Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Implications of CRISPR-Cas9 in Developing Next Generation Biofuel: A Mini-review

Author(s): Sudarshan Singh Lakhawat, Naveen Malik, Vikram Kumar, Sunil Kumar and Pushpender Kumar Sharma*

Volume 23, Issue 9, 2022

Published on: 26 September, 2022

Page: [574 - 584] Pages: 11

DOI: 10.2174/1389203723666220907110310

Price: $65

Abstract

The major drawbacks of biofuel production at the commercial level are its low yield, nonavailability of feedstock, feedback inhibition, presence of inhibitory pathways in various organisms, and biofuel intolerance of organisms. The present review focuses on the implications of the CRISPRCas9 mediated gene editing tool to alter the genome of bacteria, algae, fungi, and higher plants for efficient biofuel production. Gene knockout and gene cassette insertions employing CRISPR-Cas9 in Saccharomyces cerevisiae and Kluyveromyces marxianus have resulted in enhanced production of bioethanol and 2-Phenyl ethanol in these organisms, respectively. Genomes of several bacterial strains were also modified to enhance ethanol and butanol production in them. CRISPR-Cas9 modification of microalgae has demonstrated improved total lipid content, a prerequisite for biofuel production. All over, CRISPR-Cas9 has emerged as a tool of choice for engineering the genome and metabolic pathways of organisms for producing industrial biofuel. In plant-based biofuel production, the biosynthetic pathways of lignin interfere with the satisfactory release of fermentable sugars thus hampering efficient biofuel production. CRISPR-Cas9 has shown a promising role in reducing lignin content in various plants including barley, switchgrass, and rice straw.

Keywords: Biofuels, CRISPR/Cas9, gene editing, lignin, ethanol

Graphical Abstract

[1]
Hahn-Hägerdal, B.; Galbe, M.; Gorwa-Grauslund, M.F.; Lidén, G.; Zacchi, G. Bio-ethanol-the fuel of tomorrow from the residues of today. Trends Biotechnol., 2006, 24(12), 549-556.
[http://dx.doi.org/10.1016/j.tibtech.2006.10.004] [PMID: 17050014]
[2]
Lahn, B. Changing climate change: The carbon budget and the modifying-work of the IPCC. Soc. Stud. Sci., 2021, 51(1), 3-27.
[http://dx.doi.org/10.1177/0306312720941933] [PMID: 32669042]
[3]
Tyson, K.S.; Bozell, J.; Wallace, R.; Petersen, E.; Moens, L. Biomass oil analysis: Research needs and recommendations 2004.
[http://dx.doi.org/10.2172/15009676]
[4]
Bozell, J.J.; Petersen, G.R. Technology development for the production of biobased products from biorefinery carbohydrates-The US Department of Energy’s “Top 10” revisited. Green Chem., 2010, 12, 539-554.
[http://dx.doi.org/10.1039/b922014c]
[5]
Sarkar, N.; Ghosh, S.K.; Bannerjee, S.; Aikat, K. Bioethanol production from agricultural wastes: An overview. Renew. Energy, 2012, 37, 19-27.
[http://dx.doi.org/10.1016/j.renene.2011.06.045]
[6]
Sharma, A.K.; Sharma, P.K.; Chintala, V.; Khatri, N.; Patel, A. Environment-friendly biodiesel/diesel blends for improving the exhaust emission and engine performance to reduce the pollutants emitted from transportation fleets. Int. J. Environ. Res. Public Health, 2020, 17(11), 3896.
[http://dx.doi.org/10.3390/ijerph17113896] [PMID: 32486369]
[7]
Jeswani, H.K.; Chilvers, A.; Azapagic, A. Environmental sustainability of biofuels: A review. Proc.- Royal Soc., Math. Phys. Eng. Sci., 2020, 476(2243), 20200351.
[http://dx.doi.org/10.1098/rspa.2020.0351] [PMID: 33363439]
[8]
Khanna, M.; Crago, C.L.; Black, M. Can biofuels be a solution to climate change? The implications of land use change-related emissions for policy. Interface Focus, 2011, 1(2), 233-247.
[http://dx.doi.org/10.1098/rsfs.2010.0016] [PMID: 22482030]
[9]
Gasparatos, A.; Stromberg, P.; Takeuchi, K. Sustainability impacts of first-generation biofuels. Anim. Front., 2013, 3(2), 12-26.
[http://dx.doi.org/10.2527/af.2013-0011]
[10]
Rosillo-Calle, F. Food versus fuel: Toward a new paradigm - the need for a holistic approach. ISRN Renewable Energy, 2012 2012.
[11]
Saini, J.K.; Saini, R.; Tewari, L. Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech, 2015, 5(4), 337-353.
[http://dx.doi.org/10.1007/s13205-014-0246-5]
[12]
Behera, S.; Singh, R.; Arora, R.; Sharma, N.K.; Shukla, M.; Kumar, S. Scope of algae as third generation biofuels. Front. Bioeng. Biotechnol., 2015, 2, 90.
[http://dx.doi.org/10.3389/fbioe.2014.00090] [PMID: 25717470]
[13]
Soni, V.K.; Krishnapriya, R.; Sharma, R.K. Algae: Biomass to biofuel. Methods Mol. Biol., 2021, 2290, 31-51.
[http://dx.doi.org/10.1007/978-1-0716-1323-8_3] [PMID: 34009581]
[14]
Varela Villarreal, J.; Burgués, C.; Rösch, C. Acceptability of genetically engineered algae biofuels in Europe: Opinions of experts and stakeholders. Biotechnol. Biofuels, 2020, 13, 92.
[http://dx.doi.org/10.1186/s13068-020-01730-y] [PMID: 32489422]
[15]
Bortesi, L.; Fischer, R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Adv., 2015, 33(1), 41-52.
[http://dx.doi.org/10.1016/j.biotechadv.2014.12.006] [PMID: 25536441]
[16]
Horvath, P.; Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science, 2010, 327(5962), 167-170.
[http://dx.doi.org/10.1126/science.1179555] [PMID: 20056882]
[17]
Liu, M.; Rehman, S.; Tang, X.; Gu, K.; Fan, Q.; Chen, D.; Ma, W. Methodologies for improving HDR efficiency. Front. Genet., 2019, 9, 691.
[http://dx.doi.org/10.3389/fgene.2018.00691] [PMID: 30687381]
[18]
Marraffini, L.A.; Sontheimer, E.J. CRISPR interference: RNA-directed adaptive immunity in bacteria and archaea. Nat. Rev. Genet., 2010, 11(3), 181-190.
[http://dx.doi.org/10.1038/nrg2749] [PMID: 20125085]
[19]
Yeh, C.D.; Richardson, C.D.; Corn, J.E. Advances in genome editing through control of DNA repair pathways. Nat. Cell Biol., 2019, 21(12), 1468-1478.
[http://dx.doi.org/10.1038/s41556-019-0425-z] [PMID: 31792376]
[20]
Hsu, P.D.; Lander, E.S.; Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell, 2014, 157(6), 1262-1278.
[http://dx.doi.org/10.1016/j.cell.2014.05.010] [PMID: 24906146]
[21]
Singh, D.D.; Verma, R.; Parimoo, P.; Sahu, A.; Kumar, V.; Upadhyay, E.; Yadav, D.K. Potential therapeutic relevance of CRISPR/Cas9 guided epigenetic regulations for neuropsychiatric disorders. Curr. Top. Med. Chem., 2021, 21(10), 878-894.
[http://dx.doi.org/10.2174/1568026621666210317154502] [PMID: 33739246]
[22]
Abdallah, N.A.; Prakash, C.S.; McHughen, A.G. Genome editing for crop improvement: Challenges and opportunities. GM Crops Food, 2015, 6(4), 183-205.
[http://dx.doi.org/10.1080/21645698.2015.1129937] [PMID: 26930114]
[23]
Wang, H.; La Russa, M.; Qi, L.S. CRISPR/Cas9 in genome editing and beyond. Annu. Rev. Biochem., 2016, 85, 227-264.
[http://dx.doi.org/10.1146/annurev-biochem-060815-014607] [PMID: 27145843]
[24]
Dheer, P.; Rautela, I.; Sharma, V.; Dhiman, M.; Sharma, A.; Sharma, N.; Sharma, M.D. Evolution in crop improvement approaches and future prospects of molecular markers to CRISPR/Cas9 system. Gene, 2020, 753, 144795.
[http://dx.doi.org/10.1016/j.gene.2020.144795] [PMID: 32450202]
[25]
Xue, T.; Liu, K.; Chen, D.; Yuan, X.; Fang, J.; Yan, H.; Huang, L.; Chen, Y.; He, W. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae. World J. Microbiol. Biotechnol., 2018, 34(10), 154.
[http://dx.doi.org/10.1007/s11274-018-2518-4] [PMID: 30276556]
[26]
Yang, P.; Wu, Y.; Zheng, Z.; Cao, L.; Zhu, X.; Mu, D.; Jiang, S. CRISPR-Cas9 approach constructing cellulase sestc-Engineered Saccharomyces cerevisiae for the production of orange peel ethanol. Front. Microbiol., 2018, 9, 2436.
[http://dx.doi.org/10.3389/fmicb.2018.02436] [PMID: 30364071]
[27]
Löbs, A.K.; Engel, R.; Schwartz, C.; Flores, A.; Wheeldon, I. CRISPR-Cas9-enabled genetic disruptions for understanding ethanol and ethyl acetate biosynthesis in Kluyveromyces marxianus. Biotechnol. Biofuels, 2017, 10, 164.
[http://dx.doi.org/10.1186/s13068-017-0854-5] [PMID: 28652865]
[28]
Chin, Y.W.; Kang, W.K.; Jang, H.W.; Turner, T.L.; Kim, H.J. deletion by CRISPR/Cas9 reduces formation of ethyl carbamate from ethanol fermentation by Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol., 2016, 43(11), 1517-1525.
[http://dx.doi.org/10.1007/s10295-016-1831-x] [PMID: 27573438]
[29]
Zhang, L.; Tang, Y.; Guo, Z.; Shi, G. Engineering of the glycerol decomposition pathway and cofactor regulation in an industrial yeast improves ethanol production. J. Ind. Microbiol. Biotechnol., 2013, 40(10), 1153-1160.
[http://dx.doi.org/10.1007/s10295-013-1311-5] [PMID: 23896974]
[30]
Muysson, J.; Miller, L.; Allie, R.; Inglis, D.L. The use of CRISPR-Cas9 genome editing to determine the importance of glycerol uptake in wine Yeast During Icewine Fermentation. Fermentation (Basel), 2019, 5(4), 93.
[http://dx.doi.org/10.3390/fermentation5040093]
[31]
Lian, J.; Bao, Z.; Hu, S.; Zhao, H. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains. Biotechnol. Bioeng., 2018, 115(6), 1630-1635.
[http://dx.doi.org/10.1002/bit.26569] [PMID: 29460422]
[32]
Li, M.; Lang, X.; Moran Cabrera, M.; De Keyser, S.; Sun, X.; Da Silva, N.; Wheeldon, I. CRISPR-mediated multigene integration enables Shikimate pathway refactoring for enhanced 2-phenylethanol biosynthesis in Kluyveromyces marxianus. Biotechnol. Biofuels, 2021, 14(1), 3.
[http://dx.doi.org/10.1186/s13068-020-01852-3] [PMID: 33407831]
[33]
Wang, S.; Dong, S.; Wang, P.; Tao, Y.; Wang, Y. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System. Appl. Environ. Microbiol., 2017, 83(10), e00233-e17.
[http://dx.doi.org/10.1128/AEM.00233-17] [PMID: 28258147]
[34]
Xiang, X.; Corsi, G.I.; Anthon, C.; Qu, K.; Pan, X.; Liang, X.; Han, P.; Dong, Z.; Liu, L.; Zhong, J.; Ma, T.; Wang, J.; Zhang, X.; Jiang, H.; Xu, F.; Liu, X.; Xu, X.; Wang, J.; Yang, H.; Bolund, L.; Church, G.M.; Lin, L.; Gorodkin, J.; Luo, Y. Enhancing CRISPR-Cas9 gRNA efficiency prediction by data integration and deep learning. Nat. Commun., 2021, 12(1), 3238.
[http://dx.doi.org/10.1038/s41467-021-23576-0] [PMID: 34050182]
[35]
Riley, L.A.; Guss, A.M. Approaches to genetic tool development for rapid domestication of non-model microorganisms. Biotechnol. Biofuels, 2021, 14(1), 30.
[http://dx.doi.org/10.1186/s13068-020-01872-z] [PMID: 33494801]
[36]
Abdelaal, A.S.; Jawed, K.; Yazdani, S.S. CRISPR/Cas9-mediated engineering of Escherichia coli for n-butanol production from xylose in defined medium. J. Ind. Microbiol. Biotechnol., 2019, 46(7), 965-975.
[http://dx.doi.org/10.1007/s10295-019-02180-8] [PMID: 30982114]
[37]
Otoupal, P.B.; Chatterjee, A. CRISPR gene perturbations provide insights for improving bacterial biofuel tolerance. Front. Bioeng. Biotechnol., 2018, 6, 122.
[http://dx.doi.org/10.3389/fbioe.2018.00122] [PMID: 30234107]
[38]
Munasinghe, P.C.; Khanal, S.K. Biomass-derived syngas fermentation into biofuels: Opportunities and challenges. Bioresour. Technol., 2010, 101(13), 5013-5022.
[http://dx.doi.org/10.1016/j.biortech.2009.12.098] [PMID: 20096574]
[39]
Huang, H.; Chai, C.; Li, N.; Rowe, P.; Minton, N.P.; Yang, S.; Jiang, W.; Gu, Y. CRISPR/Cas9-Based efficient genome editing in Clostridium ljungdahlii, an autotrophic gas-fermenting bacterium. ACS Synth. Biol., 2016, 5(12), 1355-1361.
[http://dx.doi.org/10.1021/acssynbio.6b00044] [PMID: 27276212]
[40]
Zhao, R.; Liu, Y.; Zhang, H.; Chai, C.; Wang, J.; Jiang, W.; Gu, Y. CRISPR-Cas12a-mediated gene deletion and regulation in Clostridium ljungdahlii and its application in carbon flux redirection in synthesis gas fermentation. ACS Synth. Biol., 2019, 8(10), 2270-2279.
[http://dx.doi.org/10.1021/acssynbio.9b00033] [PMID: 31526005]
[41]
Fernandes, T.; Cordeiro, N. Microalgae as sustainable bio factories to produce high-value lipids: Biodiversity, exploitation, and biotechnological applications. Mar. Drugs, 2021, 19(10), 573.
[http://dx.doi.org/10.3390/md19100573] [PMID: 34677472]
[42]
Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact., 2018, 17(1), 36.
[http://dx.doi.org/10.1186/s12934-018-0879-x] [PMID: 29506528]
[43]
Alishah Aratboni, H.; Rafiei, N.; Garcia-Granados, R.; Alemzadeh, A.; Morones-Ramírez, J.R. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb. Cell Fact., 2019, 18(1), 178.
[http://dx.doi.org/10.1186/s12934-019-1228-4] [PMID: 31638987]
[44]
Hannon, M.; Gimpel, J.; Tran, M.; Rasala, B.; Mayfield, S. Biofuels from algae: Challenges and potential. Biofuels, 2010, 1(5), 763-784.
[http://dx.doi.org/10.4155/bfs.10.44] [PMID: 21833344]
[45]
Hallmann, A.; Rappel, A.; Sumper, M. Gene replacement by homologous recombination in the multicellular green alga volvox carteri. Proc. Natl. Acad. Sci. USA, 1997, 94(14), 7469-7474.
[http://dx.doi.org/10.1073/pnas.94.14.7469] [PMID: 9207115]
[46]
Kilian, O.; Benemann, C.S.; Niyogi, K.K.; Vick, B. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc. Natl. Acad. Sci. USA, 2011, 108(52), 21265-21269.
[http://dx.doi.org/10.1073/pnas.1105861108] [PMID: 22123974]
[47]
López García de Lomana, A.; Schäuble, S.; Valenzuela, J.; Imam, S.; Carter, W.; Bilgin, D.D.; Yohn, C.B.; Turkarslan, S.; Reiss, D.J.; Orellana, M.V.; Price, N.D.; Baliga, N.S. Transcriptional program for nitrogen starvation-induced lipid accumulation in Chlamydomonas reinhardtii. Biotechnol. Biofuels, 2015, 8, 207.
[http://dx.doi.org/10.1186/s13068-015-0391-z] [PMID: 26633994]
[48]
Sheehan, J.; Dunahay, T.; Benemann, J.; Roessler, P. Look Back at the U.S. Department of energy's aquatic species program: Biodiesel from algae; close-out report. 1998.
[http://dx.doi.org/10.2172/15003040]
[49]
Li, H.; Yang, Y.; Hong, W.; Huang, M.; Wu, M.; Zhao, X. Applications of genome editing technology in the targeted therapy of human diseases: Mechanisms, advances and prospects. Signal Transduct. Target. Ther., 2020, 5(1), 1.
[http://dx.doi.org/10.1038/s41392-019-0089-y] [PMID: 32296011]
[50]
Ferenczi, A.; Pyott, D.E.; Xipnitou, A.; Molnar, A. Efficient targeted DNA editing and replacement in Chlamydomonas reinhardtii using Cpf1 ribonucleoproteins and single-stranded DNA. Proc. Natl. Acad. Sci. USA, 2017, 114(51), 13567-13572.
[http://dx.doi.org/10.1073/pnas.1710597114] [PMID: 29208717]
[51]
Ng, I.S.; Tan, S.I.; Kao, P.H.; Chang, Y.K.; Chang, J.S. Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals. Biotechnol. J., 2017, 12(10)
[http://dx.doi.org/10.1002/biot.201600644] [PMID: 28786539]
[52]
Poliner, E.; Farré, E.M.; Benning, C. Advanced genetic tools enable synthetic biology in the oleaginous microalgae Nannochloropsis sp. Plant Cell Rep., 2018, 37(10), 1383-1399.
[http://dx.doi.org/10.1007/s00299-018-2270-0] [PMID: 29511798]
[53]
Verruto, J.; Francis, K.; Wang, Y.; Low, M.C.; Greiner, J.; Tacke, S.; Kuzminov, F.; Lambert, W.; McCarren, J.; Ajjawi, I.; Bauman, N.; Kalb, R.; Hannum, G.; Moellering, E.R. Unrestrained markerless trait stacking in Nannochloropsis gaditana through combined genome editing and marker recycling technologies. Proc. Natl. Acad. Sci. USA, 2018, 115(30), E7015-E7022.
[http://dx.doi.org/10.1073/pnas.1718193115] [PMID: 29987047]
[54]
Slattery, S.S.; Diamond, A.; Wang, H.; Therrien, J.A.; Lant, J.T.; Jazey, T.; Lee, K.; Klassen, Z.; Desgagné-Penix, I.; Karas, B.J.; Edgell, D.R. An expanded plasmid-based genetic toolbox enables Cas9 genome editing and stable maintenance of synthetic pathways in Phaeodactylum tricornutum. ACS Synth. Biol., 2018, 7(2), 328-338.
[http://dx.doi.org/10.1021/acssynbio.7b00191] [PMID: 29298053]
[55]
Shin, Y.S.; Jeong, J.; Nguyen, T.H.T.; Kim, J.Y.H.; Jin, E.; Sim, S.J. Targeted knockout of phospholipase A2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production. Bioresour. Technol., 2019, 271, 368-374.
[http://dx.doi.org/10.1016/j.biortech.2018.09.121] [PMID: 30293032]
[56]
Jiang, W.; Brueggeman, A.J.; Horken, K.M.; Plucinak, T.M.; Weeks, D.P. Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot. Cell, 2014, 13(11), 1465-1469.
[http://dx.doi.org/10.1128/EC.00213-14] [PMID: 25239977]
[57]
Baek, K.; Kim, D.H.; Jeong, J.; Sim, S.J.; Melis, A.; Kim, J.S.; Jin, E.; Bae, S. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci. Rep., 2016, 6, 30620.
[http://dx.doi.org/10.1038/srep30620] [PMID: 27466170]
[58]
Serif, M.; Dubois, G.; Finoux, A.L.; Teste, M.A.; Jallet, D.; Daboussi, F. One-step generation of multiple gene knock-outs in the diatom Phaeodactylum tricornutum by DNA-free genome editing. Nat. Commun., 2018, 9(1), 3924.
[http://dx.doi.org/10.1038/s41467-018-06378-9] [PMID: 30254261]
[59]
Shin, S.E.; Lim, J.M.; Koh, H.G.; Kim, E.K.; Kang, N.K.; Jeon, S.; Kwon, S.; Shin, W.S.; Lee, B.; Hwangbo, K.; Kim, J.; Ye, S.H.; Yun, J.Y.; Seo, H.; Oh, H.M.; Kim, K.J.; Kim, J.S.; Jeong, W.J.; Chang, Y.K.; Jeong, B.R. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci. Rep., 2016, 6, 27810.
[http://dx.doi.org/10.1038/srep27810] [PMID: 27291619]
[60]
Poliner, E.; Takeuchi, T.; Du, Z.Y.; Benning, C.; Farré, E.M. Non transgenic marker-free gene disruption by an episomal CRISPR system in the Oleaginous Microalga, Nannochloropsis oceanica CCMP1779. ACS Synth. Biol., 2018, 7(4), 962-968.
[http://dx.doi.org/10.1021/acssynbio.7b00362] [PMID: 29518315]
[61]
Goold, H.D.; Nguyen, H.M.; Kong, F.; Beyly-Adriano, A.; Légeret, B.; Billon, E.; Cuiné, S.; Beisson, F.; Peltier, G.; Li-Beisson, Y. Whole Genome re-sequencing identifies a quantitative trait locus repressing carbon reserve accumulation during optimal growth in Chlamydomonas reinhardtii. Sci. Rep., 2016, 6, 25209.
[http://dx.doi.org/10.1038/srep25209] [PMID: 27141848]
[62]
Trentacoste, E.M.; Shrestha, R.P.; Smith, S.R.; Glé, C.; Hartmann, A.C.; Hildebrand, M.; Gerwick, W.H. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc. Natl. Acad. Sci. USA, 2013, 110(49), 19748-19753.
[http://dx.doi.org/10.1073/pnas.1309299110] [PMID: 24248374]
[63]
Levitan, O.; Dinamarca, J.; Zelzion, E.; Lun, D.S.; Guerra, L.T.; Kim, M.K.; Kim, J.; Van Mooy, B.A.; Bhattacharya, D.; Falkowski, P.G. Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. Proc. Natl. Acad. Sci. USA, 2015, 112(2), 412-417.
[http://dx.doi.org/10.1073/pnas.1419818112] [PMID: 25548193]
[64]
Radakovits, R.; Jinkerson, R.E.; Fuerstenberg, S.I.; Tae, H.; Settlage, R.E.; Boore, J.L.; Posewitz, M.C. Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana. Nat. Commun., 2012, 3, 686.
[http://dx.doi.org/10.1038/ncomms1688] [PMID: 22353717]
[65]
Ma, X.N.; Chen, T.P.; Yang, B.; Liu, J.; Chen, F. Lipid Production from Nannochloropsis. Mar. Drugs, 2016, 14(4), 61.
[http://dx.doi.org/10.3390/md14040061] [PMID: 27023568]
[66]
Wang, Q.; Lu, Y.; Xin, Y.; Wei, L.; Huang, S.; Xu, J. Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J., 2016, 88(6), 1071-1081.
[http://dx.doi.org/10.1111/tpj.13307] [PMID: 27538728]
[67]
Sanz-Luque, E.; Chamizo-Ampudia, A.; Llamas, A.; Galvan, A.; Fernandez, E. Understanding nitrate assimilation and its regulation in microalgae. Front. Plant Sci., 2015, 6, 899.
[http://dx.doi.org/10.3389/fpls.2015.00899] [PMID: 26579149]
[68]
Zhao, Y.; Zhang, C.; Liu, W.; Gao, W.; Liu, C.; Song, G.; Li, W.X.; Mao, L.; Chen, B.; Xu, Y.; Li, X.; Xie, C. An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design. Sci. Rep., 2016, 6, 23890.
[http://dx.doi.org/10.1038/srep23890] [PMID: 27033976]
[69]
Tanwar, A.; Sharma, S.; Kumar, S. Targeted genome editing in algae using CRISPR/Cas9. Indian J. Plant. Physiol., 2018, 23(4), 653-669.
[http://dx.doi.org/10.1007/s40502-018-0423-3]
[70]
Deng, X.; Cai, J.; Li, Y.; Fei, X. Expression and knockdown of the PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by the green alga Chlamydomonas reinhardtii. Biotechnol. Lett., 2014, 36(11), 2199-2208.
[http://dx.doi.org/10.1007/s10529-014-1593-3] [PMID: 24966045]
[71]
Kao, P.H.; Ng, I.S. CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii. Bioresour. Technol., 2017, 245(Pt B), 1527-1537.
[http://dx.doi.org/10.1016/j.biortech.2017.04.111]
[72]
Ajjawi, I.; Verruto, J.; Aqui, M.; Soriaga, L.B.; Coppersmith, J.; Kwok, K.; Peach, L.; Orchard, E.; Kalb, R.; Xu, W.; Carlson, T.J.; Francis, K.; Konigsfeld, K.; Bartalis, J.; Schultz, A.; Lambert, W.; Schwartz, A.S.; Brown, R.; Moellering, E.R. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat. Biotechnol., 2017, 35(7), 647-652.
[http://dx.doi.org/10.1038/nbt.3865] [PMID: 28628130]
[73]
Pauly, M.; Keegstra, K. Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J., 2008, 54(4), 559-568.
[http://dx.doi.org/10.1111/j.1365-313X.2008.03463.x] [PMID: 18476863]
[74]
Limayem, I.; Ricke, S.C. Lignocellulosic biomass for bioethanol production: Current perspectives, potential issues and future prospects. Pror. Energy Combust. Sci., 2012, 38(4), 449-467.
[http://dx.doi.org/10.1016/j.pecs.2012.03.002]
[75]
Weng, J.K.; Li, X.; Bonawitz, N.D.; Chapple, C. Emerging strategies of lignin engineering and degradation for cellulosic biofuel production. Curr. Opin. Biotechnol., 2008, 19(2), 166-172.
[http://dx.doi.org/10.1016/j.copbio.2008.02.014] [PMID: 18403196]
[76]
Sammond, D.W.; Kastelowitz, N.; Donohoe, B.S.; Alahuhta, M.; Lunin, V.V.; Chung, D.; Sarai, N.S.; Yin, H.; Mittal, A.; Himmel, M.E.; Guss, A.M.; Bomble, Y.J. An iterative computational design approach to increase the thermal endurance of a mesophilic enzyme. Biotechnol. Biofuels, 2018, 11, 189.
[http://dx.doi.org/10.1186/s13068-018-1178-9] [PMID: 30002729]
[77]
Sticklen, M.B. Plant genetic engineering for biofuel production: Towards affordable cellulosic ethanol. Nat. Rev. Genet., 2008, 9(6), 433-443.
[http://dx.doi.org/10.1038/nrg2336] [PMID: 18487988]
[78]
Van Acker, R.; Vanholme, R.; Storme, V.; Mortimer, J.C.; Dupree, P.; Boerjan, W. Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnol. Biofuels, 2013, 6(1), 46.
[http://dx.doi.org/10.1186/1754-6834-6-46] [PMID: 23622268]
[79]
Vanholme, R.; Storme, V.; Vanholme, B.; Sundin, L.; Christensen, J.H.; Goeminne, G.; Halpin, C.; Rohde, A.; Morreel, K.; Boerjan, W. A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell, 2012, 24(9), 3506-3529.
[http://dx.doi.org/10.1105/tpc.112.102574] [PMID: 23012438]
[80]
Lee, J.H.; Won, H.J.; Hoang Nguyen Tran, P.; Lee, S-M.; Kim, H-Y.; Jung, J.H. Improving lignocellulosic biofuel production by CRISPR/Cas9-mediated lignin modification in barley. Glob. Change Biol. Bioenergy, 2021, 13, 742-752.
[http://dx.doi.org/10.1111/gcbb.12808]
[81]
Park, J.J.; Yoo, C.G.; Flanagan, A.; Pu, Y.; Debnath, S.; Ge, Y.; Ragauskas, A.J.; Wang, Z.Y. Defined tetra-allelic gene disruption of the 4-coumarate:coenzyme A ligase 1 (Pv4CL1) gene by CRISPR/Cas9 in switchgrass results in lignin reduction and improved sugar release. Biotechnol. Biofuels, 2017, 10, 284.
[http://dx.doi.org/10.1186/s13068-017-0972-0] [PMID: 29213323]
[82]
Zhou, X.; Jacobs, T.B.; Xue, L.J.; Harding, S.A.; Tsai, C.J. Exploiting SNPs for biallelic CRISPR mutations in the outcrossing woody perennial Populus reveals 4-coumarate: CoA ligase specificity and redundancy. New Phytol., 2015, 208(2), 298-301.
[http://dx.doi.org/10.1111/nph.13470] [PMID: 25970829]
[83]
van der Weijde, T.; Alvim Kamei, C.L.; Torres, A.F.; Vermerris, W.; Dolstra, O.; Visser, R.G.; Trindade, L.M. The potential of C4 grasses for cellulosic biofuel production. Front. Plant Sci., 2013, 4, 107.
[http://dx.doi.org/10.3389/fpls.2013.00107] [PMID: 23653628]
[84]
Golfier, P.; Ermakova, O.; Unda, F.; Murphy, E.K.; Xie, J.; He, F.; Zhang, W.; Lohmann, J.U.; Mansfield, S.D.; Rausch, T.; Wolf, S. Distinct and overlapping functions of Miscanthus sinensis MYB transcription factors SCM1 and MYB103 in lignin biosynthesis. Int. J. Mol. Sci., 2021, 22(22), 12395.
[http://dx.doi.org/10.3390/ijms222212395] [PMID: 34830276]
[85]
Takeda, Y.; Tobimatsu, Y.; Karlen, S.D.; Koshiba, T.; Suzuki, S.; Yamamura, M.; Murakami, S.; Mukai, M.; Hattori, T.; Osakabe, K.; Ralph, J.; Sakamoto, M.; Umezawa, T. Downregulation of p-Coumaroyl ester 3-hyfroxylase in rice leads to altered cell wall structures and improves biomass saccharification. Plant J., 2018.
[http://dx.doi.org/10.1111/tpj.13988]
[86]
Martin, A.F.; Tobimatsu, Y.; Kusumi, R.; Matsumoto, N.; Miyamoto, T.; Lam, P.Y.; Yamamura, M.; Koshiba, T.; Sakamoto, M.; Umezawa, T. Altered lignocellulose chemical structure and molecular assembly in Cinnamyl alcohol dehydrogenase-deficient rice. Sci. Rep., 2019, 9(1), 17153.
[http://dx.doi.org/10.1038/s41598-019-53156-8] [PMID: 31748605]
[87]
Miladinovic, D.; Antunes, D.; Yildirim, K.; Bakhsh, A. Cvejić S.; Kondić-Špika, A.; Marjanovic Jeromela, A.; Opsahl-Sorteberg, H.G.; Zambounis, A.; Hilioti, Z. Targeted plant improvement through genome editing: from laboratory to field. Plant Cell Rep., 2021, 40(6), 935-951.
[http://dx.doi.org/10.1007/s00299-020-02655-4] [PMID: 33475781]
[88]
Cai, L.; Zhang, L.; Fu, Q.; Xu, Z.F. Identification and expression analysis of cytokinin metabolic genes IPTs, CYP735A and CKXs in the biofuel plant Jatropha curcas. PeerJ, 2018, 6, e4812.
[http://dx.doi.org/10.7717/peerj.4812] [PMID: 29785355]
[89]
Shi, X.; Gu, Y.; Dai, T.; Wu, Y.; Wu, P.; Xu, Y.; Chen, F. Regulation of trichome development in tobacco by JcZFP8, a C2H2 zinc finger protein gene from Jatropha curcas L. Gene, 2018, 658, 47-53.
[http://dx.doi.org/10.1016/j.gene.2018.02.070] [PMID: 29518550]
[90]
Oz, M.T.; Altpeter, A.; Karan, R.; Merotto, A.; Altpeter, F. CRISPR/Cas9-mediated multi-allelic gene targeting in sugarcane confers herbicide tolerance. Front Genome Ed, 2021, 3, 673566.
[http://dx.doi.org/10.3389/fgeed.2021.673566]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy