Generic placeholder image

Current Radiopharmaceuticals

Editor-in-Chief

ISSN (Print): 1874-4710
ISSN (Online): 1874-4729

Research Article

Estimation of Human Absorbed Dose of 188Re-Hynic-Bombesin Based on Biodistribution Data in Rats

Author(s): Sara Vosoughi*, Nafise Salek, Hassan Yousefnia, Milad Delavari, Seyed Mahmoud Reza Aghamiri and Hassan Ranjbar

Volume 16, Issue 1, 2023

Published on: 05 October, 2022

Page: [64 - 70] Pages: 7

DOI: 10.2174/1874471015666220919124037

Price: $65

Abstract

Background: HYNIC-Bombesin (BBN) is a potential peptide for targeted radionuclide therapy in gastrin-releasing peptide receptor (GRPr)-positive malignancies. The 188Re-HYNICBBN is a promising radiopharmaceutical for use in prostate cancer therapy.

Objective: The aim of this study was to estimate the absorbed dose due to 188Re-HYNIC-BBN radio-complex in human organs based on bio-distribution data of rats.

Methods: In this research, using bio-distribution data of 188Re-HYNIC-BBN in rats, its radiation absorbed dose of the adult human was calculated for different organs based on the MIRD dose calculation method.

Results: A considerable equivalent dose amount of 188Re-Hynic-BBN (0.093 mGy/MBq) was accumulated in the prostate. Moreover, all other tissues except for the kidneys and pancreas approximately received insignificant absorbed doses.

Conclusion: Since the acceptable absorbed dose for the complex was observed in the prostate, 188Re-Hynic-Bombesin can be regarded as a new potential agent for prostate cancer therapy.

Keywords: 188Re, Bombesin, Generator, Internal Dosimetry, RADAR.

Graphical Abstract

[1]
Lepareur, N.; Lacoeuille, F.; Bouvry, C.; Hindré, F.; Garcion, E.; Chérel, M.; Noiret, N.; Garin, E.; Knapp, F.F.R., Jr. Rhenium-188 labeled radiopharmaceuticals: Current clinical applications in oncology and promising perspectives. Front. Med. (Lausanne), 2019, 6, 132.
[http://dx.doi.org/10.3389/fmed.2019.00132] [PMID: 31259173]
[2]
Hoefnagel, C.A. Radionuclide therapy revisited. Eur. J. Nucl. Med., 1991, 18(6), 408-431.
[http://dx.doi.org/10.1007/BF02258432] [PMID: 1879447]
[3]
Volkert, WA; Goeckeler, WF; Ehrhardt, GJ Ketring, AR Therapeutic radionuclides: Production and decay property considerations. J. Nucl. Med., 1991, 32(1), 174-85.
[4]
Kassis, A.I. Therapeutic radionuclides: Biophysical and radiobiologic principles. Semin. Nucl. Med., 2008, 38(5), 358-366.
[http://dx.doi.org/10.1053/j.semnuclmed.2008.05.002]
[5]
Czerwińska, M.; Bilewicz, A.; Kruszewski, M.; Wegierek-Ciuk, A.; Lankoff, A. Targeted radionuclide therapy of prostate cancer-from basic research to clinical perspectives. Molecules, 2020, 25(7), 1743.
[http://dx.doi.org/10.3390/molecules25071743] [PMID: 32290196]
[6]
Westcott, M.A.; Coldwell, D.M.; Liu, D.M.; Zikria, J.F. The development, commercialization, and clinical context of yttrium-90 radiolabeled resin and glass microspheres. Adv. Radiat. Oncol., 2016, 1(4), 351-364.
[http://dx.doi.org/10.1016/j.adro.2016.08.003] [PMID: 28740906]
[7]
Chakravarty, R.; Dash, A.; Pillai, M.R. Availability of yttrium-90 from strontium-90: A nuclear medicine perspective. Cancer Biother. Radiopharm., 2012, 27(10), 621-641.
[http://dx.doi.org/10.1089/cbr.2012.1285] [PMID: 23009585]
[8]
Das, T.; Banerjee, S. Theranostic applications of lutetium-177 in radionuclide therapy. Curr. Radiopharm., 2015, 9(1), 94-101.
[http://dx.doi.org/10.2174/1874471008666150313114644] [PMID: 25771364]
[9]
Dash, A.; Pillai, M.R.A.; Knapp, F.F. Jr Production of 177Lu for targeted radionuclide therapy: Available options. Nucl. Med. Mol. Imaging, 2015, 49(2), 85-107.
[http://dx.doi.org/10.1007/s13139-014-0315-z] [PMID: 26085854]
[10]
Mettler, FA Guiberteau, MJ Essentials of Nuclear Medicine and Molecular Imaging E-Book; Elsevier Health Sciences, 2018.
[11]
Müller, C.; Umbricht, C.A.; Gracheva, N.; Tschan, V.J.; Pellegrini, G.; Bernhardt, P.; Zeevaart, J.R.; Köster, U.; Schibli, R.; van der Meulen, N.P. Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer. Eur. J. Nucl. Med. Mol. Imaging, 2019, 46(9), 1919-1930.
[http://dx.doi.org/10.1007/s00259-019-04345-0] [PMID: 31134301]
[12]
Morgenstern, A.; Bruchertseifer, F.; Apostolidis, C. Bismuth-213 and actinium-225 -- generator performance and evolving therapeutic applications of two generator-derived alpha-emitting radioisotopes. Curr. Radiopharm., 2012, 5(3), 221-227.
[http://dx.doi.org/10.2174/1874471011205030221] [PMID: 22642390]
[13]
Dekempeneer, Y.; Keyaerts, M.; Krasniqi, A.; Puttemans, J.; Muyldermans, S.; Lahoutte, T.; D’huyvetter, M.; Devoogdt, N. Targeted alpha therapy using short-lived alpha-particles and the promise of nanobodies as targeting vehicle. Expert Opin. Biol. Ther., 2016, 16(8), 1035-1047.
[http://dx.doi.org/10.1080/14712598.2016.1185412] [PMID: 27145158]
[14]
Kozempel, J.; Mokhodoeva, O.; Vlk, M. Progress in targeted alpha-particle therapy. What we learned about recoils release from in vivo generators. Molecules, 2018, 23(3), 581.
[http://dx.doi.org/10.3390/molecules23030581] [PMID: 29510568]
[15]
Griswold, J.R.; Medvedev, D.G.; Engle, J.W.; Copping, R.; Fitzsimmons, J.M.; Radchenko, V.; Cooley, J.C.; Fassbender, M.E.; Denton, D.L.; Murphy, K.E.; Owens, A.C.; Birnbaum, E.R.; John, K.D.; Nortier, F.M.; Stracener, D.W.; Heilbronn, L.H.; Mausner, L.F.; Mirzadeh, S. Large scale accelerator production of 225Ac: Effective cross sections for 78–192 MeV protons incident on 232Th targets. Appl. Radiat. Isot., 2016, 118, 366-374.
[http://dx.doi.org/10.1016/j.apradiso.2016.09.026] [PMID: 27776333]
[16]
Zalutsky, M.R.; Pruszynski, M. Astatine-211: Production and availability. Curr. Radiopharm., 2011, 4(3), 177-185.
[http://dx.doi.org/10.2174/1874471011104030177] [PMID: 22201707]
[17]
Eckerman, K.; Endo, A. ICRP Publication 107. Nuclear decay data for dosimetric calculations. Ann. ICRP, 2008, 38(3), 7-96.
[PMID: 19285593]
[18]
Nuclear Medicine Textbook: Methodology and Clinical Applications; Volterrani, D.; Erba, P.A.; Carrió, I.; Strauss, H.W.; Mariani, G., Eds.; Springer: New York, NY, USA, 2019.
[http://dx.doi.org/10.1007/978-3-319-95564-3]
[19]
Henriksen, G.; Hoff, P.; Larsen, R.H. Evaluation of potential chelating agents for radium. Appl. Radiat. Isot., 2002, 56(5), 667-671.
[http://dx.doi.org/10.1016/S0969-8043(01)00282-2] [PMID: 11993940]
[20]
Henriksen, G.; Schoultz, B.W.; Michaelsen, T.E.; Bruland, Ø.S.; Larsen, R.H. Sterically stabilized liposomes as a carrier for α-emitting radium and actinium radionuclides. Nucl. Med. Biol., 2004, 31(4), 441-449.
[http://dx.doi.org/10.1016/j.nucmedbio.2003.11.004] [PMID: 15093814]
[21]
Bodei, L.; Kassis, A.I.; Adelstein, S.J.; Mariani, G. Radionuclide therapy with iodine-125 and other auger-electron-emitting radionuclides: Experimental models and clinical applications. Cancer Biother. Radiopharm., 2003, 18(6), 861-877.
[http://dx.doi.org/10.1089/108497803322702833] [PMID: 14969599]
[22]
Zamora, P.O.; Gulhke, S.; Bender, H.; Diekmann, D.; Rhodes, B.A.; Biersack, H.J.; Knapp, F.F.R., Jr Experimental radiotherapy of receptor-positive human prostate adenocarcinoma with188Re-RC-160, a directly-radiolabeled somatostatin analogue. Int. J. Cancer, 1996, 65(2), 214-220.
[http://dx.doi.org/10.1002/(SICI)1097-0215(19960117)65:2<214::AID-IJC15>3.0.CO;2-D] [PMID: 8567120]
[23]
Liepe, K.; Hliscs, R.; Kropp, J.; Runge, R.; Knapp, F.F., Jr; Franke, W.G. Dosimetry of 188Re-hydroxyethylidene diphosphonate in human prostate cancer skeletal metastases. J. Nucl. Med., 2003, 44(6), 953-960.
[PMID: 12791825]
[24]
Molina-Trinidad, E.M.; Murphy, C.A.; Ferro-Flores, G.; Murphy-Stack, E.; Jung-Cook, H. Radiopharmacokinetic and dosimetric parameters of 188Re-lanreotide in athymic mice with induced human cancer tumors. Int. J. Pharm., 2006, 310(1-2), 125-130.
[http://dx.doi.org/10.1016/j.ijpharm.2005.11.043] [PMID: 16423478]
[25]
Gali, H.; Hoffman, T.J.; Sieckman, G.L.; Owen, N.K.; Katti, K.V.; Volkert, W.A. Synthesis, characterization, and labeling with 99mTc/188Re of peptide conjugates containing a dithiabisphosphine chelating agent. Bioconjug. Chem., 2001, 12(3), 354-363.
[http://dx.doi.org/10.1021/bc000077c] [PMID: 11353532]
[26]
Smith, C.J.; Sieckman, G.L.; Owen, N.K.; Hayes, D.L.; Mazuru, D.G.; Volkert, W.A.; Hoffman, T.J. Radiochemical investigations of [188Re(H2O)(CO)3-diaminopropionic acid-SSS-bombesin(7-14)NH2]: Syntheses, radiolabeling and in vitro/in vivo GRP receptor targeting studies. Anticancer Res., 2003, 23(1A), 63-70.
[PMID: 12680195]
[27]
Cui, L.; Liu, Z.; Jin, X.; Jia, B.; Li, F.; Wang, F. Evaluation of 188Re-MAG2-RGD-bombesin for potential prostate cancer therapy. Nucl. Med. Biol., 2013, 40(2), 182-189.
[http://dx.doi.org/10.1016/j.nucmedbio.2012.11.002] [PMID: 23199569]
[28]
Moustapha, M.E.; Ehrhardt, G.J.; Smith, C.J.; Szajek, L.P.; Eckelman, W.C.; Jurisson, S.S. Preparation of cyclotron-produced 186Re and comparison with reactor-produced 186Re and generator-produced 188Re for the labeling of bombesin. Nucl. Med. Biol., 2006, 33(1), 81-89.
[http://dx.doi.org/10.1016/j.nucmedbio.2005.09.006] [PMID: 16459262]
[29]
Chang, Y.J.; Yu, C.Y.; Hsu, C.W.; Lee, W.C.; Chen, S.J.; Chang, C.H.; Lee, T.W. Molecular imaging and therapeutic efficacy of 188Re-(DXR)-liposome-BBN in AR42J pancreatic tumor-bearing mice. Oncol. Rep., 2012, 28(5), 1736-1742.
[http://dx.doi.org/10.3892/or.2012.1978] [PMID: 22922965]
[30]
Stabin, M.G.; Tagesson, M.; Thomas, S.R.; Ljungberg, M.; Strand, S.E. Radiation dosimetry in nuclear medicine. Appl. Radiat. Isot., 1999, 50(1), 73-87.
[http://dx.doi.org/10.1016/S0969-8043(98)00023-2] [PMID: 10028629]
[31]
Stabin, M.G.; Siegel, J.A. Physical models and dose factors for use in internal dose assessment. Health Phys., 2003, 85(3), 294-310.
[http://dx.doi.org/10.1097/00004032-200309000-00006] [PMID: 12938720]
[32]
Sparks, RB; Aydogan, B Comparison of the effectiveness of some common animal data scaling techniques in estimating human radiation dose; Oak Ridge Associated Universities: TN, (United States), 1999.
[33]
Richmond, C.R. ICRP Publication 23. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1985, 48(2), 285.
[http://dx.doi.org/10.1080/09553008514551281]
[34]
Stabin, M.G.; Sparks, R.B.; Crowe, E. OLINDA/EXM: The second-generation personal computer software for internal dose assessment in nuclear medicine. J. Nucl. Med., 2005, 46(6), 1023-1027.
[PMID: 15937315]
[35]
The 2007 Recommendations of the International Commission on Radiological Protection. ICRP Publication 103. Ann ICRP., 2007, 37(2.4), 2.
[36]
Lantry, L.E.; Cappelletti, E.; Maddalena, M.E.; Fox, J.S.; Feng, W.; Chen, J.; Thomas, R.; Eaton, S.M.; Bogdan, N.J.; Arunachalam, T.; Reubi, J.C.; Raju, N.; Metcalfe, E.C.; Lattuada, L.; Linder, K.E.; Swenson, R.E.; Tweedle, M.F.; Nunn, A.D. 177Lu-AMBA: Synthesis and characterization of a selective 177Lu-labeled GRP-R agonist for systemic radiotherapy of prostate cancer. J. Nucl. Med., 2006, 47(7), 1144-1152.
[PMID: 16818949]
[37]
Mohammadgholi, M.; Rezazadeh, F.; Abediankenari, S.; Abedi, S.M.; Emrarian, I.; Jafari, N.; Behzadi, R.; Sadeghzadeh, N. Evaluation of new 99mTc-labeled HYNIC-bombesin analogue for prostate cancer imaging. J. Radioanal. Nucl. Chem., 2018, 316(2), 595-607.
[http://dx.doi.org/10.1007/s10967-018-5819-z]
[38]
Ananias, H.J.K.; Yu, Z.; Dierckx, R.A.; van der Wiele, C.; Helfrich, W.; Wang, F.; Yan, Y.; Chen, X.; de Jong, I.J.; Elsinga, P.H. (99m)technetium-HYNIC(tricine/TPPTS)-Aca-bombesin(7-14) as a targeted imaging agent with microSPECT in a PC-3 prostate cancer xenograft model. Mol. Pharm., 2011, 8(4), 1165-1173.
[http://dx.doi.org/10.1021/mp200014h] [PMID: 21699202]
[39]
Faintuch, B.L.; Teodoro, R.; Duatti, A.; Muramoto, E.; Faintuch, S.; Smith, C.J. Radiolabeled bombesin analogs for prostate cancer diagnosis: Preclinical studies. Nuclear medicine and biology. Nucl. Med. Biol., 2008, 35(4), 401-411.
[40]
Mansi, R; Nock, BA; Dalm, SU; Busstra, MB; Weerden, WM.; Maina, T. Radiolabeled bombesin analogs. Cancers., 2021, 13(22), 5766.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy