Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Research Article

Tailoring Physicochemical Properties of Iloperidone by Cocrystallization: Design and Characterization of Novel Cocrystals of Iloperidone and 4- amino Benzoic Acid

Author(s): Earle Radha Rani* and Gadela Venkata Radha

Volume 13, Issue 1, 2023

Published on: 13 October, 2022

Page: [24 - 34] Pages: 11

DOI: 10.2174/2210303112666220907124554

Price: $65

Abstract

Background: The current study explores the enhancement of solubility and dissolution rate of a poorly water-soluble drug Iloperidone (IPD) by synthesizing co-crystals (CC) using 4- amino benzoic acid (ABA) as a coformer.

Methods: Pharmaceutical CCs of IPD with ABA were designed and synthesized using crystal engineering. CCs were prepared by solvent evaporation (SE) technique and studied for their enhancement in solubility and dissolution rate. CC formation was confirmed by Fourier Transform Infra- Red Spectroscopy (FTIR), powder X-ray diffraction (PXRD), Differential Scanning Calorimetry (DSC), and Proton Nuclear Magnetic Resonance (1H- NMR).

Results: Structural characterization studies exhibited new characteristic peaks, which confirmed that CCs could be generated from IPD and ABA using SE technique. The apparent aqueous solubility studies of the CCs exhibited 7.1 folds increase in solubility compared to the pure drug. Improvement in the rate of dissolution of CCs was evident from the in vitro dissolution studies, where CCs displayed 94.15 ± 0.27% drug release in 60min while pure drug showed only 39.90 ± 1.86% release in the same time period.

Conclusion: CCs of IPD and ABA provide a novel approach to overcoming the solubility issues.

Keywords: Coformer, dissolution, solubility, solvent, evaporation, 1H- FT NMR

Graphical Abstract

[1]
Aziz, M.S.; Chitra, G.; Tyagi, L.K. Development of novel crystal forms of Metaxalone for solubility enhancement. Indian J. Pharm. Sci., 2020, 82(6), 974-983.
[2]
Raja, C.; Kumar, V.S.; Jayakumar, C. Investigation of solubility of mebendazole drug using linear prediction and multilayer feed forward neural network. Indian J. Pharma. Edu. Res., 2021, 55(S1), S149-S156.
[http://dx.doi.org/10.5530/ijper.55.1s.45]
[3]
Karwal, R.; Garg, T.; Rath, G.; Markandeywar, T.S. Current trends in Self-Emulsifying Drug Delivery Systems (SEDDSs) to enhance the bioavailability of poorly soluble drugs. Crit. Rev. Ther. Drug Carrier Syst., 2016, 33(1), 1-39.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v33.i1.20] [PMID: 27279337]
[4]
Pandey, V.; Kohli, S. Lipids and surfactants: The inside story of lipid-based drug delivery systems. Crit. Rev. Ther. Drug Carrier Syst., 2018, 35(2), 99-155.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2018016710] [PMID: 29717664]
[5]
Cherniakov, I.; Domb, A.J.; Hoffman, A. Self-nano-emulsifying drug delivery systems: An update of the biopharmaceutical aspects. Expert Opin. Drug Deliv., 2015, 12(7), 1121-1133.
[http://dx.doi.org/10.1517/17425247.2015.999038] [PMID: 25556987]
[6]
Merz, K.; Vasylyeva, V. Development and boundaries in the field of supramolecular synthons. CrystEngComm, 2010, 12(12), 3989-4002.
[http://dx.doi.org/10.1039/c0ce00237b]
[7]
Karnica, S.; Poonam, T.; Kirti, S.; Anubha, S.; Jing, W. Study of molecular structure and hydrogen bond interactions in dipluzine-benzoic acid cocrystal using spectroscopic and quantum chemical method. Spectrochemica Acta Part A: Mol. Biomol. Spectro., 2019, 216, 7-14.
[8]
Anastasiya, V.M.; Svetlana, A.M.; Natalia, V.B.; Konstantin, B.G.; Svetlana, A.K.; Tatyana, P.S. Screening and characterization of cocrystal formation between botulin and terephthalic acid. Mater. Today Proc., 2020, 25(3), 381-383.
[9]
Guo, M.; Sun, X.; Chen, J.; Cai, T. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharm. Sin. B, 2021, 11(8), 2537-2564.
[http://dx.doi.org/10.1016/j.apsb.2021.03.030] [PMID: 34522597]
[10]
Bavishi, D.D.; Borkhataria, C.H. Spring and parachute: How cocrystals enhance solubility. Prog. Cryst. Growth Charact. Mater., 2016, 62(3), 1-8.
[http://dx.doi.org/10.1016/j.pcrysgrow.2016.07.001]
[11]
Panzade, P.S.; Shendarkar, G.R. Pharmaceutical cocrystal: A game changing approach for the administration of old drugs in new crystalline form. Drug Dev. Ind. Pharm., 2020, 46(10), 1559-1568.
[http://dx.doi.org/10.1080/03639045.2020.1810270] [PMID: 32799687]
[12]
Mohammad, M.A.; Alhalaweh, A.; Velaga, S.P. Hansen solubility parameter as a tool to predict cocrystal formation. Int. J. Pharm., 2011, 407(1-2), 63-71.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.030] [PMID: 21256944]
[13]
Sulbha, R.F.; Milind, P.W.; Shilpi, R. Coformer selection: An important tool in cocrystal formation. Int. J. Pharm. Pharm, 2014, 6(7), 9-14.
[14]
Cysewski, P. Przybyłek, M. Selection of effective cocrystals former for dissolution rate improvement of active pharmaceutical ingredients based on lipoaffinity index. Eur. J. Pharm. Sci., 2017, 107, 87-96.
[http://dx.doi.org/10.1016/j.ejps.2017.07.004] [PMID: 28687528]
[15]
Parikh, K.J.; Sawant, K.K. Comparative study for optimization of pharmaceutical self-emulsifying pre-concentrate by design of experiment and artificial neural network. AAPS PharmSciTech, 2018, 19(7), 3311-3321.
[http://dx.doi.org/10.1208/s12249-018-1173-2] [PMID: 30218266]
[16]
Mohamad, Y.; Padmaja, M.; Geethanjali, J.; Meena, P. Spectrophotometric method for estimation of iloperidone in bulk and tablet dosage form. Asian J. Res. Chem, 2014, 7(4), 390-392.
[17]
Mandpe, L.; Pokharkar, V. Quality by design approach to understand the process of optimization of iloperidone nanostructured lipid carriers for oral bioavailability enhancement. Pharm. Dev. Technol., 2015, 20(3), 320-329.
[http://dx.doi.org/10.3109/10837450.2013.867445] [PMID: 24328553]
[18]
Zhang, T.; Yang, Y.; Wang, H.; Sun, F.; Zhao, X.; Jia, J.; Liu, J.; Guo, W.; Cui, X.; Gu, J.; Zhu, G. Using dissolution and pharmacokinetics studies of crystal form to optimize the original iloperidone. Cryst. Growth Des., 2013, 13(12), 5261-5266.
[http://dx.doi.org/10.1021/cg4010104]
[19]
Pradum, P.I.; Kapil, A.; Upesh, P. Enhanced in vitro dissolution of iloperidone using Caesalpinia pulcherrima mucoadhesive microspheres. Beni. Suef Univ. J. Basic Appl. Sci., 2015, (4), 26-32.
[20]
Londhe, V.; Shirsat, R. Formulation and evaluation of fast-dissolving sublingual film of Iloperidone using Box-Behnken design for enhancement of oral bioavailability. AAPS PharmSciTech, 2018, 19(3), 1392-1400.
[http://dx.doi.org/10.1208/s12249-018-0954-y] [PMID: 29396734]
[21]
Suram, D.; Narala, A.; Veerabrahma, K. Development, characterization, comparative pharmacokinetic and pharmacodynamic studies of iloperidone solid SMEDDS and liquisolid compact. Drug Dev. Ind. Pharm., 2020, 46(4), 587-596.
[http://dx.doi.org/10.1080/03639045.2020.1742142] [PMID: 32162981]
[22]
Kumar, S.; Gupta, A.; Mishra, C.K.; Singh, S. Synthesis, Characterization and performance evaluation of aceclofenac-urea cocrystals. Indian J. Pharm. Sci., 2020, 82(5), 881-890.
[23]
Jidnyasa, P.; Harinath, M.; Deu, B.; Udaykumar, P.; Namdeo, J. Novel curcumin ascorbic acid cocrystals for improved solubility. J. Drug Deliv. Sci. Technol., 2021., 102233.
[24]
Thimmasetty, J.; Ghosh, T.; Nayak, N.S.; Raheem, A. Oral bioavailability enhancement of Paliperidone by the use of cocrystallization and precipitation inhibition. J. Pharm. Innov., 2021, 16(1), 160-169.
[http://dx.doi.org/10.1007/s12247-020-09428-2]
[25]
Zhang, T.; Yang, Y.; Zhao, X.; Jia, J.; Su, H.; He, H.; Gu, J.; Zhu, G. Dissolution and pharmacokinetic properties of two paliperidone cocrystals with 4-hydroxybenzoic and 4-aminobenzoic acid. CrystEngComm, 2014, 16(33), 7667-7672.
[http://dx.doi.org/10.1039/C4CE00784K]
[26]
Barmpalexis, P.; Karagianni, A.; Nikolakakis, I.; Kachrimanis, K. Preparation of pharmaceutical cocrystal formulations via melt mixing technique: A thermodynamic perspective. Eur. J. Pharm. Biopharm., 2018, 131, 130-140.
[http://dx.doi.org/10.1016/j.ejpb.2018.08.002] [PMID: 30092346]
[27]
Dutt, B.; Choudhary, M.; Budhwar, V. Preparation, characterization and evaluation of aspirin: Benzoic acid cocrystals with enhanced pharmaceutical properties. Fut. J. Pharm. Sci., 2020, 6(1), 32.
[http://dx.doi.org/10.1186/s43094-020-00052-y]
[28]
Vilas, J.N.; Sanjay, B.P. Pharmaceutical cocrystals of nebivolol hydrochloride with enhanced solubility. J. Cryst. Growth, 2020, 534, 125448.
[29]
Earle, R.R.; Bharathi, V.V.; Lakshmi Usha, A.; Ksheera Bhavani, A.V.S. Cross-linked chitosan based stomach specific mucoadhesive microspheres loaded with amoxicillin: Preparation and ex vivo characterization. Int. J. Pharm. Investig., 2020, 10(1), 59-63.
[http://dx.doi.org/10.5530/ijpi.2020.1.11]
[30]
Mukaida, M.; Sato, H.; Sugano, K.; Terada, K. Stability orders acetaminophen and theophylline cocrystals determined by co-crystal former exchange reactions and their correlations with in silico and thermal parameters. J. Pharm. Sci., 2017, 106(1), 258-263.
[http://dx.doi.org/10.1016/j.xphs.2016.08.028] [PMID: 28340956]
[31]
Zhou, Z.; Li, W.; Sun, W.J.; Lu, T.; Tong, H.H.Y.; Sun, C.C.; Zheng, Y. Resveratrol cocrystals with enhanced solubility and tabletability. Int. J. Pharm., 2016, 509(1-2), 391-399.
[http://dx.doi.org/10.1016/j.ijpharm.2016.06.006] [PMID: 27282539]
[32]
Bhattacharya, B.; Das, S.; Lal, G.; Soni, S.R.; Ghosh, A.; Reddy, C.M.; Ghosh, S. Screening, crystal structures and solubility studies of a series of multidrug salt hydrates and cocrystals of fenamic acids with trimethoprim and sulfamethazine. J. Mol. Struct., 2020, 1199, 127028.
[http://dx.doi.org/10.1016/j.molstruc.2019.127028]
[33]
Alhalaweh, A.; Kaialy, W.; Buckton, G.; Gill, H.; Nokhodchi, A.; Velaga, S.P. Theophylline cocrystals prepared by spray drying: Physicochemical properties and aerosolization performance. AAPS PharmSciTech, 2013, 14(1), 265-276.
[http://dx.doi.org/10.1208/s12249-012-9883-3] [PMID: 23297166]
[34]
Al-Kazemi, R.; Al-Basarah, Y.; Nada, A. Dissolution enhancement of atorvastatin calcium by cocrystallization. Adv. Pharm. Bull., 2019, 9(4), 559-570.
[http://dx.doi.org/10.15171/apb.2019.064] [PMID: 31857959]
[35]
Anand, A.; Paul, R.; Amolkumar, K.; Ravindra, H. Formulation and evaluation of buccal films of piroxicam co-crystals. Future J. Pharm. Sci., 2020, 16(6), 1-11.
[36]
Gaikwad, E.R.; Khabade, S.S.; Sutar, T.B.; Santosh, A.P. Preparation and characterization of molecular complexes of fenofibrate cocrystal. Asian J. Pharm., 2017, 11(4), 745-759.
[37]
Patil, S.P.; Modi, S.R.; Bansal, A.K. Generation of 1:1 Carbamazepine: Nicotinamide cocrystals by spray drying. Eur. J. Pharm. Sci., 2014, 62, 251-257.
[http://dx.doi.org/10.1016/j.ejps.2014.06.001] [PMID: 24931188]
[38]
Prabhakar, P.; Giridhar, S. Design and preparation of Zaltoprofen-Nicotinamide pharmaceutical cocrystals via liquid assisted grinding method. Ind. J. Pharm. Educ. Res., 2019, 54(4), 563-570.
[39]
Marisa, R.; Joao, L.; Alexandra, G.; Jorge, S.; Mafalda, S. Considerations on high-throughput screening by ultra sound assisted cocrystallization and vibrational spectroscopy. Spectrochemica Acta Part A, 2020, 229, 117876.
[40]
Garbacz, P.; Wesolowski, M. Benzodiazepines co-crystals screening using FTIR and Raman spectroscopy supported by differential scanning calorimetry. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 234, 118242.
[http://dx.doi.org/10.1016/j.saa.2020.118242] [PMID: 32179462]
[41]
da Silva, C.C.P.; de Melo, C.C.; Souza, M.S.; Diniz, L.F.; Carneiro, R.L.; Ellena, J. 5- fluorocytosine/5- fluorouracil drug-drug cocrystal: A new development route based on mechanical synthesis. J. Pharm. Innov., 2019, 14(1), 50-56.
[http://dx.doi.org/10.1007/s12247-018-9333-1]
[42]
Tsutsumi, S.; Iida, M.; Tada, N.; Kojima, T.; Ikeda, Y.; Moriwaki, T.; Higashi, K.; Moribe, K.; Yamamoto, K. Characterization and evaluation of miconazole salts and cocrystals for improved physicochemical properties. Int. J. Pharm., 2011, 421(2), 230-236.
[http://dx.doi.org/10.1016/j.ijpharm.2011.09.034] [PMID: 21983091]
[43]
Shen, Y.; Zong, S.; Dang, L.; Wei, H. Solubility and thermodynamics of probenecid-4,4′-azopyridine cocrystal in pure and binary solvents. J. Mol. Liq., 2019, 290, 111195.
[http://dx.doi.org/10.1016/j.molliq.2019.111195]
[44]
Yamamoto, K.; Tsutsumi, S.; Ikeda, Y. Establishment of cocrystal cocktail grinding method for rational screening of pharmaceutical cocrystals. Int. J. Pharm., 2012, 437(1-2), 162-171.
[http://dx.doi.org/10.1016/j.ijpharm.2012.07.038] [PMID: 22871562]
[45]
Goud, N.R.; Gangavaram, S.; Suresh, K.; Pal, S.; Manjunatha, S.G.; Nambiar, S.; Nangia, A. Novel furosemide cocrystals and selection of high solubility drug forms. J. Pharm. Sci., 2012, 101(2), 664-680.
[http://dx.doi.org/10.1002/jps.22805] [PMID: 22081478]
[46]
Tomaszewska, I.; Karki, S.; Shur, J.; Price, R.; Fotaki, N. Pharmaceutical characterisation and evaluation of cocrystals: Importance of in vitro dissolution conditions and type of coformer. Int. J. Pharm., 2013, 453(2), 380-388.
[http://dx.doi.org/10.1016/j.ijpharm.2013.05.048] [PMID: 23727143]
[47]
Chaves Júnior, J.V.; dos Santos, J.A.B.; Lins, T.B.; de Araújo Batista, R.S.; de Lima Neto, S.A.; de Santana Oliveira, A.; Nogueira, F.H.A.; Gomes, A.P.B.; de Sousa, D.P.; de Souza, F.S.; Aragão, C.F.S. A new ferulic acid- nicotinamide cocrystal with improved solubility and dissolution performance. J. Pharm. Sci., 2020, 109(3), 1330-1337.
[http://dx.doi.org/10.1016/j.xphs.2019.12.002] [PMID: 31821823]
[48]
Pawar, A.; Paradkar, A.R.; Kadam, S.S.; Mahadik, K.R. Effect of polymers on crystallo-co-agglomeration of ibuprofen-paracetamol: Factorial design. Indian J. Pharm. Sci., 2007, 69(5), 658-664.
[http://dx.doi.org/10.4103/0250-474X.38471]
[49]
Chhajed, S.S.; Rajderkar, Y.R.; Tajanpure, A.B.; Sangshetti, J.N.; Mahapatra, D.K.; Kshirsagar, S.J. Solvent drop grinding approach assisted development of glimepiride co-crystals: Solubility enhancement journey of BCS class II product. Indian J. Pharm. Educ. Res., 2020, 54(3), 602-609.
[http://dx.doi.org/10.5530/ijper.54.3.109]
[50]
Serrano, D.R.; Walsh, D.; O’Connell, P.; Mugheirbi, N.A.; Worku, Z.A.; Bolas-Fernandez, F.; Galiana, C.; Dea-Ayuela, M.A.; Healy, A.M. Optimising the in vitro and in vivo performance of oral cocrystal formulations via spray coating. Eur. J. Pharm. Biopharm., 2018, 124, 13-27.
[http://dx.doi.org/10.1016/j.ejpb.2017.11.015] [PMID: 29196273]
[51]
Napada, W.; Manop, Ch. Application of Box-Behnken design for processing of mefenamic acid-paracetamol cocrystals using gas anti- solvent process. J CO2 Util., 2018, 26, 212-220.
[52]
Gasper, J.F.; Mahalakshmi, R. Formulation optimization for gastro retentive drug delivery system of carvedilol cocrystals using design of experiment. J. Pharm. Innov., 2019, 15, 455-466.
[53]
Hemamalini, M.; Loh, W.S.; Quah, C.K.; Fun, H.K. Investigation of supramolecular synthons and structural characterisation of aminopyridine-carboxylic acid derivatives. Chem. Cent. J., 2014, 8(1), 31.
[http://dx.doi.org/10.1186/1752-153X-8-31] [PMID: 24887234]
[54]
Bhalla, Y.; Chadha, K.; Chadha, R.; Karan, M. Daidzein cocrystals: An opportunity to improve its biopharmaceutical parameters. Heliyon, 2019, 5(11), e02669.
[http://dx.doi.org/10.1016/j.heliyon.2019.e02669] [PMID: 31763466]
[55]
Mohite, R.; Mehta, P.; Arulmozhi, S.; Kamble, R.; Pawar, A.; Bothiraja, C. Synthesis of fisetin co-crystals with caffeine and nicotinamide using the cooling crystallization technique: Biopharmaceutical studies. New J. Chem., 2019, 43(34), 13471-13479.
[http://dx.doi.org/10.1039/C9NJ01848D]
[56]
Zhou, J.; Li, L.; Zhang, H.; Xu, J.; Huang, D.; Gong, N.; Han, W.; Yang, X.; Zhou, Z. Crystal structures, dissolution and pharmacokinetic study on a novel phosphodiesterase-4 inhibitor chlorbipram cocrystals. Int. J. Pharm., 2020, 576, 118984.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118984] [PMID: 31870960]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy