Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

General Review Article

Trimethylamine N-Oxide Generated by the Gut Microbiota: Potential Atherosclerosis Treatment Strategies

Author(s): Botao Zhu, Hao Ren, Feng Xie, Yuze An, Yichuan Wang and Yurong Tan*

Volume 28, Issue 35, 2022

Published on: 27 September, 2022

Page: [2914 - 2919] Pages: 6

DOI: 10.2174/1381612828666220919085019

Price: $65

Abstract

Cardiovascular diseases (CVD) have become a disease burden that plagues the world, and a large proportion of the world's mortality currently stems from atherosclerotic CVD. In addition to traditional therapies, we need to find more therapeutic targets and strategies in scientific research to address this challenge. In recent years, as research on gut microbiota has continued, there has been a clearer understanding of the role that metabolites from gut microbes play during atherosclerosis (AS). A growing body of research suggests that trimethylamine oxide (TMAO) is an independent risk factor for CVD and that gut microbe-dependent TMAO plays a critical role in AS. Therefore, interventions targeting TMAO have the potential to become a new therapeutic strategy for AS. This review provides a brief overview of the relationship between TMAO and atherosclerosis. More importantly, several potential atherosclerosis treatment strategies targeting TMAO and its metabolic pathways have been revealed by recent studies and will be the focus of this review. This review summarizes possible therapeutic strategies in terms of change of diet, adjustment of gut microbiota, suppression of liver enzyme activity, and improvement of renal function, in the hope of providing new insights for developing efficient and cost-effective treatment and prevention for AS.

Keywords: CVD, atherosclerosis, TMAO, gut microbiota, treatment, FMO3, diet, renal function.

[1]
Roth GA, Mensah GA, Johnson CO, et al. Global burden of cardiovascular diseases and risk factors, 1990–2019. J Am Coll Cardiol 2020; 76(25): 2982-3021.
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[2]
Libby P, Buring JE, Badimon L, et al. Atherosclerosis. Nat Rev Dis Primers 2019; 5(1): 56.
[http://dx.doi.org/10.1038/s41572-019-0106-z] [PMID: 31420554]
[3]
Mushenkova NV, Bezsonov EE, Orekhova VA, Popkova TV, Starodubova AV, Orekhov AN. Recognition of oxidized lipids by macrophages and its role in atherosclerosis development. Biomedicines 2021; 9(8): 915.
[http://dx.doi.org/10.3390/biomedicines9080915] [PMID: 34440119]
[4]
Bezsonov E, Sobenin I, Orekhov A. Immunopathology of atherosclerosis and related diseases: Focus on molecular biology. Int J Mol Sci 2021; 22(8): 4080.
[http://dx.doi.org/10.3390/ijms22084080] [PMID: 33920897]
[5]
Libby P. The changing landscape of atherosclerosis. Nature 2021; 592(7855): 524-33.
[http://dx.doi.org/10.1038/s41586-021-03392-8] [PMID: 33883728]
[6]
Barquera S, Pedroza-Tobías A, Medina C, et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res 2015; 46(5): 328-38.
[http://dx.doi.org/10.1016/j.arcmed.2015.06.006] [PMID: 26135634]
[7]
Herrington W, Lacey B, Sherliker P, Armitage J, Lewington S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ Res 2016; 118(4): 535-46.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.307611] [PMID: 26892956]
[8]
Vos T, Allen C, Arora M, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the global burden of disease study 2015. Lancet 2016; 388(10053): 1545-602.
[http://dx.doi.org/10.1016/S0140-6736(16)31678-6] [PMID: 27733282]
[9]
Collins R, Reith C, Emberson J, et al. Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 2016; 388(10059): 2532-61.
[http://dx.doi.org/10.1016/S0140-6736(16)31357-5] [PMID: 27616593]
[10]
Armitage J. The safety of statins in clinical practice. Lancet 2007; 370(9601): 1781-90.
[http://dx.doi.org/10.1016/S0140-6736(07)60716-8] [PMID: 17559928]
[11]
Kim MC, Cho JY, Jeong HC, et al. Impact of postdischarge statin withdrawal on long-term outcomes in patients with acute myocardial infarction. Am J Cardiol 2015; 115(1): 1-7.
[http://dx.doi.org/10.1016/j.amjcard.2014.09.039] [PMID: 25456863]
[12]
Adhyaru BB, Jacobson TA. Safety and efficacy of statin therapy. Nat Rev Cardiol 2018; 15(12): 757-69.
[http://dx.doi.org/10.1038/s41569-018-0098-5] [PMID: 30375494]
[13]
Kypreos KE, Bitzur R, Karavia EA, Xepapadaki E, Panayiotakopoulos G, Constantinou C. Pharmacological management of dyslipidemia in atherosclerosis: Limitations, challenges, and new therapeutic opportunities. Angiology 2019; 70(3): 197-209.
[http://dx.doi.org/10.1177/0003319718779533] [PMID: 29862840]
[14]
Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011; 472(7341): 57-63.
[http://dx.doi.org/10.1038/nature09922] [PMID: 21475195]
[15]
Wang Z, Tang WHW, Buffa JA, et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 2014; 35(14): 904-10.
[http://dx.doi.org/10.1093/eurheartj/ehu002] [PMID: 24497336]
[16]
Tang WHW, Wang Z, Levison BS, et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med 2013; 368(17): 1575-84.
[http://dx.doi.org/10.1056/NEJMoa1109400] [PMID: 23614584]
[17]
Koeth RA, Wang Z, Levison BS, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 2013; 19(5): 576-85.
[http://dx.doi.org/10.1038/nm.3145] [PMID: 23563705]
[18]
Koeth RA, Lam-Galvez BR, Kirsop J, et al. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J Clin Invest 2018; 129(1): 373-87.
[http://dx.doi.org/10.1172/JCI94601] [PMID: 30530985]
[19]
Tang WHW, Li XS, Wu Y, et al. Plasma trimethylamine N-oxide (TMAO) levels predict future risk of coronary artery disease in apparently healthy individuals in the EPIC-Norfolk prospective population study. Am Heart J 2021; 236: 80-6.
[http://dx.doi.org/10.1016/j.ahj.2021.01.020] [PMID: 33626384]
[20]
Zeisel SH, Warrier M. Trimethylamine N -oxide, the microbiome, and heart and kidney disease. Annu Rev Nutr 2017; 37(1): 157-81.
[http://dx.doi.org/10.1146/annurev-nutr-071816-064732] [PMID: 28715991]
[21]
Geng J, Yang C, Wang B, et al. Trimethylamine N-oxide promotes atherosclerosis via CD36-dependent MAPK/JNK pathway. Biomed Pharmacother 2018; 97: 941-7.
[http://dx.doi.org/10.1016/j.biopha.2017.11.016] [PMID: 29136772]
[22]
Seldin MM, Meng Y, Qi H, et al. Trimethylamine N‐oxide promotes vascular inflammation through signaling of mitogen‐activated protein kinase and nuclear factor‐κB. J Am Heart Assoc 2016; 5(2): e002767.
[http://dx.doi.org/10.1161/JAHA.115.002767] [PMID: 26903003]
[23]
Díez-Ricote L, Ruiz-Valderrey P, Micó V, et al. Trimethylamine n-Oxide (TMAO) modulates the expression of cardiovascular disease related microRNAs and their targets. Int J Mol Sci 2021; 22(20): 11145.
[http://dx.doi.org/10.3390/ijms222011145] [PMID: 34681805]
[24]
Ding L, Chang M, Guo Y, et al. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis 2018; 17(1): 286.
[http://dx.doi.org/10.1186/s12944-018-0939-6] [PMID: 30567573]
[25]
Zhang X, Li Y, Yang P, et al. Trimethylamine-n-oxide promotes vascular calcification through activation of NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome and NF-κB (Nuclear Factor κB) signals. Arterioscler Thromb Vasc Biol 2020; 40(3): 751-65.
[http://dx.doi.org/10.1161/ATVBAHA.119.313414] [PMID: 31941382]
[26]
Zhu W, Gregory JC, Org E, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 2016; 165(1): 111-24.
[http://dx.doi.org/10.1016/j.cell.2016.02.011] [PMID: 26972052]
[27]
Chen S, Henderson A, Petriello MC, et al. Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction. Cell Metab 2019; 30(6): 1141-1151.e5.
[http://dx.doi.org/10.1016/j.cmet.2019.08.021] [PMID: 31543404]
[28]
Nandi S, Pyne A, Layek S, Arora C, Sarkar N. The dietary nutrient trimethylamine N-oxide affects the phospholipid vesicle membrane: Probable route to adverse intake. J Phys Chem Lett 2021; 12(51): 12411-8.
[http://dx.doi.org/10.1021/acs.jpclett.1c03201] [PMID: 34939822]
[29]
Koay YC, Chen YC, Wali JA, et al. Plasma levels of trimethylamine-N-oxide can be increased with ‘healthy’ and ‘unhealthy’ diets and do not correlate with the extent of atherosclerosis but with plaque instability. Cardiovasc Res 2021; 117(2): 435-49.
[http://dx.doi.org/10.1093/cvr/cvaa094] [PMID: 32267921]
[30]
Collins HL, Drazul-Schrader D, Sulpizio AC, et al. L-Carnitine intake and high trimethylamine N-oxide plasma levels correlate with low aortic lesions in ApoE−/− transgenic mice expressing CETP. Atherosclerosis 2016; 244: 29-37.
[http://dx.doi.org/10.1016/j.atherosclerosis.2015.10.108] [PMID: 26584136]
[31]
Cho CE, Taesuwan S, Malysheva OV, et al. Trimethylamine- N -oxide (TMAO) response to animal source foods varies among healthy young men and is influenced by their gut microbiota composition: A randomized controlled trial. Mol Nutr Food Res 2017; 61(1): 1600324.
[http://dx.doi.org/10.1002/mnfr.201600324] [PMID: 27377678]
[32]
Mei Z, Chen GC, Wang Z, et al. Dietary factors, gut microbiota, and serum trimethylamine- N -oxide associated with cardiovascular disease in the hispanic community health study/study of Latinos. Am J Clin Nutr 2021; 113(6): 1503-14.
[http://dx.doi.org/10.1093/ajcn/nqab001] [PMID: 33709132]
[33]
Yang JJ, Shu XO, Herrington DM, et al. Circulating trimethylamine N -oxide in association with diet and cardiometabolic biomarkers: An international pooled analysis. Am J Clin Nutr 2021; 113(5): 1145-56.
[http://dx.doi.org/10.1093/ajcn/nqaa430] [PMID: 33826706]
[34]
Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N Engl J Med 2018; 378(25): e34.
[http://dx.doi.org/10.1056/NEJMoa1800389] [PMID: 29897866]
[35]
Wang Z, Bergeron N, Levison BS, et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J 2019; 40(7): 583-94.
[http://dx.doi.org/10.1093/eurheartj/ehy799] [PMID: 30535398]
[36]
Yoo W, Zieba JK, Foegeding NJ, et al. High-fat diet–induced colonocyte dysfunction escalates microbiota-derived trimethylamine N -oxide. Science 2021; 373(6556): 813-8.
[http://dx.doi.org/10.1126/science.aba3683] [PMID: 34385401]
[37]
Iglesias-Carres L, Hughes MD, Steele CN, Ponder MA, Davy KP, Neilson AP. Use of dietary phytochemicals for inhibition of trimethylamine N-oxide formation. J Nutr Biochem 2021; 91: 108600.
[http://dx.doi.org/10.1016/j.jnutbio.2021.108600] [PMID: 33577949]
[38]
Guasch-Ferré M, Satija A, Blondin SA, et al. Meta-analysis of randomized controlled trials of red meat consumption in comparison with various comparison diets on cardiovascular risk factors. Circulation 2019; 139(15): 1828-45.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.118.035225] [PMID: 30958719]
[39]
Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol 2021; 19(1): 55-71.
[http://dx.doi.org/10.1038/s41579-020-0433-9] [PMID: 32887946]
[40]
Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol 2019; 16(1): 35-56.
[http://dx.doi.org/10.1038/s41575-018-0061-2] [PMID: 30262901]
[41]
Bajinka O, Tan Y, Abdelhalim KA, Özdemir G, Qiu X. Extrinsic factors influencing gut microbes, the immediate consequences and restoring eubiosis. AMB Express 2020; 10(1): 130.
[http://dx.doi.org/10.1186/s13568-020-01066-8] [PMID: 32710186]
[42]
Gregory JC, Buffa JA, Org E, et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem 2015; 290(9): 5647-60.
[http://dx.doi.org/10.1074/jbc.M114.618249] [PMID: 25550161]
[43]
Qiu X, Wu G, Wang L, Tan Y, Song Z. Lactobacillus delbrueckii alleviates depression-like behavior through inhibiting toll-like receptor 4 (TLR4) signaling in mice. Ann Transl Med 2021; 9(5): 366.
[http://dx.doi.org/10.21037/atm-20-4411] [PMID: 33842587]
[44]
Qiu L, Yang D, Tao X, Yu J, Xiong H, Wei H. Enterobacter aerogenes ZDY01 attenuates choline-induced trimethylamine N-oxide levels by remodeling gut microbiota in mice. J Microbiol Biotechnol 2017; 27(8): 1491-9.
[http://dx.doi.org/10.4014/jmb.1703.03039] [PMID: 28511293]
[45]
Liang X, Zhang Z, Lv Y, et al. Reduction of intestinal trimethylamine by probiotics ameliorated lipid metabolic disorders associated with atherosclerosis. Nutrition 2020; 79-80: 110941.
[http://dx.doi.org/10.1016/j.nut.2020.110941] [PMID: 32858376]
[46]
Ramireddy L, Tsen HY, Chiang YC, et al. Molecular identification and selection of probiotic strains able to reduce the serum TMAO level in mice challenged with choline. Foods 2021; 10(12): 2931.
[http://dx.doi.org/10.3390/foods10122931] [PMID: 34945482]
[47]
Wang Z, Roberts AB, Buffa JA, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell 2015; 163(7): 1585-95.
[http://dx.doi.org/10.1016/j.cell.2015.11.055] [PMID: 26687352]
[48]
Gupta N, Buffa JA, Roberts AB, et al. Targeted inhibition of gut microbial trimethylamine N-oxide production reduces renal tubulointerstitial fibrosis and functional impairment in a murine model of chronic kidney disease. Arterioscler Thromb Vasc Biol 2020; 40(5): 1239-55.
[http://dx.doi.org/10.1161/ATVBAHA.120.314139] [PMID: 32212854]
[49]
Pathak P, Helsley RN, Brown AL, et al. Small molecule inhibition of gut microbial choline trimethylamine lyase activity alters host cholesterol and bile acid metabolism. Am J Physiol Heart Circ Physiol 2020; 318(6): H1474-86.
[http://dx.doi.org/10.1152/ajpheart.00584.2019] [PMID: 32330092]
[50]
Li X, Su C, Jiang Z, et al. Berberine attenuates choline-induced atherosclerosis by inhibiting trimethylamine and trimethylamine-N-oxide production via manipulating the gut microbiome. NPJ Biofilms Microbiomes 2021; 7(1): 36.
[http://dx.doi.org/10.1038/s41522-021-00205-8] [PMID: 33863898]
[51]
Chen M, Yi L, Zhang Y, et al. Resveratrol attenuates trimethylamine- N -oxide (TMAO)-induced atherosclerosis by regulating tmao synthesis and bile acid metabolism via remodeling of the gut microbiota. MBio 2016; 7(2): e02210-5.
[http://dx.doi.org/10.1128/mBio.02210-15] [PMID: 27048804]
[52]
Bird JK, Raederstorff D, Weber P, Steinert RE. Cardiovascular and antiobesity effects of resveratrol mediated through the gut microbiota. Adv Nutr 2017; 8(6): 839-49.
[http://dx.doi.org/10.3945/an.117.016568] [PMID: 29141969]
[53]
Campbell CL, Yu R, Li F, et al. Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice. Diabetes Metab Syndr Obes 2019; 12: 97-107.
[http://dx.doi.org/10.2147/DMSO.S192228] [PMID: 30655683]
[54]
Panyod S, Wu WK, Chen PC, et al. Atherosclerosis amelioration by allicin in raw garlic through gut microbiota and trimethylamine-N-oxide modulation. NPJ Biofilms Microbiomes 2022; 8(1): 4.
[http://dx.doi.org/10.1038/s41522-022-00266-3] [PMID: 35087050]
[55]
Lv Z, Shan X, Tu Q, Wang J, Chen J, Yang Y. Ginkgolide B treatment regulated intestinal flora to improve high-fat diet induced atherosclerosis in ApoE−/− mice. Biomed Pharmacother 2021; 134: 111100.
[http://dx.doi.org/10.1016/j.biopha.2020.111100] [PMID: 33341056]
[56]
Zhu B, Zhai Y, Ji M, et al. Alisma orientalis beverage treats atherosclerosis by regulating gut microbiota in ApoE-/- Mice. Front Pharmacol 2020; 11: 570555.
[http://dx.doi.org/10.3389/fphar.2020.570555] [PMID: 33101028]
[57]
Miao J, Ling AV, Manthena PV, et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat Commun 2015; 6(1): 6498.
[http://dx.doi.org/10.1038/ncomms7498] [PMID: 25849138]
[58]
Warrier M, Shih DM, Burrows AC, et al. The TMAO-generating enzyme flavin monooxygenase 3 is a central regulator of cholesterol balance. Cell Rep 2015; 10(3): 326-38.
[http://dx.doi.org/10.1016/j.celrep.2014.12.036] [PMID: 25600868]
[59]
Shi W, Huang Y, Yang Z, Zhu L, Yu B. Reduction of TMAO level enhances the stability of carotid atherosclerotic plaque through promoting macrophage M2 polarization and efferocytosis. Biosci Rep 2021; 41(6): BSR20204250.
[http://dx.doi.org/10.1042/BSR20204250] [PMID: 33969376]
[60]
Dolphin CT, Janmohamed A, Smith RL, Shephard EA, Phillips R. Missense mutation in flavin-containing mono-oxygenase 3 gene, FMO3, underlies fish-odour syndrome. Nat Genet 1997; 17(4): 491-4.
[http://dx.doi.org/10.1038/ng1297-491] [PMID: 9398858]
[61]
Taesuwan S, Cho CE, Malysheva OV, et al. The metabolic fate of isotopically labeled trimethylamine- N -oxide (TMAO) in humans. J Nutr Biochem 2017; 45: 77-82.
[http://dx.doi.org/10.1016/j.jnutbio.2017.02.010] [PMID: 28433924]
[62]
Tang WHW, Wang Z, Kennedy DJ, et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res 2015; 116(3): 448-55.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.305360] [PMID: 25599331]
[63]
Haghikia A, Li XS, Liman TG, et al. Gut microbiota–dependent trimethylamine N-oxide predicts risk of cardiovascular events in patients with stroke and is related to proinflammatory monocytes. Arterioscler Thromb Vasc Biol 2018; 38(9): 2225-35.
[http://dx.doi.org/10.1161/ATVBAHA.118.311023] [PMID: 29976769]
[64]
Zeng Y, Guo M, Fang X, et al. Gut microbiota-derived trimethylamine N-oxide and kidney function: A systematic review and meta-analysis. Adv Nutr 2021; 12(4): 1286-304.
[http://dx.doi.org/10.1093/advances/nmab010] [PMID: 33751019]
[65]
Teft WA, Morse BL, Leake BF, et al. Identification and characterization of trimethylamine- N -oxide uptake and efflux transporters. Mol Pharm 2017; 14(1): 310-8.
[http://dx.doi.org/10.1021/acs.molpharmaceut.6b00937] [PMID: 27977217]
[66]
Prokopienko AJ, West RE III, Schrum DP, et al. Metabolic activation of flavin monooxygenase-mediated trimethylamine-N-oxide formation in experimental kidney disease. Sci Rep 2019; 9(1): 15901.
[http://dx.doi.org/10.1038/s41598-019-52032-9] [PMID: 31685846]
[67]
Wang B, Qiu J, Lian J, Yang X, Zhou J. Gut metabolite trimethylamine-N-oxide in atherosclerosis: From mechanism to therapy. Front Cardiovasc Med 2021; 8: 723886.
[http://dx.doi.org/10.3389/fcvm.2021.723886] [PMID: 34888358]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy