Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Brain Concentrations of MDPV and its Metabolites in Male Rats: Relationship to Pharmacodynamic Effects

Author(s): Marta Concheiro*, Steven Towler, Joshua S. Elmore, Michael R. Chojnacki, Teeshavi Acosta, Masaki Suzuki, Kenner C. Rice and Michael H. Baumann*

Volume 28, Issue 32, 2022

Published on: 16 September, 2022

Page: [2653 - 2663] Pages: 11

DOI: 10.2174/1381612828666220907100036

Price: $65

Abstract

Background: MDPV (3,4-methylenedioxypyrovalerone) is a synthetic stimulant that blocks transmitter uptake at transporters for dopamine and norepinephrine. Less is known about MDPV pharmacokinetics, especially with respect to brain concentrations of the drug and its metabolites.

Objectives: The goal of the present study was: 1) to determine brain concentrations of MDPV and its metabolites, 3,4-dihydroxypyrovalerone (3,4-catechol-PV) and 4-hydroxy-3-methoxy-pyrovalerone (4-OH-3-MeOPV), after administration of MDPV, and 2) to relate brain pharmacokinetic measures to pharmacodynamic endpoints in the same subjects.

Methods: Male Sprague-Dawley rats (300-400 g) received s.c. MDPV injection (1, 2, or 4 mg/kg) or its saline vehicle. Groups of rats were decapitated at 40 min and 240 min postinjection. Locomotor behavior was rated before decapitation, and the core temperature was obtained. Plasma and frontal cortex were analyzed to quantitate MDPV and its metabolites. Striatal samples were analyzed to measure dopamine, serotonin (5-HT), and their metabolites.

Results: MDPV displayed brain-to-plasma ratios greater than 1 (range 8.8-12.1), whereas 3,4-catechol-PV and 4-OH-3-MeO-PV showed ratios less than 1 (range 0-0.3). MDPV increased behavioural scores reflective of locomotor stimulation at 40 and 240 min and produced slight hyperthermia at 240 min. MDPV had no effect on striatal dopamine but produced an increase in the metabolite homovanillic acid (HVA). Brain MDPV concentrations were positively correlated with behavioural scores and striatal HVA but not with other endpoints.

Conclusion: The behavioural effects of MDPV are related to brain concentrations of the parent drug and not its metabolites. The modest effects of MDPV on monoamine systems suggest that other non-monoamine mechanisms may contribute to the effects of the drug in vivo.

Keywords: MDPV, plasma, brain, pharmacokinetics, pharmacodynamics, synthetic cathinones.

[1]
Glennon RA, Young R. Neurobiology of 3,4-methylenedioxy-pyrovalerone (MDPV) and α-pyrrolidinovalerophenone (α-PVP). Brain Res Bull 2016; 126(Pt 1): 111-26.
[http://dx.doi.org/10.1016/j.brainresbull.2016.04.011] [PMID: 27142261]
[2]
Baumann MH, Bukhari MO, Lehner KR, et al. Neuropharmacology of 3,4-methylenedioxypyrovalerone (MDPV), its metabolites, and related analogs. Curr Top Behav Neurosci 2016; 32: 93-117.
[http://dx.doi.org/10.1007/7854_2016_53] [PMID: 27830575]
[3]
Spiller HA, Ryan ML, Weston RG, Jansen J. Clinical experience with and analytical confirmation of “bath salts” and “legal highs” (syn-thetic cathinones) in the United States. Clin Toxicol 2011; 49(6): 499-505.
[http://dx.doi.org/10.3109/15563650.2011.590812] [PMID: 21824061]
[4]
Baumann MH. Awash in a sea of ‘bath salts’: Implications for biomedical research and public health. Addiction 2014; 109(10): 1577-9.
[http://dx.doi.org/10.1111/add.12601] [PMID: 24984975]
[5]
Diestelmann M, Zangl A, Herrle I, Koch E, Graw M, Paul LD. MDPV in forensic routine cases: Psychotic and aggressive behavior in relation to plasma concentrations. Forensic Sci Int 2018; 283: 72-84.
[http://dx.doi.org/10.1016/j.forsciint.2017.12.003] [PMID: 29275216]
[6]
La Maida N, Di Trana A, Giorgetti R, Tagliabracci A, Busardò FP, Huestis MA. A review of synthetic cathinone-related fatalities from 2017 to 2020. Ther Drug Monit 2021; 43(1): 52-68.
[http://dx.doi.org/10.1097/FTD.0000000000000808] [PMID: 32881779]
[7]
Drug Enforcement Administration (DEA), Department of Justice. Establishment of drug codes for 26 substances, Final rule. Fed Regist 2013; 78(3): 664-6.
[PMID: 23289157]
[8]
Drug Enforcement Agency (DEA). National drug threat assessment 2019. Available from: https://www.dea.gov/sites/default/files/2020-01/2019-NDTA-final-01-14-2020_Low_Web-DIR-007- 20_2019.pdf
[9]
Oliver CF, Palamar JJ, Salomone A, et al. Synthetic cathinone adulteration of illegal drugs. Psychopharmacology 2019; 236(3): 869-79.
[http://dx.doi.org/10.1007/s00213-018-5066-6] [PMID: 30338489]
[10]
National Forensic Laboratory Information System (NFLIS). NFLIS drug snapshot. 2021 https://www.nflis.deadiversion.usdoj.gov/nflisdata/docs/NFLIS_Snapshot_062021.pdf
[11]
Glatfelter GC, Walther D, Evans-Brown M, Baumann MH. Eutylone and its structural isomers interact with monoamine transporters and induce locomotor stimulation. ACS Chem Neurosci 2021; 12(7): 1170-7.
[http://dx.doi.org/10.1021/acschemneuro.0c00797] [PMID: 33689284]
[12]
Costa JL, Cunha KF, Lanaro R, Cunha RL, Walther D, Baumann MH. Analytical quantification, intoxication case series, and pharmaco-logical mechanism of action for N ‐ethylnorpentylone (N ‐ethylpentylone or ephylone). Drug Test Anal 2019; 11(3): 461-71.
[http://dx.doi.org/10.1002/dta.2502] [PMID: 30207090]
[13]
Eshleman AJ, Wolfrum KM, Hatfield MG, Johnson RA, Murphy KV, Janowsky A. Substituted methcathinones differ in transporter and receptor interactions. Biochem Pharmacol 2013; 85(12): 1803-15.
[http://dx.doi.org/10.1016/j.bcp.2013.04.004] [PMID: 23583454]
[14]
Kolanos R, Solis E Jr, Sakloth F, De Felice LJ, Glennon RA. “Deconstruction” of the abused synthetic cathinone methylenedioxypyro-valerone (MDPV) and an examination of effects at the human dopamine transporter. ACS Chem Neurosci 2013; 4(12): 1524-9.
[http://dx.doi.org/10.1021/cn4001236] [PMID: 24116392]
[15]
Simmler LD, Buser TA, Donzelli M, et al. Pharmacological characterization of designer cathinones in vitro. Br J Pharmacol 2013; 168(2): 458-70.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02145.x] [PMID: 22897747]
[16]
Baumann MH, Partilla JS, Lehner KR, et al. Powerful cocaine-like actions of 3,4-methylenedioxypyrovalerone (MDPV), a principal con-stituent of psychoactive ‘bath salts’ products. Neuropsychopharmacology 2013; 38(4): 552-62.
[http://dx.doi.org/10.1038/npp.2012.204] [PMID: 23072836]
[17]
Fantegrossi WE, Gannon BM, Zimmerman SM, Rice KC. In vivo effects of abused ‘bath salt’ constituent 3,4-methylenedioxy-pyrovalerone (MDPV) in mice: Drug discrimination, thermoregulation, and locomotor activity. Neuropsychopharmacology 2013; 38(4): 563-73.
[http://dx.doi.org/10.1038/npp.2012.233] [PMID: 23212455]
[18]
Gatch MB, Taylor CM, Forster MJ. Locomotor stimulant and discriminative stimulus effects of ‘bath salt’ cathinones. Behav Pharmacol 2013; 24(5 and 6): 437-47
[http://dx.doi.org/10.1097/FBP.0b013e328364166d] [PMID: 23839026]
[19]
Marusich JA, Antonazzo KR, Wiley JL, Blough BE, Partilla JS, Baumann MH. Pharmacology of novel synthetic stimulants structurally related to the “bath salts” constituent 3,4-methylenedioxy-pyrovalerone (MDPV). Neuropharmacology 2014; 87: 206-13.
[http://dx.doi.org/10.1016/j.neuropharm.2014.02.016] [PMID: 24594476]
[20]
Aarde SM, Huang PK, Creehan KM, Dickerson TJ, Taffe MA. The novel recreational drug 3,4-methylenedioxypyrovalerone (MDPV) is a potent psychomotor stimulant: Self-administration and locomotor activity in rats. Neuropharmacology 2013; 71: 130-40.
[http://dx.doi.org/10.1016/j.neuropharm.2013.04.003] [PMID: 23597511]
[21]
Watterson LR, Kufahl PR, Nemirovsky NE, et al. Potent rewarding and reinforcing effects of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV). Addict Biol 2014; 19(2): 165-74.
[http://dx.doi.org/10.1111/j.1369-1600.2012.00474.x] [PMID: 22784198]
[22]
Schindler CW, Thorndike EB, Goldberg SR, et al. Reinforcing and neurochemical effects of the “bath salts” constituents 3,4-methylenedioxypyrovalerone (MDPV) and 3,4-methylenedioxy-N-methylcathinone (methylone) in male rats. Psychopharmacology 2016; 233(10): 1981-90.
[http://dx.doi.org/10.1007/s00213-015-4057-0] [PMID: 26319160]
[23]
Gannon BM, Baumann MH, Walther D, et al. The abuse-related effects of pyrrolidine-containing cathinones are related to their potency and selectivity to inhibit the dopamine transporter. Neuropsychopharmacology 2018; 43(12): 2399-407.
[http://dx.doi.org/10.1038/s41386-018-0209-3] [PMID: 30305739]
[24]
Schindler CW, Thorndike EB, Suzuki M, Rice KC, Baumann MH. Pharmacological mechanisms underlying the cardiovascular effects of the “bath salt” constituent 3,4-methylenedioxypyrovalerone (MDPV). Br J Pharmacol 2016; 173(24): 3492-501.
[http://dx.doi.org/10.1111/bph.13640] [PMID: 27714779]
[25]
Meyer MR, Du P, Schuster F, Maurer HH. Studies on the metabolism of the α-pyrrolidinophenone designer drug methylenedioxy-pyrovalerone (MDPV) in rat and human urine and human liver microsomes using GC-MS and LC-high-resolution MS and its detectabil-ity in urine by GC-MS. J Mass Spectrom 2010; 45(12): 1426-42.
[http://dx.doi.org/10.1002/jms.1859] [PMID: 21053377]
[26]
Strano-Rossi S, Cadwallader AB, de la Torre X, Botrè F. Toxicological determination and in vitro metabolism of the designer drug meth-ylenedioxypyrovalerone (MPDV) by gas chromatography/] mass spectrometry and liquid chromatography/quadrupole time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2010; 24(18): 2706-14.
[http://dx.doi.org/10.1002/rcm.4692] [PMID: 20814976]
[27]
Negreira N, Erratico C, Kosjek T, et al. In vitro phase I and phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedi-oxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol. Anal Bioanal Chem 2015; 407(19): 5803-16.
[http://dx.doi.org/10.1007/s00216-015-8763-6] [PMID: 26014283]
[28]
Luethi D, Kolaczynska KE, Walter M, et al. Metabolites of the ring-substituted stimulants MDMA, methylone and MDPV differentially affect human monoaminergic systems. J Psychopharmacol 2019; 33(7): 831-41.
[http://dx.doi.org/10.1177/0269881119844185] [PMID: 31038382]
[29]
Anizan S, Concheiro M, Lehner KR, et al. Linear pharmacokinetics of 3,4-methylenedioxypyrovalerone (MDPV) and its metabolites in the rat: Relationship to pharmacodynamic effects. Addict Biol 2016; 21(2): 339-47.
[http://dx.doi.org/10.1111/adb.12201] [PMID: 25475011]
[30]
Hambuchen MD, Hendrickson HP, Gunnell MG, et al. The pharmacokinetics of racemic MDPV and its (R) and (S) enantiomers in fe-male and male rats. Drug Alcohol Depend 2017; 179: 347-54.
[http://dx.doi.org/10.1016/j.drugalcdep.2017.07.011] [PMID: 28844011]
[31]
Horsley RR, Lhotkova E, Hajkova K, et al. Behavioural, pharmacokinetic, metabolic, and hyperthermic profile of 3,4-methylenedioxypyrovalerone (MDPV) in the wistar rat. Front Psychiatry 2018; 9: 144.
[http://dx.doi.org/10.3389/fpsyt.2018.00144] [PMID: 29740356]
[32]
Novellas J, López-Arnau R, Carbó M, Pubill D, Camarasa J, Escubedo E. Concentrations of MDPV in rat striatum correlate with the psy-chostimulant effect. J Psychopharmacol 2015; 29(11): 1209-18.
[http://dx.doi.org/10.1177/0269881115598415] [PMID: 26253621]
[33]
Anizan S, Ellefsen K, Concheiro M, et al. 3,4-methylenedioxy-pyrovalerone (MDPV) and metabolites quantification in human and rat plasma by liquid chromatography-high resolution mass spectrometry. Anal Chim Acta 2014; 827: 54-63.
[http://dx.doi.org/10.1016/j.aca.2014.04.015] [PMID: 24832995]
[34]
Kalivas PW, Duffy P, DuMars LA, Skinner C. Behavioral and neurochemical effects of acute and daily cocaine administration in rats. J Pharmacol Exp Ther 1988; 245(2): 485-92.
[PMID: 3130474]
[35]
Baumann MH, Raley TJ, Partilla JS, Rothman RB. Biosynthesis of dopamine and serotonin in the rat brain after repeated cocaine injec-tions: A microdissection mapping study. Synapse 1993; 14(1): 40-50.
[http://dx.doi.org/10.1002/syn.890140107] [PMID: 8511717]
[36]
Elmore JS, Dillon-Carter O, Partilla JS, et al. Pharmacokinetic profiles and pharmacodynamic effects for methylone and its metabolites in rats. Neuropsychopharmacology 2017; 42(3): 649-60.
[http://dx.doi.org/10.1038/npp.2016.213] [PMID: 27658484]
[37]
Centazzo N, Chojnacki MR, Elmore JS, et al. Brain concentrations of methylone and its metabolites after systemic methylone administra-tion: Relationship to pharmacodynamic effects. J Pharmacol Exp Ther 2021; 377(3): 398-406.
[http://dx.doi.org/10.1124/jpet.121.000531] [PMID: 33785525]
[38]
de la Torre R, Farré M, Roset PN, et al. Human pharmacology of MDMA. Ther Drug Monit 2004; 26(2): 137-44.
[http://dx.doi.org/10.1097/00007691-200404000-00009] [PMID: 15228154]
[39]
Concheiro M, Baumann MH, Scheidweiler KB, Rothman RB, Marrone GF, Huestis MA. Nonlinear pharmacokinetics of (+/-)] 3,4-methylenedioxymethamphetamine (MDMA) and its pharmacodynamic consequences in the rat. Drug Metab Dispos 2014; 42(1): 119-25.
[http://dx.doi.org/10.1124/dmd.113.053678] [PMID: 24141857]
[40]
Dinger J, Meyer MR, Maurer HH. In vitro cytochrome P450 inhibition potential of methylenedioxy-derived designer drugs studied with a two-cocktail approach. Arch Toxicol 2016; 90(2): 305-18.
[http://dx.doi.org/10.1007/s00204-014-1412-6] [PMID: 25417051]
[41]
Fabregat-Safont D, Barneo-Muñoz M, Carbón X, et al. Understanding the pharmacokinetics of synthetic cathinones: Evaluation of the blood-brain barrier permeability of 13 related compounds in rats. Addict Biol 2021; 26(3)e12979
[http://dx.doi.org/10.1111/adb.12979] [PMID: 33289258]
[42]
Baumann MH, Clark RD, Franken FH, Rutter JJ, Rothman RB. Tolerance to 3,4-methylenedioxymethamphetamine in rats exposed to single high-dose binges. Neuroscience 2008; 152(3): 773-84.
[http://dx.doi.org/10.1016/j.neuroscience.2008.01.007] [PMID: 18313226]
[43]
Kohler RJ, Perrine SA, Baker LE. Repeated exposure to 3,4- methylenedioxypyrovalerone and cocaine produces locomotor sensitization with minimal effects on brain monoamines. Neuropharmacology 2018; 134(Pt A): 22-7
[http://dx.doi.org/10.1016/j.neuropharm.2017.10.019] [PMID: 29042316]
[44]
Marusich JA, Gay EA, Blough BE. Analysis of neurotransmitter levels in addiction-related brain regions during synthetic cathinone self-administration in male Sprague-Dawley rats. Psychopharmacology 2019; 236(3): 903-14.
[http://dx.doi.org/10.1007/s00213-018-5011-8] [PMID: 30191259]
[45]
Di Giulio AM, Groppetti A, Cattabeni F, et al. Significance of dopamine metabolites in the evaluation of drugs acting on dopaminergic neurones. Eur J Pharmacol 1978; 52(2): 201-7.
[http://dx.doi.org/10.1016/0014-2999(78)90207-8] [PMID: 729633]
[46]
Ponzio F, Achilli G, Perego C, Algeri S. Differential effects of certain dopaminergic drugs on the striatal concentration of dopamine me-tabolites, with special reference to 3-methoxytyramine. Neurosci Lett 1981; 27(1): 61-7.
[http://dx.doi.org/10.1016/0304-3940(81)90206-8] [PMID: 7329624]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy