Review Article

CRISPR/Cas9 Tool for MicroRNAs Editing in Cardiac Development, Function, and Disease

Author(s): Leila Abkhooie and Shirin Saberianpour*

Volume 12, Issue 1, 2023

Published on: 03 November, 2022

Page: [13 - 21] Pages: 9

DOI: 10.2174/2211536611666220922092601

Price: $65

Abstract

CRISPR/Cas9 is a powerful gene-editing technology. Extensive scientific data exist that the CRISPR/Cas9 system can target small, non-coding, active RNA molecules, including microRNAs (miRNAs). miRNAs have been recognized as key regulators of different cell biological processes, such as the modulation of fibrosis and cardiac hypertrophy, as well as the regulation of cardiomyocytes. Also, it has been demonstrated that miRNAs strongly affect organ evolution, and that the concentration of miRNAs can involve the differentiation, development, and function of different organs. In addition, the current findings clearly indicate that miRNAs can select and control their targets based on their concentrations. CRISPR/Cas9 genome-editing technology is a stronger system for stopping miRNAs than previous methods, including antisense inhibitors. CRISPR/Cas9 tools can be used to eliminate small areas of DNA and determine miRNA in cases where similar groups of miRNAs are in the same strand. Herein, besides other emerging strategies, we critically summarize the recent investigations linking miRNA-targeted therapeutics and CRISPR/Cas9 system to clarify and combine different delivery platforms and cell-fate engineering of miRNAs function and miRNA-based therapeutic intervention in cardiac development, function, and disease. Based on our findings from the literature, it appears that the use of the CRISPR/Cas technology provides new perspectives for understanding the molecular mechanism of cardiovascular disease and can be effective in treating and controlling cardiac development, function, and disease in the future.

Keywords: CRISPR/Cas9, MicroRNAs, Cardiac Development, and Disease

Graphical Abstract

[1]
Aquino-Jarquin G. Emerging role of CRISPR/Cas9 technology for micrornas editing in cancer research. Cancer Res 2017; 77(24): 6812-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2142] [PMID: 29208606]
[2]
Zhen S, Hua L, Liu Y-H, et al. Harnessing the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated Cas9 system to disrupt the hepatitis B virus. Gene Ther 2015; 22(5): 404-12.
[http://dx.doi.org/10.1038/gt.2015.2] [PMID: 25652100]
[3]
Ho T-T, Zhou N, Huang J, Koirala P, Xu M, Fung R, et al. Targeting non-coding RNAs with the CRISPR/Cas9 system in human cell lines. Nucleic Acids Res 2015; 43(3): e17.
[4]
Chang H, Yi B, Ma R, Zhang X, Zhao H, Xi Y. CRISPR/cas9, a novel genomic tool to knock down microRNA in vitro and in vivo. Sci Rep 2016; 6(1): 22312.
[http://dx.doi.org/10.1038/srep22312] [PMID: 26924382]
[5]
Doudna JA, Charpentier E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014; 346(6213): 1258096.
[http://dx.doi.org/10.1126/science.1258096] [PMID: 25430774]
[6]
Dhir A, Dhir S, Proudfoot NJ, Jopling CL. Microprocessor mediates transcriptional termination of long noncoding RNA transcripts hosting microRNAs. Nat Struct Mol Biol 2015; 22(4): 319-27.
[http://dx.doi.org/10.1038/nsmb.2982] [PMID: 25730776]
[7]
Roth BM, Ishimaru D, Hennig M. The core microprocessor component DiGeorge syndrome critical region 8 (DGCR8) is a nonspecific RNA-binding protein. J Biol Chem 2013; 288(37): 26785-99.
[http://dx.doi.org/10.1074/jbc.M112.446880] [PMID: 23893406]
[8]
Haseeb A, Makki MS, Khan NM, Ahmad I, Haqqi TM. Deep sequencing and analyses of miRNAs, isomiRs and miRNA induced silencing complex (miRISC)-associated miRNome in primary human chondrocytes. Sci Rep 2017; 7(1): 15178.
[http://dx.doi.org/10.1038/s41598-017-15388-4] [PMID: 29123165]
[9]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 2018; 9: 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[10]
Murchison EP, Hannon GJ. miRNAs on the move: MiRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 2004; 16(3): 223-9.
[http://dx.doi.org/10.1016/j.ceb.2004.04.003] [PMID: 15145345]
[11]
Zhen LX, Gu YY, Zhao Q, et al. MiR-301a promotes embryonic stem cell differentiation to cardiomyocytes. World J Stem Cells 2019; 11(12): 1130-41.
[http://dx.doi.org/10.4252/wjsc.v11.i12.1130] [PMID: 31875873]
[12]
Wilson KD, Hu S, Venkatasubrahmanyam S, et al. Dynamic microRNA expression programs during cardiac differentiation of human embryonic stem cells: Role for miR-499. Circ Cardiovasc Genet 2010; 3(5): 426-35.
[http://dx.doi.org/10.1161/CIRCGENETICS.109.934281] [PMID: 20733065]
[13]
Abkhooie L, Sarabi MM, Kahroba H, et al. Cyclin-dependent Kinase 9 Induces Regional and Global Genomic DNA Methylation via Influencing DNMT Gene Expression in Mouse Myoblast C2C12 Cells During Differentiation. Crescent J Med Biol Sci 2022; 9(1): 24-32.
[http://dx.doi.org/10.34172/cjmb.2022.05]
[14]
Zhen L, Zhao Q, Lü J, et al. miR-301a-PTEN-AKT signaling induces cardiomyocyte proliferation and promotes cardiac repair post-MI. Mol Ther Nucleic Acids 2020; 22: 251-62.
[http://dx.doi.org/10.1016/j.omtn.2020.08.033] [PMID: 33230431]
[15]
Sun M, Yan X, Bian Y, Caggiano AO, Morgan JP. Improving murine embryonic stem cell differentiation into cardiomyocytes with neuregulin-1: Differential expression of microRNA. Am J Physiol Cell Physiol 2011; 301(1): C21-30.
[http://dx.doi.org/10.1152/ajpcell.00141.2010] [PMID: 21451102]
[16]
Gao J, Xu W, Wang J, Wang K, Li P. The role and molecular mechanism of non-coding RNAs in pathological cardiac remodeling. Int J Mol Sci 2017; 18(3): 608.
[http://dx.doi.org/10.3390/ijms18030608] [PMID: 28287427]
[17]
Fu J, Chen Y, Li F. Attenuation of microRNA-495 derepressed PTEN to effectively protect rat cardiomyocytes from hypertrophy. Cardiology 2018; 139(4): 245-54.
[http://dx.doi.org/10.1159/000487044] [PMID: 29566365]
[18]
Zhou Q, Schötterl S, Backes D, et al. Inhibition of miR-208b improves cardiac function in titin-based dilated cardiomyopathy. Int J Cardiol 2017; 230: 634-41.
[http://dx.doi.org/10.1016/j.ijcard.2016.12.171] [PMID: 28065693]
[19]
Ren XP, Wu J, Wang X, et al. MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 2009; 119(17): 2357-66.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.814145] [PMID: 19380620]
[20]
Wei Y, Yan X, Yan L, et al. Inhibition of microRNA-155 ameliorates cardiac fibrosis in the process of angiotensin II-induced cardiac remodeling. Mol Med Rep 2017; 16(5): 7287-96.
[http://dx.doi.org/10.3892/mmr.2017.7584] [PMID: 28944921]
[21]
Karakikes I, Chaanine AH, Kang S, et al. Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. J Am Heart Assoc 2013; 2(2): e000078.
[http://dx.doi.org/10.1161/JAHA.113.000078] [PMID: 23612897]
[22]
Dong DL, Chen C, Huo R, et al. Reciprocal repression between microRNA-133 and calcineurin regulates cardiac hypertrophy: A novel mechanism for progressive cardiac hypertrophy. Hypertension 2010; 55(4): 946-52.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.139519] [PMID: 20177001]
[23]
Luo Y, Bao X, Zheng S, et al. A potential risk factor of essential hypertension in case-control study: MicroRNAs miR-10a-5p. Clin Exp Hypertens 2020; 42(1): 36-42.
[http://dx.doi.org/10.1080/10641963.2019.1571597] [PMID: 30706734]
[24]
Wang K, Long B, Liu F, et al. A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. Eur Heart J 2016; 37(33): 2602-11.
[http://dx.doi.org/10.1093/eurheartj/ehv713] [PMID: 26802132]
[25]
Nagalingam RS, Sundaresan NR, Gupta MP, Geenen DL, Solaro RJ, Gupta M. A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling. J Biol Chem 2013; 288(16): 11216-32.
[http://dx.doi.org/10.1074/jbc.M112.442384] [PMID: 23447532]
[26]
Seok HY, Chen J, Kataoka M, et al. Loss of MicroRNA-155 protects the heart from pathological cardiac hypertrophy. Circ Res 2014; 114(10): 1585-95.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303784] [PMID: 24657879]
[27]
Ucar A, Gupta SK, Fiedler J, et al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat Commun 2012; 3(1): 1078.
[http://dx.doi.org/10.1038/ncomms2090] [PMID: 23011132]
[28]
Sõber S, Laan M, Annilo T. MicroRNAs miR-124 and miR-135a are potential regulators of the mineralocorticoid receptor gene (NR3C2) expression. Biochem Biophys Res Commun 2010; 391(1): 727-32.
[http://dx.doi.org/10.1016/j.bbrc.2009.11.128] [PMID: 19944075]
[29]
Bao Q, Zhao M, Chen L, et al. MicroRNA-297 promotes cardiomyocyte hypertrophy via targeting sigma-1 receptor. Life Sci 2017; 175: 1-10.
[http://dx.doi.org/10.1016/j.lfs.2017.03.006] [PMID: 28286226]
[30]
Shi J, Bei Y, Kong X, et al. miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischemia-reperfusion injury. Theranostics 2017; 7(3): 664-76.
[http://dx.doi.org/10.7150/thno.15162] [PMID: 28255358]
[31]
Bang C, Batkai S, Dangwal S, et al. Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy. J Clin Invest 2014; 124(5): 2136-46.
[http://dx.doi.org/10.1172/JCI70577] [PMID: 24743145]
[32]
Zhou B, Rao L, Peng Y, et al. Common genetic polymorphisms in pre-microRNAs were associated with increased risk of dilated cardiomyopathy. Clin Chim Acta 2010; 411(17-18): 1287-90.
[http://dx.doi.org/10.1016/j.cca.2010.05.010] [PMID: 20488170]
[33]
Huang ZP, Chen J, Seok HY, et al. MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circ Res 2013; 112(9): 1234-43.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.300682] [PMID: 23524588]
[34]
Yang J, Nie Y, Wang F, et al. Reciprocal regulation of miR-23a and lysophosphatidic acid receptor signaling in cardiomyocyte hypertrophy. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831(8): 1386-94.
[http://dx.doi.org/10.1016/j.bbalip.2013.05.005] [PMID: 23711961]
[35]
Pinchi E, Frati P, Aromatario M, et al. miR‐1, miR‐499 and miR‐208 are sensitive markers to diagnose sudden death due to early acute myocardial infarction. J Cell Mol Med 2019; 23(9): 6005-16.
[http://dx.doi.org/10.1111/jcmm.14463] [PMID: 31240830]
[36]
Chen CY, Lee DS, Choong OK, et al. Cardiac-specific microRNA-125b deficiency induces perinatal death and cardiac hypertrophy. Sci Rep 2021; 11(1): 2377.
[http://dx.doi.org/10.1038/s41598-021-81700-y] [PMID: 33504864]
[37]
Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol 2016; 94: 107-21.
[http://dx.doi.org/10.1016/j.yjmcc.2016.03.015] [PMID: 27056419]
[38]
Palomer X, Capdevila-Busquets E, Botteri G, et al. miR-146a targets c-Fos expression in human cardiac cells. Dis Model Mech 2015; 8(9): 1081-91.
[http://dx.doi.org/10.1242/dmm.020768] [PMID: 26112171]
[39]
Duisters RF, Tijsen AJ, Schroen B, et al. miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling. Circ Res 2009; 104(2): 170-8.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.182535] [PMID: 19096030]
[40]
Wei C, Kim IK, Kumar S, et al. NF-κB mediated miR-26a regulation in cardiac fibrosis. J Cell Physiol 2013; 228(7): 1433-42.
[http://dx.doi.org/10.1002/jcp.24296] [PMID: 23254997]
[41]
Vacante F, Denby L, Sluimer JC, Baker AH. The function of miR-143, miR-145 and the MiR-143 host gene in cardiovascular development and disease. Vascul Pharmacol 2019; 112: 24-30.
[http://dx.doi.org/10.1016/j.vph.2018.11.006] [PMID: 30502421]
[42]
Wang X, Zhang X, Ren XP, et al. MicroRNA-494 targeting both proapoptotic and antiapoptotic proteins protects against ischemia/reperfusion-induced cardiac injury. Circulation 2010; 122(13): 1308-18.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.964684] [PMID: 20837890]
[43]
Luo H, Wang J, Liu D, et al. The lncRNA H19/miR-675 axis regulates myocardial ischemic and reperfusion injury by targeting PPARα. Mol Immunol 2019; 105: 46-54.
[http://dx.doi.org/10.1016/j.molimm.2018.11.011] [PMID: 30496976]
[44]
Li Y, Zhou J, Zhang O, et al. Bone marrow mesenchymal stem cells-derived exosomal microRNA-185 represses ventricular remolding of mice with myocardial infarction by inhibiting SOCS2. Int Immunopharmacol 2020; 80: 106156.
[http://dx.doi.org/10.1016/j.intimp.2019.106156] [PMID: 31945609]
[45]
Knezevic I, Patel A, Sundaresan NR, et al. A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: Implications in postnatal cardiac remodeling and cell survival. J Biol Chem 2012; 287(16): 12913-26.
[http://dx.doi.org/10.1074/jbc.M111.331751] [PMID: 22367207]
[46]
Diao H, Liu B, Shi Y, et al. MicroRNA-210 alleviates oxidative stress-associated cardiomyocyte apoptosis by regulating BNIP3. Biosci Biotechnol Biochem 2017; 81(9): 1712-20.
[http://dx.doi.org/10.1080/09168451.2017.1343118] [PMID: 28661226]
[47]
Xiao X, Lu Z, Lin V, et al. MicroRNA miR-24-3p reduces apoptosis and regulates Keap1-Nrf2 pathway in mouse cardiomyocytes responding to ischemia/reperfusion injury. Oxid Med Cell Longev 2018; 2018: 7042105.
[48]
Aurora AB, Mahmoud AI, Luo X, et al. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death. J Clin Invest 2012; 122(4): 1222-32.
[http://dx.doi.org/10.1172/JCI59327] [PMID: 22426211]
[49]
Sun D, Li C, Liu J, et al. Expression profile of microRNAs in hypertrophic cardiomyopathy and effects of microRNA-20 in inducing cardiomyocyte hypertrophy through regulating gene MFN2. DNA Cell Biol 2019; 38(8): 796-807.
[http://dx.doi.org/10.1089/dna.2019.4731] [PMID: 31295012]
[50]
Xu X, Su Y, Shi J, Lu Q, Chen C. MicroRNA-17-5p promotes cardiac hypertrophy by targeting MFN2 to inhibit autophagy. Cardiovasc Toxicol 2021; 21(9): 759-71.
[http://dx.doi.org/10.1007/s12012-021-09667-w] [PMID: 34120306]
[51]
Chen C, Ponnusamy M, Liu C, Gao J, Wang K, Li P. MicroRNA as a therapeutic target in cardiac remodeling. BioMed Res Int 2017; 2017: 1278436.
[http://dx.doi.org/10.1155/2017/1278436]
[52]
Behura A, Mishra A, Kumar A, Naik L, Manna D, Dhiman R. miRNAs and its regulatory role on autophagy in tumor microenvironment. In: Behura A, Ed. Autophagy in tumor and tumor microenvironment. Springer, Singapore 2020; pp. 77-101.
[53]
Sun T, Li MY, Li PF, Cao JM. MicroRNAs in cardiac autophagy: Small molecules and big role. Cells 2018; 7(8): 104.
[http://dx.doi.org/10.3390/cells7080104] [PMID: 30103495]
[54]
Gao J, Chen X, Wei P, Wang Y, Li P, Shao K. Regulation of pyroptosis in cardiovascular pathologies: Role of noncoding RNAs. Mol Ther Nucleic Acids 2021; 25: 220-36.
[http://dx.doi.org/10.1016/j.omtn.2021.05.016] [PMID: 34458007]
[55]
de Mello F. The use of CRISPR/Cas9 in MicroRNA function studies. World J Aquac Res Develop 2021; 3(1): 1013.
[56]
Wang HX, Li M, Lee CM, et al. CRISPR/Cas9-based genome editing for disease modeling and therapy: Challenges and opportunities for nonviral delivery. Chem Rev 2017; 117(15): 9874-906.
[http://dx.doi.org/10.1021/acs.chemrev.6b00799] [PMID: 28640612]
[57]
Singh V, Braddick D, Dhar PK. Exploring the potential of genome editing CRISPR-Cas9 technology. Gene 2017; 599: 1-18.
[http://dx.doi.org/10.1016/j.gene.2016.11.008] [PMID: 27836667]
[58]
Thurtle-Schmidt DM, Lo TW. Molecular biology at the cutting edge: A review on CRISPR/CAS9 gene editing for undergraduates. Biochem Mol Biol Educ 2018; 46(2): 195-205.
[http://dx.doi.org/10.1002/bmb.21108] [PMID: 29381252]
[59]
Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science 2018; 362(6416): 839-42.
[http://dx.doi.org/10.1126/science.aav4294] [PMID: 30337455]
[60]
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157(6): 1262-78.
[http://dx.doi.org/10.1016/j.cell.2014.05.010] [PMID: 24906146]
[61]
Hirosawa M, Fujita Y, Parr CJ, et al. Cell-type-specific genome editing with a microRNA-responsive CRISPR–Cas9 switch. Nucleic Acids Res 2017; 45(13): e118.
[62]
Zhao Y, Dai Z, Liang Y, et al. Sequence-specific inhibition of microRNA via CRISPR/CRISPRi system. Sci Rep 2015; 4(1): 3943.
[http://dx.doi.org/10.1038/srep03943] [PMID: 24487629]
[63]
Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016; 533(7603): 420-4.
[http://dx.doi.org/10.1038/nature17946] [PMID: 27096365]
[64]
Ryu SM, Koo T, Kim K, et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol 2018; 36(6): 536-9.
[http://dx.doi.org/10.1038/nbt.4148] [PMID: 29702637]
[65]
Wang F, Zeng Y, Wang Y, Niu Y. The development and application of a base editor in biomedicine. BioMed Res Int 2020; 2020: 2907623.
[66]
Zhang Z, Ursin R, Mahapatra S, Gallicano GI. CRISPR/CAS9 ablation of individual miRNAs from a miRNA family reveals their individual efficacies for regulating cardiac differentiation. Mech Dev 2018; 150: 10-20.
[http://dx.doi.org/10.1016/j.mod.2018.02.002] [PMID: 29427756]
[67]
Abkhooie L, Sarabi MM, Kahroba H, et al. Potential roles of MyomiRs in Cardiac Development and Related Diseases. Curr Cardiol Rev 2021; 17(4): e010621188335.
[68]
Larabee SM, Coia H, Jones S, Cheung E, Gallicano GI. miRNA-17 members that target influence signaling mechanisms important for embryonic stem cell differentiation in vitro and gastrulation in embryos. Stem Cells Dev 2015; 24(3): 354-71.
[http://dx.doi.org/10.1089/scd.2014.0051] [PMID: 25209090]
[69]
Chi SW, Hannon GJ, Darnell RB. An alternative mode of microRNA target recognition. Nat Struct Mol Biol 2012; 19(3): 321-7.
[http://dx.doi.org/10.1038/nsmb.2230] [PMID: 22343717]
[70]
Lataniotis L, Albrecht A, Kok FO, et al. CRISPR/Cas9 editing reveals novel mechanisms of clustered microRNA regulation and function. Sci Rep 2017; 7(1): 8585.
[http://dx.doi.org/10.1038/s41598-017-09268-0] [PMID: 28819307]
[71]
Cordes KR, Sheehy NT, White MP, et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature 2009; 460(7256): 705-10.
[http://dx.doi.org/10.1038/nature08195] [PMID: 19578358]
[72]
Li B, Meng X, Zhang L. microRNAs and cardiac stem cells in heart development and disease. Drug Discov Today 2019; 24(1): 233-40.
[http://dx.doi.org/10.1016/j.drudis.2018.05.032] [PMID: 29852125]
[73]
Vermersch E, Jouve C, Hulot JS. CRISPR/Cas9 gene-editing strategies in cardiovascular cells. Cardiovasc Res 2020; 116(5): 894-907.
[http://dx.doi.org/10.1093/cvr/cvz250] [PMID: 31584620]
[74]
Nguyen Q, Lim KRQ, Yokota T. Genome editing for the understanding and treatment of inherited cardiomyopathies. Int J Mol Sci 2020; 21(3): 733.
[http://dx.doi.org/10.3390/ijms21030733] [PMID: 31979133]
[75]
Ma H, Marti-Gutierrez N, Park SW, et al. Correction of a pathogenic gene mutation in human embryos. Nature 2017; 548(7668): 413-9.
[http://dx.doi.org/10.1038/nature23305] [PMID: 28783728]
[76]
Zeng Y, Li J, Li G, et al. Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos. Mol Ther 2018; 26(11): 2631-7.
[http://dx.doi.org/10.1016/j.ymthe.2018.08.007] [PMID: 30166242]
[77]
Zischewski J, Fischer R, Bortesi L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases. Biotechnol Adv 2017; 35(1): 95-104.
[http://dx.doi.org/10.1016/j.biotechadv.2016.12.003] [PMID: 28011075]
[78]
Yang Y, Xu J, Ge S, Lai L. CRISPR/Cas: Advances, limitations, and applications for precision cancer research. Front Med (Lausanne) 2021; 8: 649896.
[http://dx.doi.org/10.3389/fmed.2021.649896] [PMID: 33748164]
[79]
Ihry RJ, Worringer KA, Salick MR, et al. p53 inhibits CRISPR–Cas9 engineering in human pluripotent stem cells. Nat Med 2018; 24(7): 939-46.
[http://dx.doi.org/10.1038/s41591-018-0050-6] [PMID: 29892062]
[80]
Uddin F, Rudin CM, Sen T. CRISPR gene therapy: Applications, limitations, and implications for the future. Front Oncol 2020; 10: 1387.
[http://dx.doi.org/10.3389/fonc.2020.01387] [PMID: 32850447]
[81]
Charlesworth CT, Deshpande PS, Dever DP, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 2019; 25(2): 249-54.
[http://dx.doi.org/10.1038/s41591-018-0326-x] [PMID: 30692695]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy