Carles, L.; Rossi, F.; Besse-Hoggan, P.; Blavignac, C.; Leremboure, M.; Artigas, J.; Batisson, I. Nicosulfuron degradation by an ascomycete fungus isolated from submerged Alnus leaf litter. Front. Microbiol., 2018, 9, 3167.
[http://dx.doi.org/10.3389/fmicb.2018.03167] [PMID: 30619225]
[47]
Zeng, S.; Qin, X.; Xia, L. Degradation of the herbicide isoproturon by laccase-mediator systems. Biochem. Eng. J., 2017, 119, 92-100.
[http://dx.doi.org/10.1016/j.bej.2016.12.016]
[48]
Murugesan, K.; Chang, Y.Y.; Kim, Y.M.; Jeon, J.R.; Kim, E.J.; Chang, Y.S. Enhanced transformation of triclosan by laccase in the presence of redox mediators. Water Res., 2010, 44(1), 298-308.
[http://dx.doi.org/10.1016/j.watres.2009.09.058] [PMID: 19854464]
[49]
Jin, X.; Yu, X.; Zhu, G.; Zheng, Z.; Feng, F.; Zhang, Z. Conditions optimizing and application of Laccase-Mediator System (LMS) for the laccase-catalyzed pesticide degradation. Sci. Rep., 2016, 6(1), 35787.
[http://dx.doi.org/10.1038/srep35787] [PMID: 27775052]
[50]
Gajendiran, A.; Vijayavenkatesan, V.; Abraham, J. Bioremediation of herbicide atrazine by fungal sp. Aspergillus alliaceus strain JAV1 isolated from paddy field soil in vellore. Asian J. Water Environ. Pollut., 2017, 14(1), 75-82.
[http://dx.doi.org/10.3233/AJW-170009]
[51]
Chirnside, A.E.M.; Ritter, W.F.; Radosevich, M. Biodegradation of aged residues of atrazine and alachlor in a mix-load site soil by fungal enzymes. Appl. Environ. Soil Sci., 2011, 2011, 658569.
[http://dx.doi.org/10.1155/2011/658569]
[52]
Zhao, Y.C.; Yi, X.Y.; Zhang, M.; Liu, L.; Ma, W.J. Fundamental study of degradation of dichlorodiphenyltrichloroethane in soil by laccase from white rot fungi. Int. J. Environ. Sci. Technol., 2010, 7(2), 359-366.
[http://dx.doi.org/10.1007/BF03326145]
[53]
Sri, P.U.; Rathinam, K.M.S.; Rao, K.R.S.S. Detoxification of chlorpyriphos using fungal species Aspergillus niger from cotton soils of Andhra Pradesh, India. Biomed. Pharmacol. J., 2010, 3(2), 317-328.
[54]
Bending, G.D.; Friloux, M.; Walker, A. Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol. Lett., 2002, 212(1), 59-63.
[http://dx.doi.org/10.1111/j.1574-6968.2002.tb11245.x] [PMID: 12076788]
[55]
Donnelly, P.K.; Entry, J.A.; Crawford, D.L. Degradation of atrazine and 2,4-dichlorophenoxyacetic acid by mycorrhizal fungi at three nitrogen concentrations in vitro. Appl. Environ. Microbiol., 1993, 59(8), 2642-2647.
[http://dx.doi.org/10.1128/aem.59.8.2642-2647.1993] [PMID: 8368851]
[56]
Kaur, R.; Singh, D.; Kumari, A.; Sharma, G.; Rajput, S.; Arora, S.; Kaur, R. Pesticide residues degradation strategies in soil and water: A review. Int. J. Environ. Sci. Technol., 2021, 2021, 244465004.
[http://dx.doi.org/10.1007/s13762-021-03696-2]
[57]
Bokade, P.; Purohit, H.J.; Bajaj, A. Myco-remediation of chlorinated pesticides: Insights into fungal metabolic system. Indian J. Microbiol., 2021, 61(3), 237-249.
[http://dx.doi.org/10.1007/s12088-021-00940-8] [PMID: 34294989]
[58]
Mohapatra, D.; Rath, S.K.; Mohapatra, P.K. Soil fungi for bioremediation of pesticide toxicants: A perspective. Geomicrobiol. J., 2022, 39(3-5), 352-372.
[http://dx.doi.org/10.1080/01490451.2021.2019855]
[59]
Nguyen, L.N.; Vu, M.T.; Johir, M.A.H.; Pathak, N.; Zdarta, J.; Jesionowski, T.; Semblante, G.U.; Hai, F.I.; Nguyen, H.K.D.; Nghiem, L.D. A novel approach in crude enzyme laccase production and application in emerging contaminant bioremediation. Processes, 2020, 8(6), 648.
[http://dx.doi.org/10.3390/pr8060648]
[60]
Singh, S.; Kumar, V.; Gill, J.P.K.; Datta, S.; Singh, S.; Dhaka, V.; Kapoor, D.; Wani, A.B.; Dhanjal, D.S.; Kumar, M.; Harikumar, S.L.; Singh, J. Herbicide glyphosate: Toxicity and microbial degradation. Int. J. Environ. Res. Public Health, 2020, 17(20), 7519.
[http://dx.doi.org/10.3390/ijerph17207519] [PMID: 33076575]
[61]
Hage-Ahmed, K.; Rosner, K.; Steinkellner, S. Arbuscular mycorrhizal fungi and their response to pesticides. Pest Manag. Sci., 2019, 75(3), 583-590.
[http://dx.doi.org/10.1002/ps.5220] [PMID: 30255557]
[62]
Kunanbayev, K.; Churkinа, G.; Rukavitsina, I.; Filippova, N.; Utebayev, M. Potential attractiveness of soil fungus Trichoderma Inhamatum for biodegradation of the glyphosate herbicide. J. Ecol. Eng., 2019, 20(11), 240-245.
[http://dx.doi.org/10.12911/22998993/113580]
[63]
Parte, S.G.; Mohekar, A.D.; Kharat, A.S. Microbial degradation of pesticide: A review. Afr. J. Microbiol. Res., 2017, 11(24), 992-1012.
[http://dx.doi.org/10.5897/AJMR2016.8402]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy