Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Review Article

An Update on Non-invasive Approaches for Genetic Testing of the Preimplantation Embryo

Author(s): Georgia Kakourou*, Thalia Mamas, Christina Vrettou and Joanne Traeger-Synodinos

Volume 23, Issue 5, 2022

Published on: 17 October, 2022

Page: [337 - 352] Pages: 16

DOI: 10.2174/1389202923666220927111158

Price: $65

Abstract

Preimplantation Genetic Testing (PGT) aims to reduce the chance of an affected pregnancy or improve success in an assisted reproduction cycle. Since the first established pregnancies in 1990, methodological approaches have greatly evolved, combined with significant advances in the embryological laboratory. The application of preimplantation testing has expanded, while the accuracy and reliability of monogenic and chromosomal analysis have improved. The procedure traditionally employs an invasive approach to assess the nucleic acid content of embryos. All biopsy procedures require high technical skill, and costly equipment, and may impact both the accuracy of genetic testing and embryo viability. To overcome these limitations, many researchers have focused on the analysis of cell-free DNA (cfDNA) at the preimplantation stage, sampled either from the blastocoel or embryo culture media, to determine the genetic status of the embryo non-invasively. Studies have assessed the origin of cfDNA and its application in non-invasive testing for monogenic disease and chromosomal aneuploidies. Herein, we discuss the state-of-the-art for modern non-invasive embryonic genetic material assessment in the context of PGT. The results are difficult to integrate due to numerous methodological differences between the studies, while further work is required to assess the suitability of cfDNA analysis for clinical application.

Keywords: preimplantation genetic testing, embryo biopsy, cell-free DNA, embryo culture medium, blastocoel fluid, non-invasive PGT, blastocyst.

Graphical Abstract

[1]
Calhaz-Jorge, C.; De Geyter, C.; Kupka, M.S.; Wyns, C.; Mocanu, E.; Motrenko, T.; Scaravelli, G.; Smeenk, J.; Vidakovic, S.; Goossens, V. Survey on ART and IUI: Legislation, regulation, funding and registries in European countries. Hum. Reprod. Open, 2020, 2020(1), hoz044.
[http://dx.doi.org/10.1093/hropen/hoz044] [PMID: 32042927]
[2]
Wyns, C.; De Geyter, C.; Calhaz-Jorge, C.; Kupka, M.S.; Motrenko, T.; Smeenk, J.; Bergh, C.; Tandler-Schneider, A. European, I.V.F.M.C.f.t.E.S.o.H.R.; Embryology. ART in Europe, 2017: Results generated from European registries by ESHRE. Hum. Reprod. Open, 2021, 2021, hoab026.
[http://dx.doi.org/10.1093/hropen/hoab026]
[3]
Simopoulou, M.; Sfakianoudis, K.; Maziotis, E.; Tsioulou, P.; Grigoriadis, S.; Rapani, A.; Giannelou, P.; Asimakopoulou, M.; Kokkali, G.; Pantou, A.; Nikolettos, K.; Vlahos, N.; Pantos, K. PGT-A: Who and when? Α systematic review and network meta-analysis of RCTs. J. Assist. Reprod. Genet., 2021, 38(8), 1939-1957.
[http://dx.doi.org/10.1007/s10815-021-02227-9] [PMID: 34036455]
[4]
Verpoest, W.; Staessen, C.; Bossuyt, P.M.; Goossens, V.; Altarescu, G.; Bonduelle, M.; Devesa, M.; Eldar-Geva, T.; Gianaroli, L.; Griesinger, G.; Kakourou, G.; Kokkali, G.; Liebenthron, J.; Magli, M.C.; Parriego, M.; Schmutzler, A.G.; Tobler, M.; van der Ven, K.; Geraedts, J.; Sermon, K. Preimplantation genetic testing for aneuploidy by microarray analysis of polar bodies in advanced maternal age: A randomized clinical trial. Hum. Reprod., 2018, 33(9), 1767-1776.
[http://dx.doi.org/10.1093/humrep/dey262] [PMID: 30085138]
[5]
Sciorio, R.; Dattilo, M. PGTé A preimplantation genetic testing for aneuploidies and embryo selection in routine ART cycles: Time to step back? Clin. Genet., 2020, 98(2), 107-115.
[http://dx.doi.org/10.1111/cge.13732] [PMID: 32141057]
[6]
Kakourou, G.; Kahraman, S.; Ekmekci, G.C.; Tac, H.A.; Kourlaba, G.; Kourkouni, E.; Sanz, A.C.; Martin, J.; Malmgren, H.; Giménez, C.; Gold, V.; Carvalho, F.; Billi, C.; Chow, J F C.; Vendrell, X.; Kokkali, G.; Liss, J.; Steffann, J.; Traeger-Synodinos, J. The clinical utility of PGD with HLA matching: A collaborative multi-centre ESHRE study. Hum. Reprod., 2018, 33(3), 520-530.
[http://dx.doi.org/10.1093/humrep/dex384] [PMID: 29432583]
[7]
Kakourou, G.; Vrettou, C.; Moutafi, M.; Traeger-Synodinos, J. Pre-implantation HLA matching: The production of a Saviour Child. Best Pract. Res. Clin. Obstet. Gynaecol., 2017, 44, 76-89.
[http://dx.doi.org/10.1016/j.bpobgyn.2017.05.008] [PMID: 28687174]
[8]
Treff, N.R.; Eccles, J.; Lello, L.; Bechor, E.; Hsu, J.; Plunkett, K.; Zimmerman, R.; Rana, B.; Samoilenko, A.; Hsu, S.; Tellier, L.C.A.M. Utility and first clinical application of screening embryos for polygenic disease risk reduction. Front. Endocrinol. (Lausanne), 2019, 10, 845.
[http://dx.doi.org/10.3389/fendo.2019.00845] [PMID: 31920964]
[9]
Forzano, F.; Antonova, O.; Clarke, A.; de Wert, G.; Hentze, S.; Jamshidi, Y.; Moreau, Y.; Perola, M.; Prokopenko, I.; Read, A. The use of polygenic risk scores in pre-implantation genetic testing: An unproven, unethical practice. Eur. J. Hum. Genet., 2022. Epub ahead of print
[http://dx.doi.org/10.1038/s41431-021-01000-x] [PMID: 34916614]
[10]
van Montfoort, A.; Carvalho, F.; Coonen, E.; Kokkali, G.; Moutou, C.; Rubio, C.; Goossens, V.; De Rycke, M. ESHRE PGT Consortium data collection XIX–XX: PGT analyses from 2016 to 2017. Hum. Reprod. Open, 2021, 2021(3), hoab024.
[http://dx.doi.org/10.1093/hropen/hoab024] [PMID: 34322603]
[11]
De Rycke, M.; Berckmoes, V. Preimplantation genetic testing for monogenic disorders. Genes (Basel), 2020, 11(8), 871.
[http://dx.doi.org/10.3390/genes11080871] [PMID: 32752000]
[12]
Tšuiko, O.; Fernandez Gallardo, E.; Voet, T.; Vermeesch, J.R. Preimplantation genetic testing: Single-cell technologies at the forefront of PGT and embryo research. Reproduction, 2020, 160(5), A19-A31.
[http://dx.doi.org/10.1530/REP-20-0102] [PMID: 33065545]
[13]
Chen, H.F.; Chen, M.; Ho, H.N. An overview of the current and emerging platforms for preimplantation genetic testing for aneuploidies (PGT-A) in in vitro fertilization programs. Taiwan. J. Obstet. Gynecol., 2020, 59(4), 489-495.
[http://dx.doi.org/10.1016/j.tjog.2020.05.004] [PMID: 32653118]
[14]
Popovic, M.; Dhaenens, L.; Boel, A.; Menten, B.; Heindryckx, B. Chromosomal mosaicism in human blastocysts: The ultimate diagnostic dilemma. Hum. Reprod. Update, 2020, 26(3), 313-334.
[http://dx.doi.org/10.1093/humupd/dmz050] [PMID: 32141501]
[15]
Capalbo, A.; Poli, M.; Rienzi, L.; Girardi, L.; Patassini, C.; Fabiani, M.; Cimadomo, D.; Benini, F.; Farcomeni, A.; Cuzzi, J.; Rubio, C.; Albani, E.; Sacchi, L.; Vaiarelli, A.; Figliuzzi, M.; Findikli, N.; Coban, O.; Boynukalin, F.K.; Vogel, I.; Hoffmann, E.; Livi, C.; Levi-Setti, P.E.; Ubaldi, F.M.; Simón, C. Mosaic human preimplantation embryos and their developmental potential in a prospective, non-selection clinical trial. Am. J. Hum. Genet., 2021, 108(12), 2238-2247.
[http://dx.doi.org/10.1016/j.ajhg.2021.11.002] [PMID: 34798051]
[16]
Greco, E.; Minasi, M.G.; Fiorentino, F. Healthy babies after intrauterine transfer of mosaic aneuploid blastocysts. N. Engl. J. Med., 2015, 373(21), 2089-2090.
[http://dx.doi.org/10.1056/NEJMc1500421] [PMID: 26581010]
[17]
Gleicher, N.; Albertini, D.F.; Barad, D.H.; Homer, H.; Modi, D.; Murtinger, M.; Patrizio, P.; Orvieto, R.; Takahashi, S.; Weghofer, A.; Ziebe, S.; Noyes, N. The 2019 PGDIS position statement on transfer of mosaic embryos within a context of new information on PGT-A. Reprod. Biol. Endocrinol., 2020, 18(1), 57.
[http://dx.doi.org/10.1186/s12958-020-00616-w] [PMID: 32471441]
[18]
Gleicher, N.; Barad, D.H.; Ben-Rafael, Z.; Glujovsky, D.; Mochizuki, L.; Modi, D.; Murtinger, M.; Patrizio, P.; Orvieto, R.; Takahashi, S.; Weghofer, A.; Ziebe, S. Commentary on two recently published formal guidelines on management of “mosaic” embryos after preimplantation genetic testing for aneuploidy (PGT-A). Reprod. Biol. Endocrinol., 2021, 19(1), 23.
[http://dx.doi.org/10.1186/s12958-021-00716-1] [PMID: 33602283]
[19]
Carvalho, F.; Moutou, C.; Dimitriadou, E.; Dreesen, J.; Gimenez, C.; Goossens, V.; Kakourou, G.; Vermeulen, N.; Zuccarello, D. Group, E.P.-M.W. ESHRE PGT Consortium good practice recommendations for the detection of monogenic disorders. Hum. Reprod. Open, 2020, 2020, hoaa018.
[http://dx.doi.org/10.1093/hropen/hoaa018]
[20]
Coonen, E.; Rubio, C.; Christopikou, D.; Dimitriadou, E.; Gontar, J.; Goossens, V.; Maurer, M.; Spinella, F.; Vermeulen, N. Group, E.P.-S.P.-A.W. ESHRE PGT Consortium good practice recommendations for the detection of structural and numerical chromosomal aberrations. Hum. Reprod. Open, 2020, 2020, hoaa017.
[http://dx.doi.org/10.1093/hropen/hoaa017]
[21]
Kokkali, G.; Coticchio, G.; Bronet, F.; Celebi, C.; Cimadomo, D.; Goossens, V.; Liss, J.; Nunes, S.; Sfontouris, I.; Vermeulen, N.; Zakharova, E.; De Rycke, M. ESHRE PGT Consortium and SIG Embryology good practice recommendations for polar body and embryo biopsy for PGT. Hum. Reprod. Open, 2020, 2020(3), hoaa020.
[http://dx.doi.org/10.1093/hropen/hoaa020] [PMID: 32500104]
[22]
Fong, C.Y.; Bongso, A. Comparison of human blastulation rates and total cell number in sequential culture media with and without co-culture. Hum. Reprod., 1999, 14(3), 774-781.
[http://dx.doi.org/10.1093/humrep/14.3.774] [PMID: 10221713]
[23]
Cimadomo, D.; Rienzi, L.; Capalbo, A.; Rubio, C.; Innocenti, F.; García-Pascual, C.M.; Ubaldi, F.M.; Handyside, A. The dawn of the future: 30 years from the first biopsy of a human embryo. The detailed history of an ongoing revolution. Hum. Reprod. Update, 2020, 26(4), 453-473.
[http://dx.doi.org/10.1093/humupd/dmaa019] [PMID: 32441746]
[24]
Tocci, A. The unknown human trophectoderm: Implication for biopsy at the blastocyst stage. J. Assist. Reprod. Genet., 2020, 37(11), 2699-2711.
[http://dx.doi.org/10.1007/s10815-020-01925-0] [PMID: 32892265]
[25]
Zakharova, E.E.; Zaletova, V.V.; Krivokharchenko, A.S. Biopsy of human morula-stage embryos: Outcome of 215 IVF/ICSI cycles with PGS. PLoS One, 2014, 9(9), e106433.
[http://dx.doi.org/10.1371/journal.pone.0106433] [PMID: 25191937]
[26]
Orvieto, R.; Feldman, B.; Wiesel, M.; Shani, H.; Aizer, A. Is Day-4 morula biopsy a feasible alternative for preimplantation genetic testing? PLoS One, 2020, 15(9), e0238599.
[http://dx.doi.org/10.1371/journal.pone.0238599] [PMID: 32916690]
[27]
Hao, Y.; Long, X.; Kong, F.; Chen, L.; Chi, H.; Zhu, X.; Kuo, Y.; Zhu, Y.; Jia, J.; Yan, L.; Li, R.; Liu, P.; Wang, Y.; Qiao, J. Maternal and neonatal outcomes following blastocyst biopsy for PGT in single vitrified–warmed embryo transfer cycles. Reprod. Biomed. Online, 2022, 44(1), 151-162.
[http://dx.doi.org/10.1016/j.rbmo.2021.07.016] [PMID: 34866000]
[28]
He, H.; Jing, S.; Lu, C.F.; Tan, Y.Q.; Luo, K.L.; Zhang, S.P.; Gong, F.; Lu, G.X.; Lin, G. Neonatal outcomes of live births after blastocyst biopsy in preimplantation genetic testing cycles: A follow-up of 1,721 children. Fertil. Steril., 2019, 112(1), 82-88.
[http://dx.doi.org/10.1016/j.fertnstert.2019.03.006] [PMID: 31056308]
[29]
Greco, E.; Greco, A.; Minasi, M.G. Reassuring data concerning follow-up data of children born after preimplantation genetic diagnosis. Fertil. Steril., 2019, 111(6), 1111-1112.
[http://dx.doi.org/10.1016/j.fertnstert.2019.02.017] [PMID: 30982606]
[30]
Middelburg, K.J.; van der Heide, M.; Houtzager, B.; Jongbloed-Pereboom, M.; Fidler, V.; Bos, A.F.; Kok, J.; Hadders-Algra, M. Mental, psychomotor, neurologic, and behavioral outcomes of 2-year-old children born after preimplantation genetic screening: Follow-up of a randomized controlled trial. Fertil. Steril., 2011, 96(1), 165-169.
[http://dx.doi.org/10.1016/j.fertnstert.2011.04.081] [PMID: 21616485]
[31]
De Vos, A.; Staessen, C.; De Rycke, M.; Verpoest, W.; Haentjens, P.; Devroey, P.; Liebaers, I.; Van de Velde, H. Impact of cleavage-stage embryo biopsy in view of PGD on human blastocyst implantation: A prospective cohort of single embryo transfers. Hum. Reprod., 2009, 24(12), 2988-2996.
[http://dx.doi.org/10.1093/humrep/dep251] [PMID: 19773223]
[32]
Lammers, J.; Reignier, A.; Loubersac, S.; Chtourou, S.; Lefebvre, T.; Barrière, P.; Fréour, T. Modification of late human embryo development after blastomere removal on day 3 for preimplantation genetic testing. Syst Biol Reprod Med, 2021, 67(2), 121-126.
[http://dx.doi.org/10.1080/19396368.2020.1834008] [PMID: 33148055]
[33]
Scott, R.T., Jr; Upham, K.M.; Forman, E.J.; Zhao, T.; Treff, N.R. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: A randomized and paired clinical trial. Fertil. Steril., 2013, 100(3), 624-630.
[http://dx.doi.org/10.1016/j.fertnstert.2013.04.039] [PMID: 23773313]
[34]
Levin, I.; Almog, B.; Shwartz, T.; Gold, V.; Ben-Yosef, D.; Shaubi, M.; Amit, A.; Malcov, M. Effects of laser polar-body biopsy on embryo quality. Fertil. Steril., 2012, 97(5), 1085-1088.
[http://dx.doi.org/10.1016/j.fertnstert.2012.02.008] [PMID: 22365340]
[35]
Bar-El, L.; Kalma, Y.; Malcov, M.; Schwartz, T.; Raviv, S.; Cohen, T.; Amir, H.; Cohen, Y.; Reches, A.; Amit, A.; Ben-Yosef, D. Blastomere biopsy for PGD delays embryo compaction and blastulation: A time-lapse microscopic analysis. J. Assist. Reprod. Genet., 2016, 33(11), 1449-1457.
[http://dx.doi.org/10.1007/s10815-016-0813-2] [PMID: 27696105]
[36]
Cohen, J.; Wells, D.; Munné, S. Removal of 2 cells from cleavage stage embryos is likely to reduce the efficacy of chromosomal tests that are used to enhance implantation rates. Fertil. Steril., 2007, 87(3), 496-503.
[http://dx.doi.org/10.1016/j.fertnstert.2006.07.1516] [PMID: 17141767]
[37]
Goossens, V.; De Rycke, M.; De Vos, A.; Staessen, C.; Michiels, A.; Verpoest, W.; Van Steirteghem, A.; Bertrand, C.; Liebaers, I.; Devroey, P.; Sermon, K. Diagnostic efficiency, embryonic development and clinical outcome after the biopsy of one or two blastomeres for preimplantation genetic diagnosis. Hum. Reprod., 2008, 23(3), 481-492.
[http://dx.doi.org/10.1093/humrep/dem327] [PMID: 18156649]
[38]
Kirkegaard, K.; Juhl Hindkjaer, J.; Ingerslev, H.J. Human embryonic development after blastomere removal: A time-lapse analysis. Hum. Reprod., 2012, 27(1), 97-105.
[http://dx.doi.org/10.1093/humrep/der382] [PMID: 22081251]
[39]
Wu, Y.; Lv, Z.; Yang, Y.; Dong, G.; Yu, Y.; Cui, Y.; Tong, M.; Wang, L.; Zhou, Z.; Zhu, H.; Zhou, Q.; Sha, J. Blastomere biopsy influences epigenetic reprogramming during early embryo development, which impacts neural development and function in resulting mice. Cell. Mol. Life Sci., 2014, 71(9), 1761-1774.
[http://dx.doi.org/10.1007/s00018-013-1466-2] [PMID: 24037382]
[40]
McArthur, S.J.; Leigh, D.; Marshall, J.T.; Gee, A.J.; De Boer, K.A.; Jansen, R.P.S. Blastocyst trophectoderm biopsy and preimplantation genetic diagnosis for familial monogenic disorders and chromosomal translocations. Prenat. Diagn., 2008, 28(5), 434-442.
[http://dx.doi.org/10.1002/pd.1924] [PMID: 18444225]
[41]
Neal, S.A.; Franasiak, J.M.; Forman, E.J.; Werner, M.D.; Morin, S.J.; Tao, X.; Treff, N.R.; Scott, R.T., Jr High relative deoxyribonucleic acid content of trophectoderm biopsy adversely affects pregnancy outcomes. Fertil. Steril., 2017, 107(3), 731-736.e1.
[http://dx.doi.org/10.1016/j.fertnstert.2016.11.013] [PMID: 27939761]
[42]
Singh, S.; Hobeika, E.; Knochenhauer, E.S.; Traub, M.L. Pregnancy rates after pre-implantation genetic screening for aneuploidy are only superior when trophectoderm biopsy is performed on hatching embryos. J. Assist. Reprod. Genet., 2019, 36(4), 621-628.
[http://dx.doi.org/10.1007/s10815-019-01400-5] [PMID: 30645703]
[43]
Guzman, L.; Nuñez, D.; López, R.; Inoue, N.; Portella, J.; Vizcarra, F.; Noriega-Portella, L.; Noriega-Hoces, L.; Munné, S. The number of biopsied trophectoderm cells may affect pregnancy outcomes. J. Assist. Reprod. Genet., 2019, 36(1), 145-151.
[http://dx.doi.org/10.1007/s10815-018-1331-1] [PMID: 30328573]
[44]
Aoyama, N.; Kato, K. Trophectoderm biopsy for preimplantation genetic test and technical tips: A review. Reprod. Med. Biol., 2020, 19(3), 222-231.
[http://dx.doi.org/10.1002/rmb2.12318] [PMID: 32684821]
[45]
Gleicher, N.; Metzger, J.; Croft, G.; Kushnir, V.A.; Albertini, D.F.; Barad, D.H. A single trophectoderm biopsy at blastocyst stage is mathematically unable to determine embryo ploidy accurately enough for clinical use. Reprod. Biol. Endocrinol., 2017, 15(1), 33.
[http://dx.doi.org/10.1186/s12958-017-0251-8] [PMID: 28449669]
[46]
Zhang, W.Y.; von Versen-Höynck, F.; Kapphahn, K.I.; Fleischmann, R.R.; Zhao, Q.; Baker, V.L. Maternal and neonatal outcomes associated with trophectoderm biopsy. Fertil. Steril., 2019, 112(2), 283-290.e2.
[http://dx.doi.org/10.1016/j.fertnstert.2019.03.033] [PMID: 31103283]
[47]
Makhijani, R.; Bartels, C.B.; Godiwala, P.; Bartolucci, A.; DiLuigi, A.; Nulsen, J.; Grow, D.; Benadiva, C.; Engmann, L. Impact of trophectoderm biopsy on obstetric and perinatal outcomes following frozen–thawed embryo transfer cycles. Hum. Reprod., 2021, 36(2), 340-348.
[http://dx.doi.org/10.1093/humrep/deaa316] [PMID: 33313768]
[48]
Marconi, N.; Allen, C.P.; Bhattacharya, S.; Maheshwari, A. Obstetric and perinatal outcomes of singleton pregnancies after blastocyst-stage embryo transfer compared with those after cleavage-stage embryo transfer: A systematic review and cumulative meta-analysis. Hum. Reprod. Update, 2022. Epub ahead of print
[http://dx.doi.org/10.1093/humrep/deab130.774] [PMID: 34967896]
[49]
Zhang, X.; Wu, S.; Hao, G.; Wu, X.; Ren, H.; Zhang, Y.; Yang, A.; Bi, X.; Bai, L.; Zhang, Y.; Tan, J. Prolonged cryopreservation negatively affects embryo transfer outcomes following the elective freeze-all strategy: A multicenter retrospective study. Front. Endocrinol. (Lausanne), 2021, 12, 709648.
[http://dx.doi.org/10.3389/fendo.2021.709648] [PMID: 34630326]
[50]
Capalbo, A.; Fabiani, M.; Caroselli, S.; Poli, M.; Girardi, L.; Patassini, C.; Favero, F.; Cimadomo, D.; Vaiarelli, A.; Simon, C.; Rienzi, L.F.; Ubaldi, F.M. Clinical validity and utility of preconception expanded carrier screening for the management of reproductive genetic risk in IVF and general population. Hum. Reprod., 2021, 36(7), 2050-2061.
[http://dx.doi.org/10.1093/humrep/deab087] [PMID: 34021342]
[51]
Qasemi, M.; Mahdian, R.; Amidi, F. Cell-free DNA discoveries in human reproductive medicine: Providing a new tool for biomarker and genetic assays in ART. J. Assist. Reprod. Genet., 2021, 38(2), 277-288.
[http://dx.doi.org/10.1007/s10815-020-02038-4] [PMID: 33421023]
[52]
Chen, K.; Liang, J.; Qin, T.; Zhang, Y.; Chen, X.; Wang, Z. The role of extracellular vesicles in embryo implantation. Front. Endocrinol. (Lausanne), 2022, 13, 809596.
[http://dx.doi.org/10.3389/fendo.2022.809596] [PMID: 35154016]
[53]
Giacomini, E.; Vago, R.; Sanchez, A.M.; Podini, P.; Zarovni, N.; Murdica, V.; Rizzo, R.; Bortolotti, D.; Candiani, M.; Viganò, P. Secretome of in vitro cultured human embryos contains extracellular vesicles that are uptaken by the maternal side. Sci. Rep., 2017, 7(1), 5210.
[http://dx.doi.org/10.1038/s41598-017-05549-w] [PMID: 28701751]
[54]
Palini, S.; Galluzzi, L.; De Stefani, S.; Bianchi, M.; Wells, D.; Magnani, M.; Bulletti, C. Genomic DNA in human blastocoele fluid. Reprod. Biomed. Online, 2013, 26(6), 603-610.
[http://dx.doi.org/10.1016/j.rbmo.2013.02.012] [PMID: 23557766]
[55]
Shamonki, M.I.; Jin, H.; Haimowitz, Z.; Liu, L. Proof of concept: Preimplantation genetic screening without embryo biopsy through analysis of cell-free DNA in spent embryo culture media. Fertil. Steril., 2016, 106(6), 1312-1318.
[http://dx.doi.org/10.1016/j.fertnstert.2016.07.1112] [PMID: 27565258]
[56]
Gianaroli, L.; Magli, M.C.; Pomante, A.; Crivello, A.M.; Cafueri, G.; Valerio, M.; Ferraretti, A.P. Blastocentesis: A source of DNA for preimplantation genetic testing. Results from a pilot study. Fertil. Steril., 2014, 102, 1692-1699.
[http://dx.doi.org/10.1016/j.fertnstert.2014.08.021]
[57]
Rule, K.; Chosed, R.J.; Arthur Chang, T.; David Wininger, J.; Roudebush, W.E. Relationship between blastocoel cell-free DNA and day-5 blastocyst morphology. J. Assist. Reprod. Genet., 2018, 35(8), 1497-1501.
[http://dx.doi.org/10.1007/s10815-018-1223-4] [PMID: 29869217]
[58]
Zhang, Y.; Li, N.; Wang, L.; Sun, H.; Ma, M.; Wang, H.; Xu, X.; Zhang, W.; Liu, Y.; Cram, D.S.; Sun, B.; Yao, Y. Molecular analysis of DNA in blastocoele fluid using next-generation sequencing. J. Assist. Reprod. Genet., 2016, 33(5), 637-645.
[http://dx.doi.org/10.1007/s10815-016-0667-7] [PMID: 26899834]
[59]
Lagalla, C.; Tarozzi, N.; Sciajno, R.; Wells, D.; Di Santo, M.; Nadalini, M.; Distratis, V.; Borini, A. Embryos with morphokinetic abnormalities may develop into euploid blastocysts. Reprod. Biomed. Online, 2017, 34(2), 137-146.
[http://dx.doi.org/10.1016/j.rbmo.2016.11.008] [PMID: 27938863]
[60]
Magli, M.C.; Albanese, C.; Crippa, A.; Tabanelli, C.; Ferraretti, A.P.; Gianaroli, L. Deoxyribonucleic acid detection in blastocoelic fluid: A new predictor of embryo ploidy and viable pregnancy. Fertil. Steril., 2019, 111(1), 77-85.
[http://dx.doi.org/10.1016/j.fertnstert.2018.09.016] [PMID: 30528055]
[61]
Capalbo, A.; Romanelli, V.; Patassini, C.; Poli, M.; Girardi, L.; Giancani, A.; Stoppa, M.; Cimadomo, D.; Ubaldi, F.M.; Rienzi, L. Diagnostic efficacy of blastocoel fluid and spent media as sources of DNA for preimplantation genetic testing in standard clinical conditions. Fertil. Steril., 2018, 110(5), 870-879.e5.
[http://dx.doi.org/10.1016/j.fertnstert.2018.05.031] [PMID: 30316433]
[62]
Magli, M.C.; Pomante, A.; Cafueri, G.; Valerio, M.; Crippa, A.; Ferraretti, A.P.; Gianaroli, L. Preimplantation genetic testing: Polar bodies, blastomeres, trophectoderm cells, or blastocoelic fluid? Fertil. Steril., 2016, 105(3), 676-683.e5.
[http://dx.doi.org/10.1016/j.fertnstert.2015.11.018] [PMID: 26658131]
[63]
Rubio, C.; Navarro-Sanchez, L.; Garcia-Pascual, C.M.; Ocali, O.; Cimadomo, D.; Venier, W.; Barroso, G.; Kopcow, L.; Bahceci, M.; Kulmann, M.I.R. Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts. Am. J. Obstet. Gynecol., 2020, 223, 751.
[http://dx.doi.org/10.1016/j.ajog.2020.04.035]
[64]
Chen, J.; Jia, L.; Li, T.; Guo, Y.; He, S.; Zhang, Z.; Su, W.; Zhang, S.; Fang, C. Diagnostic efficiency of blastocyst culture medium in noninvasive preimplantation genetic testing. FS Reports, 2021, 2(1), 88-94.
[http://dx.doi.org/10.1016/j.xfre.2020.09.004] [PMID: 34223278]
[65]
Navarro-Sánchez, L.; García-Pascual, C.; Rubio, C.; Simón, C. Non-invasive preimplantation genetic testing for aneuploidies: An update. Reprod. Biomed. Online, 2022, 44(5), 817-828.
[http://dx.doi.org/10.1016/j.rbmo.2022.01.012] [PMID: 35307298]
[66]
Kuznyetsov, V.; Madjunkova, S.; Abramov, R.; Antes, R.; Ibarrientos, Z.; Motamedi, G.; Zaman, A.; Kuznyetsova, I.; Librach, C.L. Minimally invasive cell-free human embryo aneuploidy testing (miPGT-A) utilizing combined spent embryo culture medium and blastocoel fluid –towards development of a clinical assay. Sci. Rep., 2020, 10(1), 7244.
[http://dx.doi.org/10.1038/s41598-020-64335-3] [PMID: 32350403]
[67]
Vera-Rodriguez, M.; Diez-Juan, A.; Jimenez-Almazan, J.; Martinez, S.; Navarro, R.; Peinado, V.; Mercader, A.; Meseguer, M.; Blesa, D.; Moreno, I.; Valbuena, D.; Rubio, C.; Simon, C. Origin and composition of cell-free DNA in spent medium from human embryo culture during preimplantation development. Hum. Reprod., 2018, 33(4), 745-756.
[http://dx.doi.org/10.1093/humrep/dey028] [PMID: 29471395]
[68]
Xu, J.; Fang, R.; Chen, L.; Chen, D.; Xiao, J.P.; Yang, W.; Wang, H.; Song, X.; Ma, T.; Bo, S.; Shi, C.; Ren, J.; Huang, L.; Cai, L.Y.; Yao, B.; Xie, X.S.; Lu, S. Noninvasive chromosome screening of human embryos by genome sequencing of embryo culture medium for in vitro fertilization. Proc. Natl. Acad. Sci. USA, 2016, 113(42), 11907-11912.
[http://dx.doi.org/10.1073/pnas.1613294113] [PMID: 27688762]
[69]
Zhang, J.; Xia, H.; Chen, H.; Yao, C.; Feng, L.; Song, X.; Bai, X. Less-invasive chromosome screening of embryos and embryo assessment by genetic studies of DNA in embryo culture medium. J. Assist. Reprod. Genet., 2019, 36(12), 2505-2513.
[http://dx.doi.org/10.1007/s10815-019-01603-w] [PMID: 31728811]
[70]
Gombos, K.; Gálik, B.; Kalács, K.I.; Gödöny, K.; Várnagy, Á.; Alpár, D.; Bódis, J.; Gyenesei, A.; Kovács, G.L. NGS-based application for routine non-invasive pre-implantation genetic assessment in IVF. Int. J. Mol. Sci., 2021, 22(5), 2443.
[http://dx.doi.org/10.3390/ijms22052443] [PMID: 33671014]
[71]
Bolton, H.; Graham, S.J.L.; Van der Aa, N.; Kumar, P.; Theunis, K.; Fernandez Gallardo, E.; Voet, T.; Zernicka-Goetz, M. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat. Commun., 2016, 7(1), 11165.
[http://dx.doi.org/10.1038/ncomms11165] [PMID: 27021558]
[72]
Singla, S.; Iwamoto-Stohl, L.K.; Zhu, M.; Zernicka-Goetz, M. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. Nat. Commun., 2020, 11(1), 2958.
[http://dx.doi.org/10.1038/s41467-020-16796-3] [PMID: 32528010]
[73]
Yang, M.; Rito, T.; Metzger, J.; Naftaly, J.; Soman, R.; Hu, J.; Albertini, D.F.; Barad, D.H.; Brivanlou, A.H.; Gleicher, N. Depletion of aneuploid cells in human embryos and gastruloids. Nat. Cell Biol., 2021, 23(4), 314-321.
[http://dx.doi.org/10.1038/s41556-021-00660-7] [PMID: 33837289]
[74]
Popovic, M.; Dhaenens, L.; Taelman, J.; Dheedene, A.; Bialecka, M.; De Sutter, P.; Chuva de Sousa Lopes, S.M.; Menten, B.; Heindryckx, B. Extended in vitro culture of human embryos demonstrates the complex nature of diagnosing chromosomal mosaicism from a single trophectoderm biopsy. Hum. Reprod., 2019, 34(4), 758-769.
[http://dx.doi.org/10.1093/humrep/dez012] [PMID: 30838420]
[75]
Starostik, M.R.; Sosina, O.A.; McCoy, R.C. Single-cell analysis of human embryos reveals diverse patterns of aneuploidy and mosaicism. Genome Res., 2020, 30(6), 814-825.
[http://dx.doi.org/10.1101/gr.262774.120] [PMID: 32641298]
[76]
Eggenhuizen, G.M.; Go, A.; Koster, M.P.H.; Baart, E.B.; Galjaard, R.J. Confined placental mosaicism and the association with pregnancy outcome and fetal growth: A review of the literature. Hum. Reprod. Update, 2021, 27(5), 885-903.
[http://dx.doi.org/10.1093/humupd/dmab009] [PMID: 33984128]
[77]
Chen, Y.; Gao, Y.; Jia, J.; Chang, L.; Liu, P.; Qiao, J.; Tang, F.; Wen, L.; Huang, J. DNA methylome reveals cellular origin of cell-free DNA in spent medium of human preimplantation embryos. J. Clin. Invest., 2021, 131(12), e146051.
[http://dx.doi.org/10.1172/JCI146051] [PMID: 34128477]
[78]
Hammond, E.R.; McGillivray, B.C.; Wicker, S.M.; Peek, J.C.; Shelling, A.N.; Stone, P.; Chamley, L.W.; Cree, L.M. Characterizing nuclear and mitochondrial DNA in spent embryo culture media: Genetic contamination identified. Fertil. Steril., 2017, 107(1), 220-228.e5.
[http://dx.doi.org/10.1016/j.fertnstert.2016.10.015] [PMID: 27865449]
[79]
Belandres, D.; Shamonki, M.; Arrach, N. Current status of spent embryo media research for preimplantation genetic testing. J. Assist. Reprod. Genet., 2019, 36(5), 819-826.
[http://dx.doi.org/10.1007/s10815-019-01437-6] [PMID: 30895497]
[80]
Minasi, M.G.; Fabozzi, G.; Casciani, V.; Lobascio, A.M.; Colasante, A.; Scarselli, F.; Greco, E. Improved blastocyst formation with reduced culture volume: Comparison of three different culture conditions on 1128 sibling human zygotes. J. Assist. Reprod. Genet., 2015, 32(2), 215-220.
[http://dx.doi.org/10.1007/s10815-014-0399-5] [PMID: 25491125]
[81]
Brouillet, S.; Martinez, G.; Coutton, C.; Hamamah, S. Is cell-free DNA in spent embryo culture medium an alternative to embryo biopsy for preimplantation genetic testing? A systematic review. Reprod. Biomed. Online, 2020, 40(6), 779-796.
[http://dx.doi.org/10.1016/j.rbmo.2020.02.002] [PMID: 32417199]
[82]
Galluzzi, L.; Palini, S.; Stefani, S.D.; Andreoni, F.; Primiterra, M.; Diotallevi, A.; Bulletti, C.; Magnani, M. Extracellular embryo genomic DNA and its potential for genotyping applications. Future Sci. OA, 2015, 1(4), fso.15.62.
[http://dx.doi.org/10.4155/fso.15.62] [PMID: 28031914]
[83]
Shangguan, T.; He, W.; Li, H.; Shang, X.; Liu, Y.; Bai, X.; Li, M.; Xie, J. Detection and analysis of DNA material in human blastocoel fluid. Biomed. Genet. Genom., 2017, 2(1), 1-5.
[http://dx.doi.org/10.15761/BGG.1000128]
[84]
Leaver, M.; Wells, D. Non-invasive preimplantation genetic testing (niPGT): The next revolution in reproductive genetics? Hum. Reprod. Update, 2020, 26(1), 16-42.
[http://dx.doi.org/10.1093/humupd/dmz033] [PMID: 31774124]
[85]
Assou, S.; Aït-Ahmed, O.; El Messaoudi, S.; Thierry, A.R.; Hamamah, S. Non-invasive pre-implantation genetic diagnosis of X-linked disorders. Med. Hypotheses, 2014, 83(4), 506-508.
[http://dx.doi.org/10.1016/j.mehy.2014.08.019] [PMID: 25182520]
[86]
Yang, L.; Lv, Q.; Chen, W.; Sun, J.; Wu, Y.; Wang, Y.; Chen, X.; Chen, X.; Zhang, Z. Presence of embryonic DNA in culture medium. Oncotarget, 2017, 8(40), 67805-67809.
[http://dx.doi.org/10.18632/oncotarget.18852] [PMID: 28978073]
[87]
Wu, H.; Ding, C.; Shen, X.; Wang, J.; Li, R.; Cai, B.; Xu, Y.; Zhong, Y.; Zhou, C. Medium-based noninvasive preimplantation genetic diagnosis for human α-thalassemias-SEA. Medicine (Baltimore), 2015, 94(12), e669.
[http://dx.doi.org/10.1097/MD.0000000000000669] [PMID: 25816038]
[88]
Liu, W.; Liu, J.; Du, H.; Ling, J.; Sun, X.; Chen, D. Non-invasive pre-implantation aneuploidy screening and diagnosis of beta thalassemia IVSII654 mutation using spent embryo culture medium. Ann. Med., 2017, 49(4), 319-328.
[http://dx.doi.org/10.1080/07853890.2016.1254816] [PMID: 27786563]
[89]
Ou, Z.; Deng, Y.; Liang, Y.; Chen, Z.; Sun, L. Improved non-invasive preimplantation genetic testing for beta-thalassemia using spent embryo culture medium containing blastocoelic fluid. Front. Endocrinol. (Lausanne), 2022, 12, 793821.
[http://dx.doi.org/10.3389/fendo.2021.793821] [PMID: 35126312]
[90]
Esmaeili, M.; Bazrgar, M.; Gourabi, H.; Ebrahimi, B.; Boroujeni, P.B.; Fakhri, M. Noninvasive sexing of human preimplantation embryos using RT-PCR in the spent culture media: A proof-of-concept study. Eur. J. Obstet. Gynecol. Reprod. Biol., 2020, 252, 89-93.
[http://dx.doi.org/10.1016/j.ejogrb.2020.06.023] [PMID: 32590167]
[91]
Tobler, K.J.; Zhao, Y.; Ross, R.; Benner, A.T.; Xu, X.; Du, L.; Broman, K.; Thrift, K.; Brezina, P.R.; Kearns, W.G. Blastocoel fluid from differentiated blastocysts harbors embryonic genomic material capable of a whole-genome deoxyribonucleic acid amplification and comprehensive chromosome microarray analysis. Fertil. Steril., 2015, 104(2), 418-425.
[http://dx.doi.org/10.1016/j.fertnstert.2015.04.028] [PMID: 26006737]
[92]
Chen, L.; Sun, Q.; Xu, J.; Fu, H.; Liu, Y.; Yao, Y.; Lu, S.; Yao, B. A non-invasive chromosome screening strategy for prioritizing in vitro fertilization embryos for implantation. Front. Cell Dev. Biol., 2021, 9, 708322.
[http://dx.doi.org/10.3389/fcell.2021.708322] [PMID: 34434931]
[93]
Fang, R.; Yang, W.; Zhao, X.; Xiong, F.; Guo, C.; Xiao, J.; Chen, L.; Song, X.; Wang, H.; Chen, J.; Xiao, X.; Yao, B.; Cai, L.Y. Chromosome screening using culture medium of embryos fertilised in vitro: A pilot clinical study. J. Transl. Med., 2019, 17(1), 73.
[http://dx.doi.org/10.1186/s12967-019-1827-1] [PMID: 30849973]
[94]
Feichtinger, M.; Vaccari, E.; Carli, L.; Wallner, E.; Mädel, U.; Figl, K.; Palini, S.; Feichtinger, W. Non-invasive preimplantation genetic screening using array comparative genomic hybridization on spent culture media: A proof-of-concept pilot study. Reprod. Biomed. Online, 2017, 34(6), 583-589.
[http://dx.doi.org/10.1016/j.rbmo.2017.03.015] [PMID: 28416168]
[95]
Franco, J.G., Jr; Vagnini, L.D.; Petersen, C.G.; Renzi, A.; Canas, M.C.T.; Petersen, B.; Ricci, J.; Nicoletti, A.; Zamara, C.; Dieamant, F.; Oliveira, J.B.A. Noninvasive preimplantation genetic testing for aneuploidy (niPGT-A): The first Brazilian baby. JBRA Assist. Reprod., 2020, 24(4), 517-520.
[http://dx.doi.org/10.5935/1518-0557.20200074] [PMID: 32897670]
[96]
Ho, J.R.; Arrach, N.; Rhodes-Long, K.; Ahmady, A.; Ingles, S.; Chung, K.; Bendikson, K.A.; Paulson, R.J.; McGinnis, L.K. Pushing the limits of detection: Investigation of cell-free DNA for aneuploidy screening in embryos. Fertil. Steril., 2018, 110(3), 467-475.e2.
[http://dx.doi.org/10.1016/j.fertnstert.2018.03.036] [PMID: 29960707]
[97]
Huang, J.; Yao, Y.; Jia, J.; Zhu, X.; Ma, J.; Wang, J.; Liu, P.; Lu, S. Chromosome screening of human preimplantation embryos by using spent culture medium: Sample collection and chromosomal ploidy analysis. J. Vis. Exp., 2021. Epub ahead of print
[http://dx.doi.org/10.3791/62619] [PMID: 34570097]
[98]
Huang, L.; Bogale, B.; Tang, Y.; Lu, S.; Xie, X.S.; Racowsky, C. Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. Proc. Natl. Acad. Sci. USA, 2019, 116(28), 14105-14112.
[http://dx.doi.org/10.1073/pnas.1907472116] [PMID: 31235575]
[99]
Li, X.; Hao, Y.; Chen, D.; Ji, D.; Zhu, W.; Zhu, X.; Wei, Z.; Cao, Y.; Zhang, Z.; Zhou, P. Non-invasive preimplantation genetic testing for putative mosaic blastocysts: A pilot study. Hum. Reprod., 2021, 36(7), 2020-2034.
[http://dx.doi.org/10.1093/humrep/deab080] [PMID: 33974705]
[100]
Lledo, B.; Morales, R.; Ortiz, J.A.; Rodriguez-Arnedo, A.; Ten, J.; Castillo, J.C.; Bernabeu, A.; Llacer, J.; Bernabeu, R. Consistent results of non-invasive PGT-A of human embryos using two different techniques for chromosomal analysis. Reprod. Biomed. Online, 2021, 42(3), 555-563.
[http://dx.doi.org/10.1016/j.rbmo.2020.10.021] [PMID: 33454211]
[101]
Rubio, C.; Rienzi, L.; Navarro-Sánchez, L.; Cimadomo, D.; García-Pascual, C.M.; Albricci, L.; Soscia, D.; Valbuena, D.; Capalbo, A.; Ubaldi, F.; Simón, C. Embryonic cell-free DNA versus trophectoderm biopsy for aneuploidy testing: Concordance rate and clinical implications. Fertil. Steril., 2019, 112(3), 510-519.
[http://dx.doi.org/10.1016/j.fertnstert.2019.04.038] [PMID: 31200971]
[102]
Shitara, A.; Takahashi, K.; Goto, M.; Takahashi, H.; Iwasawa, T.; Onodera, Y.; Makino, K.; Miura, H.; Shirasawa, H.; Sato, W.; Kumazawa, Y.; Terada, Y. Cell-free DNA in spent culture medium effectively reflects the chromosomal status of embryos following culturing beyond implantation compared to trophectoderm biopsy. PLoS One, 2021, 16(2), e0246438.
[http://dx.doi.org/10.1371/journal.pone.0246438] [PMID: 33571233]
[103]
Yeung, Q.S.Y.; Zhang, Y.X.; Chung, J.P.W.; Lui, W.T.; Kwok, Y.K.Y.; Gui, B.; Kong, G.W.S.; Cao, Y.; Li, T.C.; Choy, K.W. A prospective study of non-invasive preimplantation genetic testing for aneuploidies (NiPGT-A) using next-generation sequencing (NGS) on spent culture media (SCM). J. Assist. Reprod. Genet., 2019, 36(8), 1609-1621.
[http://dx.doi.org/10.1007/s10815-019-01517-7] [PMID: 31292818]
[104]
Yin, B.; Zhang, H.; Xie, J.; Wei, Y.; Zhang, C.; Meng, L. Validation of preimplantation genetic tests for aneuploidy (PGT-A) with DNA from spent culture media (SCM): Concordance assessment and implication. Reprod. Biol. Endocrinol., 2021, 19(1), 41.
[http://dx.doi.org/10.1186/s12958-021-00714-3] [PMID: 33673853]
[105]
Ben-Nagi, J.; Odia, R.; Gonzalez, X.V.; Heath, C.; Babariya, D.; SenGupta, S.; Serhal, P.; Wells, D. The first ongoing pregnancy following comprehensive aneuploidy assessment using a combined blastocenetesis, cell free DNA and trophectoderm biopsy strategy. J. Reprod. Infertil., 2019, 20(1), 57-62.
[PMID: 30859083]
[106]
Kuznyetsov, V.; Madjunkova, S.; Antes, R.; Abramov, R.; Motamedi, G.; Ibarrientos, Z.; Librach, C. Evaluation of a novel non-invasive preimplantation genetic screening approach. PLoS One, 2018, 13(5), e0197262.
[http://dx.doi.org/10.1371/journal.pone.0197262] [PMID: 29746572]
[107]
Li, P.; Song, Z.; Yao, Y.; Huang, T.; Mao, R.; Huang, J.; Ma, Y.; Dong, X.; Huang, W.; Huang, J.; Chen, T.; Qu, T.; Li, L.; Zhong, Y.; Gu, J. Preimplantation genetic screening with spent culture medium/blastocoel fluid for in vitro fertilization. Sci. Rep., 2018, 8(1), 9275.
[http://dx.doi.org/10.1038/s41598-018-27367-4] [PMID: 29915225]
[108]
Jiao, J.; Shi, B.; Sagnelli, M.; Yang, D.; Yao, Y.; Li, W.; Shao, L.; Lu, S.; Li, D.; Wang, X. Minimally invasive preimplantation genetic testing using blastocyst culture medium. Hum. Reprod., 2019, 34(7), 1369-1379.
[http://dx.doi.org/10.1093/humrep/dez075] [PMID: 31251795]
[109]
Vagnini, L.D.; Petersen, C.G.; Renzi, A.; Dieamant, F.; Oliveira, J.B.A.; Oliani, A.H.; Canas, M.C.T.; Nakano, R.; Almodin, C.G.; Marcondes, C.; Ceschin, A.; Amaral, A.; Soares, J.B.; Lopes, J.; Franco, A.C.; Franco, J.G. Jr Relationship between age and blastocyst chromosomal ploidy analyzed by noninvasive preimplantation genetic testing for aneuploidies (niPGT-A). JBRA Assist. Reprod., 2020, 24(4), 395-399.
[http://dx.doi.org/10.5935/1518-0557.20200061] [PMID: 32723707]
[110]
Huang, J.; Rong, L.; Zeng, L.; Hu, L.; Shi, J.; Cai, L.; Yao, B.; Wang, X.X.; Xu, Y.; Yao, Y.; Wang, Y.; Zhao, J.; Guan, Y.; Qian, W.; Hao, G.; Lu, S.; Liu, P.; Qiao, J. Embryo selection through non-invasive preimplantation genetic testing with cell-free DNA in spent culture media: A protocol for a multicentre, double-blind, randomised controlled trial. BMJ Open, 2022, 12(7), e057254.
[http://dx.doi.org/10.1136/bmjopen-2021-057254] [PMID: 35896299]
[111]
Cuman, C.; Van Sinderen, M.; Gantier, M.P.; Rainczuk, K.; Sorby, K.; Rombauts, L.; Osianlis, T.; Dimitriadis, E. Human blastocyst secreted microRNA regulate endometrial epithelial cell adhesion. EBioMedicine, 2015, 2(10), 1528-1535.
[http://dx.doi.org/10.1016/j.ebiom.2015.09.003] [PMID: 26629549]
[112]
Capalbo, A.; Ubaldi, F.M.; Cimadomo, D.; Noli, L.; Khalaf, Y.; Farcomeni, A.; Ilic, D.; Rienzi, L. MicroRNAs in spent blastocyst culture medium are derived from trophectoderm cells and can be explored for human embryo reproductive competence assessment. Fertil. Steril., 2016, 105, 225-235.
[http://dx.doi.org/10.1016/j.fertnstert.2015.09.014]
[113]
Rosenbluth, E.M.; Shelton, D.N.; Wells, L.M.; Sparks, A.E.T.; Van Voorhis, B.J. Human embryos secrete microRNAs into culture media—a potential biomarker for implantation. Fertil. Steril., 2014, 101(5), 1493-1500.
[http://dx.doi.org/10.1016/j.fertnstert.2014.01.058] [PMID: 24786747]
[114]
Battaglia, R.; Palini, S.; Vento, M.E.; La Ferlita, A.; Lo Faro, M.J.; Caroppo, E.; Borzì, P.; Falzone, L.; Barbagallo, D.; Ragusa, M.; Scalia, M.; D’Amato, G.; Scollo, P.; Musumeci, P.; Purrello, M.; Gravotta, E.; Di Pietro, C. Identification of extracellular vesicles and characterization of miRNA expression profiles in human blastocoel fluid. Sci. Rep., 2019, 9(1), 84.
[http://dx.doi.org/10.1038/s41598-018-36452-7] [PMID: 30643155]
[115]
Abu-Halima, M.; Häusler, S.; Backes, C.; Fehlmann, T.; Staib, C.; Nestel, S.; Nazarenko, I.; Meese, E.; Keller, A. Micro-ribonucleic acids and extracellular vesicles repertoire in the spent culture media is altered in women undergoing in vitro fertilization. Sci. Rep., 2017, 7(1), 13525.
[http://dx.doi.org/10.1038/s41598-017-13683-8] [PMID: 29051527]
[116]
Sánchez-Ribas, I.; Diaz-Gimeno, P.; Quiñonero, A.; Ojeda, M.; Larreategui, Z.; Ballesteros, A.; Domínguez, F. NGS analysis of human embryo culture media reveals mirnas of extra embryonic origin. Reprod. Sci., 2019, 26(2), 214-222.
[http://dx.doi.org/10.1177/1933719118766252] [PMID: 29587610]
[117]
Cimadomo, D.; Rienzi, L.; Giancani, A.; Alviggi, E.; Dusi, L.; Canipari, R.; Noli, L.; Ilic, D.; Khalaf, Y.; Ubaldi, F.M.; Capalbo, A. Definition and validation of a custom protocol to detect miRNAs in the spent media after blastocyst culture: Searching for biomarkers of implantation. Hum. Reprod., 2019, 34(9), 1746-1761.
[http://dx.doi.org/10.1093/humrep/dez119] [PMID: 31419301]
[118]
Kirkegaard, K.; Yan, Y.; Sørensen, B.S.; Hardarson, T.; Hanson, C.; Ingerslev, H.J.; Knudsen, U.B.; Kjems, J.; Lundin, K.; Ahlström, A. Comprehensive analysis of soluble RNAs in human embryo culture media and blastocoel fluid. J. Assist. Reprod. Genet., 2020, 37(9), 2199-2209.
[http://dx.doi.org/10.1007/s10815-020-01891-7] [PMID: 32681282]
[119]
Bouckenheimer, J.; Assou, S.; Riquier, S.; Hou, C.; Philippe, N.; Sansac, C.; Lavabre-Bertrand, T.; Commes, T.; Lemaître, J.M.; Boureux, A.; De Vos, J. Long non-coding RNAs in human early embryonic development and their potential in ART. Hum. Reprod. Update, 2016, 23(1), 19-40.
[http://dx.doi.org/10.1093/humupd/dmw035] [PMID: 27655590]
[120]
Russell, S.J.; Menezes, K.; Balakier, H.; Librach, C. Comprehensive profiling of Small RNAs in human embryo-conditioned culture media by improved sequencing and quantitative PCR methods. Syst Biol Reprod Med, 2020, 66(2), 129-139.
[http://dx.doi.org/10.1080/19396368.2020.1716108] [PMID: 32053759]
[121]
Stigliani, S.; Anserini, P.; Venturini, P.L.; Scaruffi, P. Mitochondrial DNA content in embryo culture medium is significantly associated with human embryo fragmentation. Hum. Reprod., 2013, 28(10), 2652-2660.
[http://dx.doi.org/10.1093/humrep/det314] [PMID: 23887072]
[122]
Kobayashi, M.; Kobayashi, J.; Shirasuna, K.; Iwata, H. Abundance of cellé free mitochondrial DNA in spent culture medium associated with morphokinetics and blastocyst collapse of expanded blastocysts. Reprod. Med. Biol., 2020, 19(4), 404-414.
[http://dx.doi.org/10.1002/rmb2.12344] [PMID: 33071643]
[123]
Stigliani, S.; Orlando, G.; Massarotti, C.; Casciano, I.; Bovis, F.; Anserini, P.; Ubaldi, F.M.; Remorgida, V.; Rienzi, L.; Scaruffi, P. Non-invasive mitochondrial DNA quantification on Day 3 predicts blastocyst development: A prospective, blinded, multi-centric study. Mol. Hum. Reprod., 2019, 25(9), 527-537.
[http://dx.doi.org/10.1093/molehr/gaz032] [PMID: 31174207]
[124]
Stigliani, S.; Persico, L.; Lagazio, C.; Anserini, P.; Venturini, P.L.; Scaruffi, P. Mitochondrial DNA in Day 3 embryo culture medium is a novel, non-invasive biomarker of blastocyst potential and implantation outcome. Mol. Hum. Reprod., 2014, 20(12), 1238-1246.
[http://dx.doi.org/10.1093/molehr/gau086] [PMID: 25232043]
[125]
Fuchs Weizman, N.; Wyse, B.A.; Antes, R.; Ibarrientos, Z.; Sangaralingam, M.; Motamedi, G.; Kuznyetsov, V.; Madjunkova, S.; Librach, C.L. Towards improving embryo prioritization: Parallel next generation sequencing of DNA and RNA from a single trophectoderm biopsy. Sci. Rep., 2019, 9(1), 2853.
[http://dx.doi.org/10.1038/s41598-019-39111-7] [PMID: 30814554]
[126]
Masset, H.; Zamani Esteki, M.; Dimitriadou, E.; Dreesen, J.; Debrock, S.; Derhaag, J.; Derks, K.; Destouni, A.; Drüsedau, M.; Meekels, J.; Melotte, C.; Peeraer, K.; Tšuiko, O.; van Uum, C.; Allemeersch, J.; Devogelaere, B.; François, K.O.; Happe, S.; Lorson, D.; Richards, R.L.; Theuns, J.; Brunner, H.; de Die-Smulders, C.; Voet, T.; Paulussen, A.; Coonen, E.; Vermeesch, J.R. Multi-centre evaluation of a comprehensive preimplantation genetic test through haplotyping-by-sequencing. Hum. Reprod., 2019, 34(8), 1608-1619.
[http://dx.doi.org/10.1093/humrep/dez106] [PMID: 31348829]
[127]
Verdyck, P.; Berckmoes, V.; Van Laere, S.; Keymolen, K.; Olsen, C.; De Rycke, M. Analysis of parental contribution for aneuploidy detection (APCAD): A novel method to detect aneuploidy and mosaicism in preimplantation embryos. Reprod. Biomed. Online, 2021, 44(3), 459-468.
[http://dx.doi.org/10.1016/j.rbmo.2021.10.023] [PMID: 34930679]
[128]
Zhang, S.; Lei, C.; Wu, J.; Xiao, M.; Zhou, J.; Zhu, S.; Fu, J.; Lu, D.; Sun, X.; Xu, C. A comprehensive and universal approach for embryo testing in patients with different genetic disorders. Clin. Transl. Med., 2021, 11(7), e490.
[http://dx.doi.org/10.1002/ctm2.490] [PMID: 34323405]
[129]
Hur, J.Y.; Kim, H.J.; Lee, J.S.; Choi, C.M.; Lee, J.C.; Jung, M.K.; Pack, C.G.; Lee, K.Y. Extracellular vesicle-derived DNA for performing EGFR genotyping of NSCLC patients. Mol. Cancer, 2018, 17(1), 15.
[http://dx.doi.org/10.1186/s12943-018-0772-6] [PMID: 29374476]
[130]
Wan, Y.; Liu, B.; Lei, H.; Zhang, B.; Wang, Y.; Huang, H.; Chen, S.; Feng, Y.; Zhu, L.; Gu, Y.; Zhang, Q.; Ma, H.; Zheng, S.Y. Nanoscale extracellular vesicle-derived DNA is superior to circulating cell-free DNA for mutation detection in early-stage non-small-cell lung cancer. Ann. Oncol., 2018, 29(12), 2379-2383.
[http://dx.doi.org/10.1093/annonc/mdy458] [PMID: 30339193]
[131]
Klump, J.; Phillipp, U.; Follo, M.; Eremin, A.; Lehmann, H.; Nestel, S.; von Bubnoff, N.; Nazarenko, I. Extracellular vesicles or free circulating DNA: Where to search for BRAF and cKIT mutations? Nanomedicine, 2018, 14(3), 875-882.
[http://dx.doi.org/10.1016/j.nano.2017.12.009] [PMID: 29288729]
[132]
Assou, S.; Haouzi, D.; Mahmoud, K.; Aouacheria, A.; Guillemin, Y.; Pantesco, V.; Rème, T.; Dechaud, H.; De Vos, J.; Hamamah, S. A non-invasive test for assessing embryo potential by gene expression profiles of human cumulus cells: A proof of concept study. Mol. Hum. Reprod., 2008, 14(12), 711-719.
[http://dx.doi.org/10.1093/molehr/gan067] [PMID: 19028806]
[133]
Botros, L.; Sakkas, D.; Seli, E. Metabolomics and its application for non-invasive embryo assessment in IVF. Mol. Hum. Reprod., 2008, 14(12), 679-690.
[http://dx.doi.org/10.1093/molehr/gan066] [PMID: 19129367]
[134]
Fragouli, E.; Wells, D.; Iager, A.E.; Kayisli, U.A.; Patrizio, P. Alteration of gene expression in human cumulus cells as a potential indicator of oocyte aneuploidy. Hum. Reprod., 2012, 27(8), 2559-2568.
[http://dx.doi.org/10.1093/humrep/des170] [PMID: 22617123]
[135]
Katz-Jaffe, M.G.; McReynolds, S. Embryology in the era of proteomics. Fertil. Steril., 2013, 99(4), 1073-1077.
[http://dx.doi.org/10.1016/j.fertnstert.2012.12.038] [PMID: 23375196]
[136]
Poli, M.; Ori, A.; Child, T.; Jaroudi, S.; Spath, K.; Beck, M.; Wells, D. Characterization and quantification of proteins secreted by single human embryos prior to implantation. EMBO Mol. Med., 2015, 7(11), 1465-1479.
[http://dx.doi.org/10.15252/emmm.201505344] [PMID: 26471863]
[137]
Vergouw, C.G.; Heymans, M.W.; Hardarson, T.; Sfontouris, I.A.; Economou, K.A.; Ahlström, A.; Rogberg, L.; Lainas, T.G.; Sakkas, D.; Kieslinger, D.C.; Kostelijk, E.H.; Hompes, P.G.A.; Schats, R.; Lambalk, C.B. No evidence that embryo selection by near-infrared spectroscopy in addition to morphology is able to improve live birth rates: Results from an individual patient data meta-analysis. Hum. Reprod., 2014, 29(3), 455-461.
[http://dx.doi.org/10.1093/humrep/det456] [PMID: 24408316]
[138]
Diez-Juan, A.; Rubio, C.; Marin, C.; Martinez, S.; Al-Asmar, N.; Riboldi, M.; Díaz-Gimeno, P.; Valbuena, D.; Simón, C. Mitochondrial DNA content as a viability score in human euploid embryos: Less is better. Fertil. Steril., 2015, 104(3), 534-541.e1.
[http://dx.doi.org/10.1016/j.fertnstert.2015.05.022] [PMID: 26051102]
[139]
Fragouli, E.; Spath, K.; Alfarawati, S.; Kaper, F.; Craig, A.; Michel, C.E.; Kokocinski, F.; Cohen, J.; Munne, S.; Wells, D. Altered levels of mitochondrial DNA are associated with female age, aneuploidy, and provide an independent measure of embryonic implantation potential. PLoS Genet., 2015, 11(6), e1005241.
[http://dx.doi.org/10.1371/journal.pgen.1005241] [PMID: 26039092]
[140]
Ogino, M.; Tsubamoto, H.; Sakata, K.; Oohama, N.; Hayakawa, H.; Kojima, T.; Shigeta, M.; Shibahara, H. Mitochondrial DNA copy number in cumulus cells is a strong predictor of obtaining good-quality embryos after IVF. J. Assist. Reprod. Genet., 2016, 33(3), 367-371.
[http://dx.doi.org/10.1007/s10815-015-0621-0] [PMID: 26749386]
[141]
Poli, M.; Girardi, L.; Fabiani, M.; Moretto, M.; Romanelli, V.; Patassini, C.; Zuccarello, D.; Capalbo, A. Past, present, and future strategies for enhanced assessment of embryo’s genome and reproductive competence in women of advanced reproductive age. Front. Endocrinol. (Lausanne), 2019, 10, 154.
[http://dx.doi.org/10.3389/fendo.2019.00154] [PMID: 30941103]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy