Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Helicobacter pylori Infection: Conventional and Molecular Strategies for Bacterial Diagnosis and Antibiotic Resistance Testing

Author(s): Reza Ranjbar*, Amir Ebrahimi and Amirhossein Sahebkar*

Volume 24, Issue 5, 2023

Published on: 28 September, 2022

Page: [647 - 664] Pages: 18

DOI: 10.2174/1389201023666220920094342

Price: $65

Abstract

Helicobacter pylori infection is a common health problem, which can cause gastric and extragastric diseases. Accurate detection of H. pylori is critical for appropriate patient management and bacterial eradication. In this regard, there are several methods for the diagnosis of H. pylori infection, which are classically divided into two major groups of invasive and non-invasive methods. Invasive methods, such as endoscopy, histology, and relative culture are less preferred due to their operational difficulties. By contrast, non-invasive methods, such as urea breath test, (UBT) are clinically preferred. Moreover, molecular methods, including polymerase chain reaction (PCR)-based methods, next-generation sequencing (NGS), and DNA microarray, have shown good sensitivity and specificity, and are considered helpful in H. pylori diagnosis. These methods have also increasingly concentrated on the detection of bacterial antibiotic resistance patterns. Besides, point of care (POC) devices play an important role in H. pylori diagnosis, mainly by shortening the time to the result and by making the test available at the bedside or at remote care centres. Biosensors, including aptasensors, have shown to be more appropriate tools because of their low limit of detection, high selectivity, fast response, and ease of handling. Finally, new emerging techniques, like MALDI-TOF MS, have been considered as fast methods with high degree of accuracy and sensitivity to identify and differentiate new species of H. pylori. The current article reviews the most recent developments in invasive, noninvasive, and molecular approaches for the diagnosis of H. pylori infections. Moreover, the application of emerging techniques, including MALDI-TOF MS and recently developed POCs, and biomarker-based methods, is discussed.

Keywords: Helicobacter pylori, diagnosis, traditional methods, molecular techniques, biomarkers, POCs, MALDI-TOF MS

[1]
Ranjbar, R.; Farsani, F.Y.; Dehkordi, F.S. Phenotypic analysis of antibiotic resistance and genotypic study of the vacA, cagA, iceA, oipA and babA genotypes of the Helicobacter pylori strains isolated from raw milk. Antimicrob. Resist. Infect. Control, 2018, 7(1), 115.
[http://dx.doi.org/10.1186/s13756-018-0409-y] [PMID: 30288255]
[2]
Nevoa, J.C.; Rodrigues, R.L.; Menezes, G.L.; Lopes, A.R.; Nascimento, H.F.; Santiago, S.B.; Morelli, M.L.; Barbosa, M.S. Molecular technique for detection and identification of Helicobacter pylori in clinical specimens: A comparison with the classical diagnostic method. J. Bras. Patol. Med. Lab., 2017, 53, 13-19.
[http://dx.doi.org/10.5935/1676-2444.20170003]
[3]
Crowe, S.E. Helicobacter pylori Infection. N. Engl. J. Med., 2019, 380(12), 1158-1165.
[http://dx.doi.org/10.1056/NEJMcp1710945] [PMID: 30893536]
[4]
Ranjbar, R.; Yadollahi, F.F.; Safarpoor, D.F. Antimicrobial resistance and genotyping of vacA, cagA, and iceA alleles of the Helicobacter pylori strains isolated from traditional dairy products. J. Food Saf., 2019, 39(2), e12594.
[http://dx.doi.org/10.1111/jfs.12594]
[5]
Ranjbar, R.; Chehelgerdi, M. Genotyping and antibiotic resistance properties of Helicobacter pylori strains isolated from human and animal gastric biopsies. Infect. Drug Resist., 2018, 11, 2545-2554.
[http://dx.doi.org/10.2147/IDR.S187885] [PMID: 30588039]
[6]
Li, H.; Yang, T.; Tang, H.; Tang, X.; Shen, Y.; Benghezal, M.; Tay, A.; Marshall, B. Helicobacter pylori infection is an infectious disease and the empiric therapy paradigm should be changed. Precis. Clin. Med., 2019, 2(2), 77-80.
[http://dx.doi.org/10.1093/pcmedi/pbz009] [PMID: 35692450]
[7]
Sheikh, A.F.; Yadyad, M.J.; Goodarzi, H.; Hashemi, S.J.; Aslani, S.; Assarzadegan, M.A.; Ranjbar, R. CagA and vacA allelic combination of Helicobacter pylori in gastroduodenal disorders. Microb. Pathog., 2018, 122, 144-150.
[http://dx.doi.org/10.1016/j.micpath.2018.06.023] [PMID: 29908307]
[8]
Bagheri, V.; Memar, B.; Momtazi, A.A.; Sahebkar, A.; Gholamin, M.; Abbaszadegan, M.R. Cytokine networks and their association with Helicobacter pylori infection in gastric carcinoma. J. Cell. Physiol., 2018, 233(4), 2791-2803.
[http://dx.doi.org/10.1002/jcp.25822] [PMID: 28121015]
[9]
Navashenaq, J.G.; Shabgah, A.G.; Banach, M.; Jamialahmadi, T.; Penson, P.E.; Johnston, T.P.; Sahebkar, A. The interaction of Helicobacter pylori with cancer immunomodulatory stromal cells: New insight into gastric cancer pathogenesis. Semin. Cancer Biol., 2021.
[http://dx.doi.org/10.1016/j.semcancer.2021.09.014] [PMID: 34600095]
[10]
Ranjbar, R.; Hesari, A.; Ghasemi, F.; Sahebkar, A. Expression of microRNAs and IRAK1 pathway genes are altered in gastric cancer patients with Helicobacter pylori infection. J. Cell. Biochem., 2018, 119(9), 7570-7576.
[http://dx.doi.org/10.1002/jcb.27067] [PMID: 29797599]
[11]
Samareh-Fekri, M.; Hashemi Bajgani, S.M.; Shafahi, A.; Asadi-Zarandi, M.; Mollaie, H.; Jamali Paghalhe, A. Detection of Helicobacter pylori in the bronchoalveolar lavage of patients with lung cancer using real-time PCR. Jundishapur J. Microbiol., 2016, 9(11), e32144.
[http://dx.doi.org/10.5812/jjm.32144] [PMID: 28138371]
[12]
Bravo, D.; Hoare, A.; Soto, C.; Valenzuela, M.A.; Quest, A.F.G. Helicobacter pylori in human health and disease: Mechanisms for local gastric and systemic effects. World J. Gastroenterol., 2018, 24(28), 3071-3089.
[http://dx.doi.org/10.3748/wjg.v24.i28.3071] [PMID: 30065554]
[13]
Gravina, A.G.; Zagari, R.M.; Musis, C.D.; Romano, L.; Loguercio, C.; Romano, M. Helicobacter pylori and extragastric diseases: A review. World J. Gastroenterol., 2018, 24(29), 3204-3221.
[http://dx.doi.org/10.3748/wjg.v24.i29.3204] [PMID: 30090002]
[14]
Laird-Fick, H.S.; Saini, S.; Hillard, J.R. Gastric adenocarcinoma: The role of Helicobacter pylori in pathogenesis and prevention efforts. Postgrad. Med. J., 2016, 92(1090), 471-477.
[http://dx.doi.org/10.1136/postgradmedj-2016-133997] [PMID: 27222587]
[15]
Blaser, M. Stop the killing of beneficial bacteria. Nature, 2011, 476(7361), 393-394.
[http://dx.doi.org/10.1038/476393a] [PMID: 21866137]
[16]
Hosseinzadeh, M.; Khosravi, A.; Saki, K.; Ranjbar, R. Evaluation of Helicobacter pylori infection in patients with common migraine headache. Arch. Med. Sci., 2011, 5(5), 844-849.
[http://dx.doi.org/10.5114/aoms.2011.25560] [PMID: 22291830]
[17]
Ranjbar, R.; Karampoor, S.; Jalilian, F.A. The protective effect of Helicobacter Pylori infection on the susceptibility of multiple sclerosis. J. Neuroimmunol., 2019, 337, 577069.
[http://dx.doi.org/10.1016/j.jneuroim.2019.577069] [PMID: 31610314]
[18]
Salama, N.R.; Hartung, M.L.; Müller, A. Life in the human stomach: Persistence strategies of the bacterial pathogen Helicobacter pylori. Nat. Rev. Microbiol., 2013, 11(6), 385-399.
[http://dx.doi.org/10.1038/nrmicro3016] [PMID: 23652324]
[19]
Talebi, B.A. Diagnosis of Helicobacter pylori using invasive and noninvasive approaches. J. Pathogens, 2018, 2018, 1-13.
[http://dx.doi.org/10.1155/2018/9064952] [PMID: 29951318]
[20]
Patel, S.K.; Pratap, C.B.; Jain, A.K.; Gulati, A.K.; Nath, G. Diagnosis of Helicobacter pylori: What should be the gold standard? World J. Gastroenterol., 2014, 20(36), 12847-12859.
[http://dx.doi.org/10.3748/wjg.v20.i36.12847] [PMID: 25278682]
[21]
Hasosah, M. Accuracy of invasive and noninvasive methods of Helicobacter pylori infection diagnosis in Saudi children. Saudi J. gastroenterol., 2019, 25(2), 126-31.
[http://dx.doi.org/10.4103/sjg.SJG_288_18]
[22]
Hirschl, A.M.; Makristathis, A. Methods to detect Helicobacter pylori: From culture to molecular biology. Helicobacter, 2007, 12(S2), 6-11.
[http://dx.doi.org/10.1111/j.1523-5378.2007.00560.x] [PMID: 17991170]
[23]
Goderska, K.; Agudo Pena, S.; Alarcon, T. Helicobacter pylori treatment: Antibiotics or probiotics. Appl. Microbiol. Biotechnol., 2018, 102(1), 1-7.
[http://dx.doi.org/10.1007/s00253-017-8535-7] [PMID: 29075827]
[24]
Pohl, D.; Keller, P.M.; Bordier, V.; Wagner, K. Review of current diagnostic methods and advances in Helicobacter pylori diagnostics in the era of next generation sequencing. World J. Gastroenterol., 2019, 25(32), 4629-4660.
[http://dx.doi.org/10.3748/wjg.v25.i32.4629] [PMID: 31528091]
[25]
Li, Y.; Lv, T.; He, C.; Wang, H.; Cram, D.S.; Zhou, L.; Zhang, J.; Jiang, W. Evaluation of multiplex ARMS-PCR for detection of Helicobacter pylori mutations conferring resistance to clarithromycin and levofloxacin. Gut Pathog., 2020, 12(1), 35.
[http://dx.doi.org/10.1186/s13099-020-00373-6] [PMID: 32670416]
[26]
Smith, S.M.; O’Morain, C.; McNamara, D. Antimicrobial susceptibility testing for Helicobacter pylori in times of increasing antibiotic resistance. World J. Gastroenterol., 2014, 20(29), 9912-9921.
[http://dx.doi.org/10.3748/wjg.v20.i29.9912] [PMID: 25110421]
[27]
Wang, Y.K.; Kuo, F.C.; Liu, C.J.; Wu, M.C.; Shih, H.Y.; Wang, S.S.; Wu, J.Y.; Kuo, C.H.; Huang, Y.K.; Wu, D.C. Diagnosis of Helicobacter pylori infection: Current options and developments. World J. Gastroenterol., 2015, 21(40), 11221-11235.
[http://dx.doi.org/10.3748/wjg.v21.i40.11221] [PMID: 26523098]
[28]
Rana, R.; Wang, S.L.; Li, J.; Wang, Y.X.; Rao, Q.W.; Yang, C.Q. Helicobacter pylori infection: A recent approach to diagnosis and management. J. Biomed., 2017, 2, 45-56.
[http://dx.doi.org/10.7150/jbm.17612]
[29]
Ji, R.; Li, Y.Q. Diagnosing Helicobacter pylori infection in vivo by novel endoscopic techniques. World J. Gastroenterol., 2014, 20(28), 9314-9320.
[PMID: 25071325]
[30]
Yoshifuku, Y.; Sanomura, Y.; Oka, S.; Kuroki, K.; Kurihara, M.; Mizumoto, T.; Urabe, Y.; Hiyama, T.; Tanaka, S.; Chayama, K. Clinical usefulness of the vs classification system using magnifying endoscopy with blue laser imaging for early gastric cancer. Gastroenterol. Res. Pract., 2017, 2017, 1-6.
[http://dx.doi.org/10.1155/2017/3649705] [PMID: 28596787]
[31]
Tahara, T.; Takahama, K.; Horiguchi, N.; Yoshida, D.; Kawamura, T.; Okubo, M.; Ishizuka, T.; Nagasaka, M.; Nakagawa, Y.; Shibata, T.; Ohmiya, N. A comparative study of magnifying blue laser imaging and magnifying narrow-band imaging system for endoscopic diagnosis of Helicobacter pylori infection. Biomed. Rep., 2017, 7(3), 236-240.
[http://dx.doi.org/10.3892/br.2017.946]
[32]
Makristathis, A.; Hirschl, A.M.; Mégraud, F.; Bessède, E. Review: Diagnosis of Helicobacter pylori infection. Helicobacter, 2019, 24(S1), e12641.
[http://dx.doi.org/10.1111/hel.12641] [PMID: 31486244]
[33]
Yoshida, N.; Dohi, O.; Inoue, K.; Yasuda, R.; Murakami, T.; Hirose, R.; Inoue, K.; Naito, Y.; Inada, Y.; Ogiso, K.; Morinaga, Y.; Kishimoto, M.; Rani, R.A.; Itoh, Y. Blue laser imaging, blue light imaging, and linked color imaging for the detection and characterization of colorectal tumors. Gut Liver, 2019, 13(2), 140-148.
[http://dx.doi.org/10.5009/gnl18276] [PMID: 30513568]
[34]
Ono, S.; Dohi, O.; Yagi, N.; Sanomura, Y.; Tanaka, S.; Naito, Y.; Sakamoto, N.; Kato, M. Accuracies of endoscopic diagnosis of Helicobacter pylori-gastritis: Multicenter prospective study using white light imaging and linked color imaging. Digestion, 2020, 101(5), 624-630.
[http://dx.doi.org/10.1159/000501634] [PMID: 31336366]
[35]
Zhu, Y.; Wang, F.; Zhou, Y.; Xia, G.L.; Dong, L.; He, W.H.; Xiao, B. Blue laser magnifying endoscopy in the diagnosis of chronic gastritis. Exp. Ther. Med., 2019, 18(3), 1993-2000.
[http://dx.doi.org/10.3892/etm.2019.7811] [PMID: 31452698]
[36]
Osawa, H.; Miura, Y.; Takezawa, T.; Ino, Y.; Khurelbaatar, T.; Sagara, Y.; Lefor, A.K.; Yamamoto, H. Linked color imaging and blue laser imaging for upper gastrointestinal screening. Clin. Endosc., 2018, 51(6), 513-526.
[http://dx.doi.org/10.5946/ce.2018.132] [PMID: 30384402]
[37]
Min, J.K.; Kwak, M.S.; Cha, J.M. Overview of deep learning in gastrointestinal endoscopy. Gut Liver, 2019, 13(4), 388-393.
[http://dx.doi.org/10.5009/gnl18384] [PMID: 30630221]
[38]
Nakashima, H.; Kawahira, H.; Kawachi, H.; Sakaki, N. Artificial intelligence diagnosis of Helicobacter pylori infection using blue laser imaging-bright and linked color imaging: A single-center prospective study. Ann. Gastroenterol., 2018, 31(4), 462-468.
[http://dx.doi.org/10.20524/aog.2018.0269] [PMID: 29991891]
[39]
Mohammadian, T.; Ganji, L. The diagnostic tests for detection of Helicobacter pylori Infection. Monoclon. Antib. Immunodiagn. Immunother., 2019, 38(1), 1-7.
[http://dx.doi.org/10.1089/mab.2018.0032] [PMID: 30648911]
[40]
Lee, J.Y.; Kim, N. Diagnosis of Helicobacter pylori by invasive test: Histology. Ann. Transl. Med., 2015, 3(1), 10.
[PMID: 25705642]
[41]
Lopes, A.I.; Vale, F.F.; Oleastro, M. Helicobacter pylori infection - recent developments in diagnosis. World J. Gastroenterol., 2014, 20(28), 9299-9313.
[PMID: 25071324]
[42]
Atkinson, N.S.S.; Braden, B. Helicobacter pylori infection: Diagnostic strategies in primary diagnosis and after therapy. Dig. Dis. Sci., 2016, 61(1), 19-24.
[http://dx.doi.org/10.1007/s10620-015-3877-4] [PMID: 26391269]
[43]
Arachchi, P.S.; Weerasekera, M.M.; Seneviratne, B.; Weerasekera, D.; Fernando, N.; Gunasekara, C.P. Imprint cytology: A useful screening test for diagnosis of Helicobacter pylori in resource poor settings. BMC Res. Notes, 2018, 11(1), 481.
[http://dx.doi.org/10.1186/s13104-018-3592-2] [PMID: 30012215]
[44]
Domșa, A.M.T.; Lupușoru, R.; Gheban, D.; Șerban, R.; Borzan, C.M. Helicobacter pylori gastritis in children—the link between endoscopy and histology. J. Clin. Med., 2020, 9(3), 784.
[http://dx.doi.org/10.3390/jcm9030784] [PMID: 32183130]
[45]
Cover, T.L. Perspectives on methodology for in vitro culture of Helicobacter pylori. Methods Mol. Biol., 2012, 921, 11-15.
[http://dx.doi.org/10.1007/978-1-62703-005-2_3] [PMID: 23015486]
[46]
Sarma, A.; Hazarika, B.; Patgiri, S.; Saikia, L.; Begum, S.; Hussain, M. Isolation of Helicobacter pylori from gastric biopsy specimens and evaluation of common contaminants associated with H. Pylori cultures. Int. J. Med. Res. Prof., 2016, 2, 161-164.
[47]
Fabricio Guaman, J.; Bayas-Morejon, I.F.; Arcos, V.; Tigre-Leon, A.; Lucio-Quintana, A.; Salazar, S.; Gaibor-Chavez, J.; Ramon Curay, R. Detection of Helicobacter pylori from human biological samples (Feces) by antigenic screening and culture. Jundishapur J. Microbiol., 2018, 11(7), e66721.
[http://dx.doi.org/10.5812/jjm.66721]
[48]
Amin, M.; Shayesteh, A.A.; Serajian, A.; Goodarzi, H. Assessment of metronidazole and clarithromycin resistance among Helicobacter pylori isolates of ahvaz (Southwest of Iran) during 2015 - 2016 by phenotypic and molecular methods. Jundishapur J. Microbiol., 2019, 12(4), e80156.
[http://dx.doi.org/10.5812/jjm.80156]
[49]
Arslan, N.; Yılmaz, Ö.; Demiray-Gürbüz, E. Importance of antimicrobial susceptibility testing for the management of eradication in Helicobacter pylori infection. World J. Gastroenterol., 2017, 23(16), 2854-2869.
[http://dx.doi.org/10.3748/wjg.v23.i16.2854] [PMID: 28522904]
[50]
Raoufi, E.; Akrami, H.; Khansarinejad, B.; Abtahi, H. Expression and antigenic evaluation of Helicobacter pylori UreB fragment. Jundishapur J. Microbiol., 2017, 10(5), e41645.
[http://dx.doi.org/10.5812/jjm.41645]
[51]
Ansari, S.; Yamaoka, Y. Helicobacter pylori virulence factors exploiting gastric colonization and its pathogenicity. Toxins, 2019, 11(11), 677.
[http://dx.doi.org/10.3390/toxins11110677] [PMID: 31752394]
[52]
Roesler, B.M.; Rabelo-Gonçalves, E.M.A.; Zeitune, J.M.R. Virulence Factors of Helicobacter pylori: A review. Clin. Med. Insights Gastroenterol., 2014, 7, 9-17.
[http://dx.doi.org/10.4137/CGast.S13760] [PMID: 24833944]
[53]
Graham, D.Y.; Miftahussurur, M. Helicobacter pylori urease for diagnosis of Helicobacter pylori infection: A mini review. J. Adv. Res., 2018, 13, 51-57.
[http://dx.doi.org/10.1016/j.jare.2018.01.006] [PMID: 30094082]
[54]
Uotani, T.; Graham, D.Y. Diagnosis of Helicobacter pylori using the rapid urease test. Ann. Transl. Med., 2015, 3(1), 9.
[PMID: 25705641]
[55]
McNicholl, A.G.; Ducons, J.; Barrio, J.; Bujanda, L.; Forné-Bardera, M.; Aparcero, R.; Ponce, J.; Rivera, R.; Dedeu-Cuso, J.M.; Garcia-Iglesias, P.; Montoro, M.; Bejerano, A.; Ber-Nieto, Y.; Madrigal, B.; Zapata, E.; Loras-Alastruey, C.; Castro, M.; Nevarez, A.; Mendez, I.; Bory-Ros, F.; Miquel-Planas, M.; Vera, I.; Nyssen, O.P.; Gisbert, J.P. Accuracy of the ultra-rapid urease test for diagnosis of Helicobacter pylori infection. Gastroenterol. Hepatol., 2017, 40(10), 651-657.
[http://dx.doi.org/10.1016/j.gastrohep.2017.07.007] [PMID: 28941945]
[56]
Dechant, F.X.; Dechant, R.; Kandulski, A.; Selgrad, M.; Weber, F.; Reischl, U.; Wilczek, W.; Mueller, M.; Weigand, K. Accuracy of different rapid urease tests in comparison with histopathology in patients with endoscopic signs of gastritis. Digestion, 2020, 101(2), 184-190.
[http://dx.doi.org/10.1159/000497810] [PMID: 30820016]
[57]
Baroni, M.R.; Bucci, P.; Giani, R.N.; Giusti, A.; Tedeschi, F.A.; Salvatierra, E.; Barbaglia, Y.; Jimenez, F.; Zalazar, F.E. Usefulness of rapid urease test samples for molecular analysis of clarithromycin resistance in Helicobacter pylori. Rev. Argent. Microbiol., 2018, 50(4), 359-364.
[http://dx.doi.org/10.1016/j.ram.2017.11.005] [PMID: 29602600]
[58]
Miftahussurur, M. Noninvasive Helicobacter pylori diagnostic methods in indonesia. Gut Liver, 2020, 14(5), 553-559.
[http://dx.doi.org/10.5009/gnl19264] [PMID: 31693853]
[59]
Saniee, P.; Shahreza, S.; Siavoshi, F. Negative effect of Proton-Pump Inhibitors (PPIs) on Helicobacter pylori growth, morphology, and urease test and recovery after ppi removal - an in vitro study. Helicobacter, 2016, 21(2), 143-152.
[http://dx.doi.org/10.1111/hel.12246] [PMID: 26222264]
[60]
Takimoto, M.; Tomita, T.; Yamasaki, T.; Fukui, S.; Taki, M.; Okugawa, T.; Kondo, T.; Kono, T.; Tozawa, K.; Arai, E.; Ohda, Y.; Oshima, T.; Fukui, H.; Watari, J.; Miwa, H. Effect of vonoprazan, a potassium-competitive acid blocker, on the 13C-urea breath test in Helicobacter pylori-positive patients. Dig. Dis. Sci., 2017, 62(3), 739-745.
[http://dx.doi.org/10.1007/s10620-016-4439-0] [PMID: 28083842]
[61]
Molina-Molina, E.; Bonfrate, L.; Lorusso, M.; Shanmugam, H.; Scaccianoce, G.; Rokkas, T.; Portincasa, P. Faster detection of Helicobacter pylori infection by 13 C-Urea breath test. comparing short versus standard sampling time. J. Gastrointestin. Liver Dis., 2019, 28, 151-161.
[http://dx.doi.org/10.15403/jgld-175] [PMID: 31204406]
[62]
Ferwana, M.; Abdulmajeed, I.; Alhajiahmed, A.; Madani, W.; Firwana, B.; Hasan, R.; Altayar, O.; Limburg, P.J.; Murad, M.H.; Knawy, B. Accuracy of urea breath test in Helicobacter pylori infection: Meta-analysis. World J. Gastroenterol., 2015, 21(4), 1305-1314.
[http://dx.doi.org/10.3748/wjg.v21.i4.1305] [PMID: 25632206]
[63]
Tepeš, B.; Malfertheiner, P.; Labenz, J.; Aygen, S. Modified Helicobacter test using a new test meal and a 13C-urea breath test in Helicobacter pylori positive and negative dyspepsia patients on proton pump inhibitors. World J. Gastroenterol., 2017, 23(32), 5954-5961.
[http://dx.doi.org/10.3748/wjg.v23.i32.5954] [PMID: 28932087]
[64]
Peng, N.J.; Lai, K.H.; Liu, R.S.; Lee, S.C.; Tsay, D.G.; Lo, C.C.; Tseng, H.H.; Huang, W.K.; Lo, G.H.; Hsu, P.I. Clinical significance of oral urease in diagnosis of Helicobacter pylori infection by [13C]urea breath test. Dig. Dis. Sci., 2001, 46(8), 1772-1778.
[http://dx.doi.org/10.1023/A:1010626225949] [PMID: 11508681]
[65]
Queiroz, D.M.M.; Saito, M.; Rocha, G.A.; Rocha, A.M.C.; Melo, F.F.; Checkley, W.; Braga, L.L.B.C.; Silva, I.S.; Gilman, R.H.; Crabtree, J.E. Helicobacter pylori infection in infants and toddlers in South America: Concordance between [13C]urea breath test and monoclonal H. pylori stool antigen test. J. Clin. Microbiol., 2013, 51(11), 3735-3740.
[http://dx.doi.org/10.1128/JCM.01752-13] [PMID: 24006009]
[66]
Alzoubi, H.; Al-Mnayyis, A.; Al rfoa, I.; Aqel, A.; Abu-Lubad, M.; Hamdan, O.; Jaber, K. The Use of 13C-urea breath test for noninvasive diagnosis of Helicobacter pylori infection in comparison to endoscopy and stool antigen test. Diagnostics, 2020, 10(7), 448.
[http://dx.doi.org/10.3390/diagnostics10070448] [PMID: 32635179]
[67]
Ranjbar, R.; Behzadi, P.; Farshad, S. Advances in diagnosis and treatment of Helicobacter pylori infection. Acta Microbiol. Immunol. Hung., 2017, 64(3), 273-292.
[http://dx.doi.org/10.1556/030.64.2017.008] [PMID: 28263101]
[68]
Seo, J.H.; Park, J.S.; Rhee, K.H.; Youn, H.S. Diagnosis of Helicobacter pylori infection in children and adolescents in Korea. Pediatr. Gastroenterol. Hepatol. Nutr., 2018, 21(4), 219-233.
[http://dx.doi.org/10.5223/pghn.2018.21.4.219] [PMID: 30345235]
[69]
Tonkic, A.; Vukovic, J.; Vrebalov Cindro, P.; Pesutic Pisac, V.; Tonkic, M. Diagnosis of Helicobacter pylori infection. Wien. Klin. Wochenschr., 2018, 130(17-18), 530-534.
[http://dx.doi.org/10.1007/s00508-018-1356-6] [PMID: 29959527]
[70]
Shimoyama, T. Stool antigen tests for the management of Helicobacter pylori infection. World J. Gastroenterol., 2013, 19(45), 8188-8191.
[http://dx.doi.org/10.3748/wjg.v19.i45.8188] [PMID: 24363508]
[71]
Zhou, X.; Su, J.; Xu, G.; Zhang, G. Accuracy of stool antigen test for the diagnosis of Helicobacter pylori infection in children: A meta-analysis. Clin. Res. Hepatol. Gastroenterol., 2014, 38(5), 629-638.
[http://dx.doi.org/10.1016/j.clinre.2014.02.001] [PMID: 24629927]
[72]
Kalach, N; Gosset, P; Dehecq, E; Decoster, A; Georgel, AF; Spyckerelle, C A one-step immune-chromatographic Helicobacter pylori stool antigen test for children was quick, consistent, reliable and specific. Acta paediatrica, 2017, 106(12), 2025-30.
[73]
Moubri, M.; Burucoa, C.; Kalach, N.; Larras, R.; Nouar, N.; Mouffok, F. Performances of the IDEIA HpStAR stool antigen test in detection of Helicobacter pylori infection before and after eradication treatment in Algerian children. J. Trop. Pediatr., 2018, 65.
[PMID: 30007342]
[74]
Dore, M.P.; Pes, G.M.; Bassotti, G.; Usai-Satta, P. Dyspepsia: When and how to test for Helicobacter pylori infection. Gastroenterol. Res. Pract., 2016, 2016, 1-9.
[http://dx.doi.org/10.1155/2016/8463614] [PMID: 27239194]
[75]
Best, L.M.; Takwoingi, Y.; Siddique, S.; Selladurai, A.; Gandhi, A.; Low, B.; Yaghoobi, M.; Gurusamy, K.S. Non-invasive diagnostic tests for Helicobacter pylori infection. Cochrane Database Syst. Rev., 2018, 3(3), CD012080.
[PMID: 29543326]
[76]
Bosch, D.E.; Krumm, N.; Wener, M.H.; Yeh, M.M.; Truong, C.D.; Reddi, D.M.; Liu, Y.; Swanson, P.E.; Schmidt, R.A.; Bryan, A. Serology is more sensitive than urea breath test or stool antigen for the initial diagnosis of Helicobacter pylori gastritis when compared with histopathology. Am. J. Clin. Pathol., 2020, 154(2), 255-265.
[http://dx.doi.org/10.1093/ajcp/aqaa043] [PMID: 32445464]
[77]
Raj, P; Thompson, JF; Pan, DH Helicobacter pylori serology testing is a useful diagnostic screening tool for symptomatic inner city children. Acta paediatrica, 2017, 106(3), 470-7.
[78]
Shafaie, E.; Saberi, S.; Esmaeili, M.; Karimi, Z.; Najafi, S.; Tashakoripoor, M.; Abdirad, A.; Hosseini, M.E.; Mohagheghi, M.A.; Khalaj, V.; Mohammadi, M. Multiplex serology of Helicobacter pylori antigens in detection of current infection and atrophic gastritis - A simple and cost-efficient method. Microb. Pathog., 2018, 119, 137-144.
[http://dx.doi.org/10.1016/j.micpath.2018.04.018] [PMID: 29665437]
[79]
Formichella, L.; Romberg, L.; Bolz, C.; Vieth, M.; Geppert, M.; Göttner, G.; Nölting, C.; Walter, D.; Schepp, W.; Schneider, A.; Ulm, K.; Wolf, P.; Busch, D.H.; Soutschek, E.; Gerhard, M. A novel line immunoassay based on recombinant virulence factors enables highly specific and sensitive serologic diagnosis of Helicobacter pylori infection. Clin. Vaccine Immunol., 2013, 20(11), 1703-1710.
[http://dx.doi.org/10.1128/CVI.00433-13] [PMID: 24006137]
[80]
Butt, J.; Varga, M.G.; Blot, W.J.; Teras, L.; Visvanathan, K.; Le Marchand, L.; Haiman, C.; Chen, Y.; Bao, Y.; Sesso, H.D.; Wassertheil-Smoller, S.; Ho, G.Y.F.; Tinker, L.E.; Peek, R.M.; Potter, J.D.; Cover, T.L.; Hendrix, L.H.; Huang, L.C.; Hyslop, T.; Um, C.; Grodstein, F.; Song, M.; Zeleniuch-Jacquotte, A.; Berndt, S.; Hildesheim, A.; Waterboer, T.; Pawlita, M.; Epplein, M. Serologic response to Helicobacter pylori proteins associated with risk of colorectal cancer among diverse populations in the United States. Gastroenterology, 2019, 156(1), 175-186.e2.
[http://dx.doi.org/10.1053/j.gastro.2018.09.054] [PMID: 30296434]
[81]
Epplein, M.; Butt, J.; Zhang, Y.; Hendrix, L.H.; Abnet, C.C.; Murphy, G.; Zheng, W.; Shu, X.O.; Tsugane, S.; Qiao, Y.; Taylor, P.R.; Shimazu, T.; Yoo, K.Y.; Park, S.K.; Kim, J.; Jee, S.H.; Waterboer, T.; Pawlita, M.; You, W.; Pan, K. Validation of a blood biomarker for identification of individuals at high risk for gastric cancer. Cancer Epidemiol. Biomarkers Prev., 2018, 27(12), 1472-1479.
[http://dx.doi.org/10.1158/1055-9965.EPI-18-0582] [PMID: 30158280]
[82]
Okuda, M.; Nakazawa, T.; Booka, M.; Miyashiro, E.; Yosikawa, N. Evaluation of a urine antibody test for Helicobacter pylori in Japanese children. J. Pediatr., 2004, 144(2), 196-199.
[http://dx.doi.org/10.1016/j.jpeds.2003.10.057] [PMID: 14760261]
[83]
Okuda, M; Mabe, K; Lin, Y; Chaochen, W; Taniguchi, Y; Kato, M Rapid urine antibody test for Helicobacter pylori infection in adolescents. Pediatr Int., 2017, 59(7), 798-802.
[84]
Khalilpour, A.; Kazemzadeh-Narbat, M.; Tamayol, A.; Oklu, R.; Khademhosseini, A. Biomarkers and diagnostic tools for detection of Helicobacter pylori. Appl. Microbiol. Biotechnol., 2016, 100(11), 4723-4734.
[http://dx.doi.org/10.1007/s00253-016-7495-7] [PMID: 27084783]
[85]
Shiota, S.; Yamaoka, Y. Biomarkers for Helicobacter pylori infection and gastroduodenal diseases. Biomarkers Med., 2014, 8(9), 1127-1137.
[http://dx.doi.org/10.2217/bmm.14.72] [PMID: 25402582]
[86]
Huang, R.; Xiao, H.; Zhou, B.; Song, X.; Zhang, J.; Wang, C.; Jiang, Y.; Chen, D.; Huang, B. Serum pepsinogen levels are correlated with age, sex and the level of Helicobacter pylori infection in healthy individuals. Am. J. Med. Sci., 2016, 352(5), 481-486.
[http://dx.doi.org/10.1016/j.amjms.2016.08.005] [PMID: 27865295]
[87]
Osumi, H.; Fujisaki, J.; Suganuma, T.; Horiuchi, Y.; Omae, M.; Yoshio, T.; Ishiyama, A.; Tsuchida, T.; Miki, K. A significant increase in the pepsinogen I/II ratio is a reliable biomarker for successful Helicobacter pylori eradication. PLoS One, 2017, 12(8), e0183980.
[http://dx.doi.org/10.1371/journal.pone.0183980] [PMID: 28854276]
[88]
Piroozmand, A.; Soltani, B.; Razavizadeh, M.; Matini, A.H.; Moosavi, G.A.; Salehi, M.; Soltani, S. Comparison of gastric juice soluble triggering receptor expressed on myeloid cells and C-reactive protein for detection of Helicobacter pylori infection. Electron. Physician, 2017, 9(12), 6111-6119.
[http://dx.doi.org/10.19082/6111] [PMID: 29560167]
[89]
Jafarzadeh, A.; Nemati, M.; Rezayati, M.; Ebrahimi, M.; Abdollahi, H. Higher circulating levels of anti-phosphatidylserine antibody in peptic ulcer patients infected with CagA-positive strains of Helicobacter pylori. Clin. Lab., 2013, 59(09+10/2013), 977-984.
[http://dx.doi.org/10.7754/Clin.Lab.2012.120719] [PMID: 24273919]
[90]
Khadangi, F.; Yassi, M.; Kerachian, M.A. Review: Diagnostic accuracy of PCR-based detection tests for Helicobacter Pylori in stool samples. Helicobacter, 2017, 22(6), e12444.
[http://dx.doi.org/10.1111/hel.12444] [PMID: 28961384]
[91]
Flores-Treviño, C.E.; Urrutia-Baca, V.H.; Gómez-Flores, R.; De La Garza-Ramos, M.A.; Sánchez-Chaparro, M.M.; Garza-Elizondo, M.A. Molecular detection of Helicobacter pylori based on the presence of cagA and vacA virulence genes in dental plaque from patients with periodontitis. J. Dent. Sci., 2019, 14(2), 163-170.
[http://dx.doi.org/10.1016/j.jds.2019.01.010] [PMID: 31210890]
[92]
Szymczak, A.; Ferenc, S.; Majewska, J.; Miernikiewicz, P.; Gnus, J.; Witkiewicz, W.; Dąbrowska, K. Application of 16S rRNA gene sequencing in Helicobacter pylori detection. Peer J, 2020, 8, e9099.
[http://dx.doi.org/10.7717/peerj.9099] [PMID: 32440373]
[93]
Ramírez-Lázaro, M.J.; Lario, S.; Casalots, A.; Sanfeliu, E.; Boix, L.; García-Iglesias, P.; Sánchez-Delgado, J.; Montserrat, A.; Bella-Cueto, M.R.; Gallach, M.; Sanfeliu, I.; Segura, F.; Calvet, X. Real-time PCR improves Helicobacter pylori detection in patients with peptic ulcer bleeding. PLoS One, 2011, 6(5), e20009.
[http://dx.doi.org/10.1371/journal.pone.0020009] [PMID: 21625499]
[94]
Sabbagh, P; Javanian, M; Koppolu, V; Vasigala, VR; Ebrahimpour, S Helicobacter pylori infection in children: An overview of diagnostic methods. Eur. J. Clin. Microbiol. Infect. Dis., 2019, 38(6), 1035-45.
[http://dx.doi.org/10.1007/s10096-019-03502-5]
[95]
Šeligová, B.; Lukáč, Ľ.; Bábelová, M.; Vávrová, S.; Sulo, P. Diagnostic reliability of nested PCR depends on the primer design and threshold abundance of Helicobacter pylori in biopsy, stool, and saliva samples. Helicobacter, 2020, 25(2), e12680.
[http://dx.doi.org/10.1111/hel.12680] [PMID: 32057175]
[96]
Chattopadhyay, S.; Patra, R.; Ramamurthy, T.; Chowdhury, A.; Santra, A.; Dhali, G.K.; Bhattacharya, S.K.; Berg, D.E.; Nair, G.B.; Mukhopadhyay, A.K. Multiplex PCR assay for rapid detection and genotyping of Helicobacter pylori directly from biopsy specimens. J. Clin. Microbiol., 2004, 42(6), 2821-2824.
[http://dx.doi.org/10.1128/JCM.42.6.2821-2824.2004] [PMID: 15184482]
[97]
Ramírez-Lázaro, M.J.; Lario, S.; Quílez, M.E.; Montserrat, A.; Bella, M.R.; Junquera, F.; García-Martínez, L.; Casalots, À.; Parra, T.; Calvet, X. Droplet digital PCR detects low-density infection in a significant proportion of Helicobacter pylori-negative gastric biopsies of dyspeptic patients. Clin. Transl. Gastroenterol., 2020, 11(6), e00184.
[http://dx.doi.org/10.14309/ctg.0000000000000184] [PMID: 32568476]
[98]
Talarico, S.; Safaeian, M.; Gonzalez, P.; Hildesheim, A.; Herrero, R.; Porras, C.; Cortes, B.; Larson, A.; Fang, F.C.; Salama, N.R. Quantitative detection and genotyping of Helicobacter pylori from stool using droplet digital pcr reveals variation in bacterial loads that correlates with cagA virulence gene carriage. Helicobacter, 2016, 21(4), 325-333.
[http://dx.doi.org/10.1111/hel.12289] [PMID: 26667241]
[99]
Engstrand, L. How will next-generation sequencing contribute to the knowledge concerning Helicobacter pylori? Clin. Microbiol. Infect., 2009, 15(9), 823-8.
[http://dx.doi.org/10.1111/j.1469-0691.2009.02962.x]
[100]
Motro, Y.; Moran-Gilad, J. Next-generation sequencing applications in clinical bacteriology. Biomol Detect. Quantif., 2017, 14, 1-6.
[http://dx.doi.org/10.1016/j.bdq.2017.10.002] [PMID: 29255684]
[101]
Nezami, B.G.; Jani, M.; Alouani, D.; Rhoads, D.D.; Sadri, N. Helicobacter pylori mutations detected by next-generation sequencing in formalin-fixed, paraffin-embedded gastric biopsy specimens are associated with treatment failure. J. Clin. Microbiol., 2019, 57(7), e01834-18.
[http://dx.doi.org/10.1128/JCM.01834-18] [PMID: 31068413]
[102]
Chen, J.; Ye, L.; Jin, L.; Xu, X.; Xu, P.; Wang, X.; Li, H. Application of next-generation sequencing to characterize novel mutations in clarithromycin-susceptible Helicobacter pylori strains with A2143G of 23S rRNA gene. Ann. Clin. Microbiol. Antimicrob., 2018, 17(1), 10.
[http://dx.doi.org/10.1186/s12941-018-0259-8] [PMID: 29562911]
[103]
Bumgarner, R. Overview of DNA microarrays: Types, applications, and their future. In: Current protocols in molecular biology; John Willey and Sons: Hobken, 2013.
[104]
Song, Y.; Dou, F.; Zhou, Z.; Yang, N.; Zhong, J.; Pan, J.; Liu, Q.; Zhang, J.; Wang, S. Microarray-based detection and clinical evaluation for Helicobacter pylori resistance to clarithromycin or levofloxacin and the genotype of CYP2C19 in 1083 patients. Bio-Med Res. Int., 2018, 2018, 1-12.
[http://dx.doi.org/10.1155/2018/2684836] [PMID: 30276203]
[105]
Carlomagno, N.; Incollingo, P.; Tammaro, V.; Peluso, G.; Rupealta, N.; Chiacchio, G.; Sandoval Sotelo, M.L.; Minieri, G.; Pisani, A.; Riccio, E.; Sabbatini, M.; Bracale, U.M.; Calogero, A.; Dodaro, C.A.; Santangelo, M. Diagnostic, predictive, prognostic, and therapeutic molecular biomarkers in third millennium: A breakthrough in gastric cancer. BioMed Res. Int., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/7869802] [PMID: 29094049]
[106]
Yu, J.; Xu, Q.; Zhang, X.; Zhu, M. Circulating microRNA signatures serve as potential diagnostic biomarkers for Helicobacter pylori infection. J. Cell. Biochem., 2018.
[PMID: 30324743]
[107]
Bénéjat, L.; Ducournau, A.; Lehours, P.; Mégraud, F. Real-time PCR for Helicobacter pylori diagnosis. The best tools available. Helicobacter, 2018, 23(5), e12512.
[http://dx.doi.org/10.1111/hel.12512] [PMID: 30156040]
[108]
Pichon, M.; Pichard, B.; Barrioz, T.; Plouzeau, C.; Croquet, V.; Fotsing, G.; Chéron, A.; Vuillemin, É.; Wangermez, M.; Haineaux, P.A.; Vasseur, P.; Thiebault, Q.; Lefèvre, C.; de Singly, A.; Cremniter, J.; Broutin, L.; Michaud, A.; Silvain, C.; Burucoa, C. Diagnostic accuracy of a noninvasive test for detection of helicobacter pylori and resistance to clarithromycin in stool by the amplidiag H. pylori+ClariR real-time PCR assay. J. Clin. Microbiol., 2020, 58(4), e01787-19.
[http://dx.doi.org/10.1128/JCM.01787-19] [PMID: 31996442]
[109]
Kakiuchi, T.; Hashiguchi, K.; Imamura, I.; Nakayama, A.; Takamori, A.; Okuda, M.; Matsuo, M. Assessment of a novel method to detect clarithromycin-resistant Helicobacter pylori using a stool antigen test reagent. BMC Gastroenterol., 2020, 20(1), 397.
[http://dx.doi.org/10.1186/s12876-020-01549-9] [PMID: 33228552]
[110]
Sun, L.; Talarico, S.; Yao, L.; He, L.; Self, S.; You, Y.; Zhang, H.; Zhang, Y.; Guo, Y.; Liu, G.; Salama, N.R.; Zhang, J. Droplet digital PCR-based detection of clarithromycin resistance in Helicobacter pylori isolates reveals frequent heteroresistance. J. Clin. Microbiol., 2018, 56(9), e00019-18.
[http://dx.doi.org/10.1128/JCM.00019-18] [PMID: 29925646]
[111]
Hu, Y.; Zhu, Y.; Lu, N.H. Novel and effective therapeutic regimens for Helicobacter pylori in an era of increasing antibiotic resistance. Front. Cell. Infect. Microbiol., 2017, 7, 168.
[http://dx.doi.org/10.3389/fcimb.2017.00168] [PMID: 28529929]
[112]
Kalali, B.; Formichella, L.; Gerhard, M. Diagnosis of Helicobacter pylori: Changes towards the Future. Diseases, 2015, 3(3), 122-135.
[http://dx.doi.org/10.3390/diseases3030122] [PMID: 28943614]
[113]
Zhang, Y.; Lai, B.; Juhas, M. Recent advances in aptamer discovery and applications. Molecules, 2019, 24(5), 941.
[http://dx.doi.org/10.3390/molecules24050941] [PMID: 30866536]
[114]
Cardos, A.I.; Maghiar, A.; Zaha, D.C.; Pop, O.; Fritea, L.; Miere Groza, F. Evolution of diagnostic methods for helicobacter pylori infections: From traditional tests to high technology: Advanced sensitivity and discrimination tools. Diagnostics, 2022, 12(2), 508.
[115]
Calderaro, A.; Arcangeletti, M.C.; Rodighiero, I.; Buttrini, M.; Gorrini, C.; Motta, F.; Germini, D.; Medici, M.C.; Chezzi, C.; De Conto, F. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applied to virus identification. Sci. Rep., 2015, 4(1), 6803.
[http://dx.doi.org/10.1038/srep06803] [PMID: 25354905]
[116]
Ilina, E.N.; Borovskaya, A.D.; Serebryakova, M.V.; Chelysheva, V.V.; Momynaliev, K.T.; Maier, T.; Kostrzewa, M.; Govorun, V.M. Application of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for the study of Helicobacter pylori. Rapid Commun. Mass Spectrom., 2010, 24(3), 328-334.
[http://dx.doi.org/10.1002/rcm.4394] [PMID: 20049887]
[117]
Berlamont, H.; De Witte, C.; De Bruyckere, S.; Fox, J.G.; Backert, S.; Smet, A.; Boyen, F.; Haesebrouck, F. Differentiation of gastric Helicobacter species using MALDI-TOF mass spectrometry. Pathogens, 2021, 10(3), 366.
[http://dx.doi.org/10.3390/pathogens10030366] [PMID: 33803832]
[118]
Delaney, B.C.; Qume, M.; Moayyedi, P.; Logan, R.F.A.; Ford, A.C.; Elliott, C.; McNulty, C.; Wilson, S.; Hobbs, F.D.R. Helicobacter pylori test and treat versus proton pump inhibitor in initial management of dyspepsia in primary care: Multicentre Randomised Controlled Trial (MRC-CUBE trial). BMJ, 2008, 336(7645), 651-654.
[http://dx.doi.org/10.1136/bmj.39479.640486.AE] [PMID: 18310262]
[119]
Nicholson, B.D.; Abel, L.M.; Turner, P.J.; Price, C.P.; Heneghan, C.; Hayward, G.; Plüddemann, A. Point-of-care Helicobacter pylori testing: Primary care technology update. Br. J. Gen. Pract., 2017, 67(665), 576-577.
[http://dx.doi.org/10.3399/bjgp17X693881] [PMID: 29192118]
[120]
Saxena, K.; Chauhan, N.; Jain, U. Advances in diagnosis of Helicobacter pylori through biosensors: Point of care devices. Anal. Biochem., 2021, 630, 114325.
[http://dx.doi.org/10.1016/j.ab.2021.114325] [PMID: 34352253]
[121]
Gupta, S.; Jain, U.; Murti, B.T.; Putri, A.D.; Tiwari, A.; Chauhan, N. Nanohybrid-based immunosensor prepared for Helicobacter pylori BabA antigen detection through immobilized antibody assembly with @ Pdnano/rGO/PEDOT sensing platform. Sci. Rep., 2020, 10(1), 21217.
[http://dx.doi.org/10.1038/s41598-020-78068-w] [PMID: 33277599]
[122]
Heiat, M.; Najafi, A.; Ranjbar, R.; Latifi, A.M.; Rasaee, M.J. Computational approach to analyze isolated ssDNA aptamers against angiotensin II. J. Biotechnol., 2016, 230, 34-39.
[http://dx.doi.org/10.1016/j.jbiotec.2016.05.021] [PMID: 27188956]
[123]
Heiat, M.; Ranjbar, R.; Latifi, A.M.; Rasaee, M.J. Selection of a high-affinity and in vivo bioactive ssDNA aptamer against angiotensin II peptide. Peptides, 2016, 82, 101-108.
[http://dx.doi.org/10.1016/j.peptides.2016.06.004] [PMID: 27298205]
[124]
Torabi, R.; Ranjbar, R.; Halaji, M.; Heiat, M. Aptamers, the bivalent agents as probes and therapies for coronavirus infections: A systematic review. Mol. Cell. Probes, 2020, 53, 101636.
[http://dx.doi.org/10.1016/j.mcp.2020.101636] [PMID: 32634550]
[125]
Yan, W.; Gu, L.; Ren, W.; Ma, X.; Qin, M.; Lyu, M.; Wang, S. Recognition of Helicobacter pylori by protein-targeting aptamers. Helicobacter, 2019, 24(3), e12577.
[http://dx.doi.org/10.1111/hel.12577] [PMID: 30950149]
[126]
Wu, H.; Gu, L.; Ma, X.; Tian, X.; Fan, S.; Qin, M.; Lu, J.; Lyu, M.; Wang, S. Rapid detection of Helicobacter pylori by the naked eye using DNA aptamers. ACS Omega, 2021, 6(5), 3771-3779.
[http://dx.doi.org/10.1021/acsomega.0c05374] [PMID: 33585756]
[127]
Urano, Y.; Sakabe, M.; Kosaka, N.; Ogawa, M.; Mitsunaga, M.; Asanuma, D.; Kamiya, M.; Young, M.R.; Nagano, T.; Choyke, P.L.; Kobayashi, H. Rapid cancer detection by topically spraying a γ-glutamyltranspeptidase-activated fluorescent probe. Sci. Transl. Med., 2011, 3(110), 110-119.
[http://dx.doi.org/10.1126/scitranslmed.3002823] [PMID: 22116934]
[128]
Gong, M.; Ling, S.S.M.; Lui, S.Y.; Yeoh, K.G.; Ho, B. Helicobacter pylori gamma-glutamyl transpeptidase is a pathogenic factor in the development of peptic ulcer disease. Gastroenterology, 2010, 139(2), 564-573.
[http://dx.doi.org/10.1053/j.gastro.2010.03.050] [PMID: 20347814]
[129]
Akashi, T.; Isomoto, H.; Matsushima, K.; Kamiya, M.; Kanda, T.; Nakano, M.; Onoyama, T.; Fujii, M.; Akada, J.; Akazawa, Y.; Ohnita, K.; Takeshima, F.; Nakao, K.; Urano, Y. A novel method for rapid detection of a Helicobacter pylori infection using a γ-glutamyltranspeptidase-activatable fluorescent probe. Sci. Rep., 2019, 9(1), 9467.
[http://dx.doi.org/10.1038/s41598-019-45768-x] [PMID: 31263136]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy