Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Effective Cancer Management: Inimitable Role of Phytochemical Based Nano- Formulations

Author(s): Aman Upaganlawar*, Satish Polshettiwar, Sushil Raut, Amol Tagalpallewar and Vishal Pande

Volume 23, Issue 11, 2022

Published on: 31 October, 2022

Page: [869 - 881] Pages: 13

DOI: 10.2174/1389200223666220905162245

Price: $65

Abstract

Background: Global cancer statistics defines the severity of disease even after significant research worldwide.

Problem: Failure of the currently available treatment approaches, including surgery, radiation therapy and traditional chemotherapy.

Aim: The aim of this review is to discuss the role of phytochemical based nano-formulations for treatment of cancer.

Discussion: In the past few decades, phytochemicals have gained popularity for acting as a potential anticancer treatment with low systemic toxicity, especially in terms of cell cycle control and cancer cell killing. Natural resources, with their immense structural variety, serve as a vital source of fresh, therapeutically useful new chemical entities for the treatment of cancer. Vinca alkaloids (VCR), vinblastine, vindesine, vinorelbine, taxanes (PTX), podophyllotoxin and its derivatives (etoposide (ETP), teniposide, camptothecin (CPT) and its derivatives (topotecan, irinotecan), anthracyclines (doxorubicin, daunorubicin, epirubicin, idarubicin, as natural products or their derivatives account for half of all anticancer drugs approved worldwide, and they have been developed utilising the knowledge learned from the natural small molecules or macromolecules. Trabectedin, an epothilone derivative, ixabepilone, and temsirolimus, three new anticancer medications launched in 2007, were derived from microbial origins. Current therapy regimens require selective drug targeting to enhance efficacy against cancer cells while normal cells remain unharmed. Modified medications and systems for drug delivery based on nanotechnology are in the process of being explored and launched in the industry for enhanced therapy and management of cancer, along with promising outcomes. Many obstacles related to cancer cell drug delivery can be overcome by using nano-particulate drug carriers, including enhancing the stability and solubility of the drug, prolonging half-lives of the drug in the blood, decreasing side effects to undesired organs, and increasing medication concentration at the desired site. The scientific initiatives and studies concerning the use of nanotechnology for some selective compounds derived from plants are discussed in this review article.

Conclusion: The present review highlights the phytochemical-based nanoformulations and their strategies in the development of novel systems of drug delivery such as nano-liposomes, functionalized nanoparticles (NPs), and polymer nano-conjugates, SNEDDS (Self nano emulsifying drug delivery system) as this review paper depicts, as well as their rewards over conventional systems of drug delivery, as evidenced by improved biological activity depicted in their in vitro and in vivo anticancer assays.

Keywords: Cancer, Phytochemical, NPs, Polymer nanoconjugates, SNEDDS, drug carriers

Graphical Abstract

[1]
Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer, 2021, 127(16), 3029-3030.
[http://dx.doi.org/10.1002/cncr.33587] [PMID: 34086348]
[2]
Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Can-cer Today; International Agency for Research on Cancer: Lyon, 2018.
[3]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer inci-dence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[4]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[5]
de Martel, C.; Georges, D.; Bray, F.; Ferlay, J.; Clifford, G.M. Global burden of cancer attributable to infections in 2018: A worldwide inci-dence analysis. Lancet Glob. Health, 2020, 8(2), e180-e190.
[http://dx.doi.org/10.1016/S2214-109X(19)30488-7] [PMID: 31862245]
[6]
Vogelstein, B.; Papadopoulos, N.; Velculescu, V.E.; Zhou, S.; Diaz, L.A., Jr; Kinzler, K.W. Cancer genome landscapes. Science, 2013, 339(6127), 1546-1558.
[http://dx.doi.org/10.1126/science.1235122] [PMID: 23539594]
[7]
Chabner, B.A.; Roberts, T.G., Jr Timeline: Chemotherapy and the war on cancer. Nat. Rev. Cancer, 2005, 5(1), 65-72.
[http://dx.doi.org/10.1038/nrc1529] [PMID: 15630416]
[8]
Danhier, F.; Feron, O.; Préat, V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release, 2010, 148(2), 135-146.
[http://dx.doi.org/10.1016/j.jconrel.2010.08.027] [PMID: 20797419]
[9]
Nussbaumer, S.; Bonnabry, P.; Veuthey, J.L.; Fleury-Souverain, S. Analysis of anticancer drugs: A review. Talanta, 2011, 85(5), 2265-2289.
[http://dx.doi.org/10.1016/j.talanta.2011.08.034] [PMID: 21962644]
[10]
Yin, S.Y.; Yang, N.S.; Lin, T.J. Phytochemicals approach for developing cancer immunotherapeutics. Front. Pharmacol., 2017, 8, 386.
[http://dx.doi.org/10.3389/fphar.2017.00386] [PMID: 28674499]
[11]
Israel, B.B.; Tilghman, S.L.; Parker-Lemieux, K.; Payton-Stewart, F. Phytochemicals: Current strategies for treating breast cancer. Oncol. Lett., 2018, 15(5), 7471-7478.
[http://dx.doi.org/10.3892/ol.2018.8304] [PMID: 29755596]
[12]
Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M.C.; Rahu, N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid. Med. Cell. Longev., 2016, 2016, 7432797.
[http://dx.doi.org/10.1155/2016/7432797] [PMID: 27738491]
[13]
Turrini, E.; Ferruzzi, L.; Fimognari, C. Natural compounds to overcome cancer chemoresistance: Toxicological and clinical issues. Expert Opin. Drug Metab. Toxicol., 2014, 10(12), 1677-1690.
[http://dx.doi.org/10.1517/17425255.2014.972933] [PMID: 25339439]
[14]
Medina, O.P.; Zhu, Y.; Kairemo, K. Targeted liposomal drug delivery in cancer. Curr. Pharm. Des., 2004, 10(24), 2981-2989.
[http://dx.doi.org/10.2174/1381612043383467] [PMID: 15379663]
[15]
Angare, D.; Giri, T.; Tripathi, D.K.; Ajazuddin, A. Unexplored areas and new findings in lipid emulsion serving as a potential drug carrier for lipophilic drugs: A review. Trends Med. Res., 2012, 7(1), 1-24.
[http://dx.doi.org/10.3923/tmr.2012.1.24]
[16]
Agrawal, S.; Giri, T.K.; Tripathi, D.K.; Alexander, A. A review on novel therapeutic strategies for the enhancement of solubility for hydro-phobic drugs through lipid and surfactant based self-micro emulsifying drug delivery system: A novel approach. Am. J. Drug Discov. Dev., 2012, 2(4), 143-183.
[http://dx.doi.org/10.3923/ajdd.2012.143.183]
[17]
Torchilin, V.P.; Lukyanov, A.N.; Gao, Z.; Papahadjopoulos-Sternberg, B. Immunomicelles: Targeted pharmaceutical carriers for poorly solu-ble drugs. Proc. Natl. Acad. Sci. USA, 2003, 100(10), 6039-6044.
[http://dx.doi.org/10.1073/pnas.0931428100] [PMID: 12716967]
[18]
Liu, Y.; Yin, J.J.; Nie, Z. Harnessing the collective properties of nanoparticle ensembles for cancer theranostics. Nano Res., 2014, 7(12), 1719-1730.
[http://dx.doi.org/10.1007/s12274-014-0541-9]
[19]
Zhang, J.; Du, J.; Yan, M.; Dhaliwal, A.; Wen, J.; Liu, F.; Segura, T.; Lu, Y. Synthesis of protein nano-conjugates for cancer therapy. Nano Res., 2011, 4(5), 425-433.
[http://dx.doi.org/10.1007/s12274-011-0098-9]
[20]
Khare, S.; Alexander, A.; Amit, N. Biomedical applications of nanobiotechnology for drug design, delivery and diagnostics. Res. J. Pharm. Tech., 2014, 7(8), 915-925.
[21]
Solanki, R.; Patel, K.; Patel, S. Bovine serum albumin nanoparticles for the efficient delivery of berberine: Preparation, characterization and in vitro biological studies colloid and surfaces A. Colloids Surf. A Physicochem. Eng. Asp., 2021, 608(5), 125501.
[http://dx.doi.org/10.1016/j.colsurfa.2020.125501]
[22]
Wang, W.; Chen, T.; Xu, H.; Ren, B.; Cheng, X.; Qi, R.; Liu, H.; Wang, Y.; Yan, L.; Chen, S.; Yang, Q.; Chen, C. Curcumin-loaded solid lipid nanoparticles enhanced anticancer efficiency in breast cancer. Molecules, 2018, 23(7), 1578.
[http://dx.doi.org/10.3390/molecules23071578] [PMID: 29966245]
[23]
Safwat, M.A.; Kandil, B.A.; Elblbesy, M.A.; Soliman, G.M.; Eleraky, N.E. Epigallocatechin-3-gallate-loaded gold nanoparticles: Preparation and evaluation of anticancer efficacy in Ehrlich tumor-bearing mice. Pharmaceuticals (Basel), 2020, 13(9), 254.
[http://dx.doi.org/10.3390/ph13090254] [PMID: 32961982]
[24]
Nazemiyeh, E.; Eskandani, M.; Sheikhloie, H.; Nazemiyeh, H. Formulation and physicochemical characterization of lycopene-loaded solid lipid nanoparticles. Adv. Pharm. Bull., 2016, 6(2), 235-241.
[http://dx.doi.org/10.15171/apb.2016.032]
[25]
Wang, Y.; Ma, J.; Qiu, T.; Tang, M.; Zhang, X.; Dong, W. In vitro and in vivo combinatorial anticancer effects of oxaliplatin- and resveratrol-loaded N,O-carboxymethyl chitosan nanoparticles against colorectal cancer. Eur. J. Pharm. Sci., 2021, 163, 105864.
[http://dx.doi.org/10.1016/j.ejps.2021.105864] [PMID: 33965502]
[26]
Enriquez, G.G.; Rizvi, S.A.; D’Souza, M.J.; Do, D.P. Formulation and evaluation of drug-loaded targeted magnetic microspheres for cancer therapy. Int. J. Nanomedicine, 2013, 8, 1393-1402.
[http://dx.doi.org/10.2147/IJN.S43479] [PMID: 23630421]
[27]
Yang, C.; Zhang, M.; Lama, S.; Wang, L.; Merlin, D. Natural-lipid nanoparticle-based therapeutic approach to deliver 6-shogaol and its me-tabolites M2 and M13 to the colon to treat ulcerative colitis. J. Control. Release, 2020, 323(323), 293-310.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.032] [PMID: 32335157]
[28]
Soumya, R.S.; Sherin, S.; Raghu, K.G.; Abraham, A. Allicin functionalized locust bean gum nanoparticles for improved therapeutic efficacy: An in silico, in vitro and in vivo approach. Int. J. Biol. Macromol., 2018, 109, 740-747.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.11.065] [PMID: 29155156]
[29]
Mehanna, M.M.; Sarieddine, R.; Alwattar, J.K.; Chouaib, R.; Gali-Muhtasib, H. Anticancer activity of thymoquinone cubic phase nanoparti-cles against human breast cancer: Formulation, cytotoxicity and subcellular localization. Int. J. Nanomedicine, 2020, 15, 9557-9570.
[http://dx.doi.org/10.2147/IJN.S263797] [PMID: 33293807]
[30]
Li, T.; Chen, X.; Liu, Y.; Fan, L.; Lin, L.; Xu, Y.; Chen, S.; Shao, J. pH-Sensitive mesoporous silica nanoparticles anticancer prodrugs for sustained release of ursolic acid and the enhanced anti-cancer efficacy for hepatocellular carcinoma cancer. Eur. J. Pharm. Sci., 2017, 96, 456-463.
[http://dx.doi.org/10.1016/j.ejps.2016.10.019] [PMID: 27771513]
[31]
Shah, H.S.; Usman, F.; Ashfaq-Khan, M.; Khalil, R.; Ul-Haq, Z.; Mushtaq, A.; Qaiser, R.; Iqbal, J. Preparation and characterization of anti-cancer niosomal withaferin-A formulation for improved delivery to cancer cells: In vitro, in vivo, and in silico evaluation. J. Drug Deliv. Sci. Technol., 2020, 59, 101863.
[http://dx.doi.org/10.1016/j.jddst.2020.101863]
[32]
Li, R.; Zhang, J.; Chen, J.; Teng, W.; Wang, J.; Li, C. Preparation and characterization of biological non-toxic hybrid nanoparticles based on lactide and poly (ethylene glycol) loading docetaxel for anticancer drug delivery. Chin. J. Chem. Eng., 2014, 22(11-12), 1357-1362.
[http://dx.doi.org/10.1016/j.cjche.2014.09.012]
[33]
Chu, B.; Shi, S.; Li, X.; Hu, L.; Shi, L.; Zhang, H.; Xu, Q.; Ye, L.; Lin, G.; Zhang, N.; Zhang, X. Preparation and evaluation of teniposide-loaded polymeric micelles for breast cancer therapy. Int. J. Pharm., 2016, 513(1-2), 118-129.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.005] [PMID: 27596115]
[34]
Ganguly, S.; Dewanjee, S.; Sen, R.; Chattopadhyay, D.; Ganguly, S.; Gaonkar, R.; Debnath, M.C. Apigenin-loaded galactose tailored PLGA nanoparticles: A possible strategy for liver targeting to treat hepatocellular carcinoma. Colloids Surf. B Biointerfaces, 2021, 204, 111778.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111778] [PMID: 33915380]
[35]
Jangid, A.K.; Agraval, H.; Rai, D.B.; Jain, P.; Yadav, U.C.; Pooja, D.; Kulhari, H. Baicalin encapsulating lipid-surfactant conjugate based na-nomicelles: Preparation, characterization and anticancer activity. Chem. Phys. Lipids, 2020, 233, 104978.
[http://dx.doi.org/10.1016/j.chemphyslip.2020.104978] [PMID: 32991905]
[36]
Jänicke, P.; Lennicke, C.; Meister, A.; Seliger, B.; Wessjohann, L.A.; Kaluđerović, G.N. Fluorescent spherical mesoporous silica nanoparti-cles loaded with emodin: Synthesis, cellular uptake and anticancer activity. Mater. Sci. Eng. C, 2021, 119, 111619.
[http://dx.doi.org/10.1016/j.msec.2020.111619] [PMID: 33321661]
[37]
Bindhya, K.P.; Maheswari, P.U.; Begum, K.M. Milk protein inspired multifunctional magnetic carrier targeting progesterone receptors: Im-proved anticancer potential of soybean-derived genistein against breast and ovarian cancers. Mater. Chem. Phys., 2021, 272, 125055.
[http://dx.doi.org/10.1016/j.matchemphys.2021.125055]
[38]
Wang, Q.; Wei, Q.; Yang, Q.; Cao, X.; Li, Q.; Shi, F.; Tong, S.S.; Feng, C.; Yu, Q.; Yu, J.; Xu, X. A novel formulation of [6]-gingerol: Prolipo-somes with enhanced oral bioavailability and antitumor effect. Int. J. Pharm., 2018, 535(1-2), 308-315.
[http://dx.doi.org/10.1016/j.ijpharm.2017.11.006] [PMID: 29126908]
[39]
Kumar, N.; Salar, R.K.; Prasad, M.; Ranjan, K. Synthesis, characterization and anticancer activity of vincristine loaded folic acid-chitosan conjugated nanoparticles on NCI-H460 non-small cell lung cancer cell line. Egypt. J. Basic Appl. Sci., 2018, 5(1), 87-99.
[http://dx.doi.org/10.1016/j.ejbas.2017.11.002]
[40]
Choi, J.S.; Park, J.S. Design and evaluation of the anticancer activity of paclitaxel-loaded anisotropic-poly(lactic-co-glycolic acid) nanoparti-cles with PEGylated chitosan surface modifications. Int. J. Biol. Macromol., 2020, 162, 1064-1075.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.06.237] [PMID: 32599249]
[41]
Hong, J.; Feng, Z. Synergic fabrication of combination therapy of Irinotecan and 5-Fluorouracil encapsulated polymeric nanoparticles for the treatment of gastric cancer therapy. Process Biochem., 2021, 106, 191-198.
[http://dx.doi.org/10.1016/j.procbio.2021.04.008]
[42]
El-Marakby, E.M.; Hathout, R.M.; Taha, I.; Mansour, S.; Mortada, N.D. A novel serum-stable liver targeted cytotoxic system using valerate-conjugated chitosan nanoparticles surface decorated with glycyrrhizin. Int. J. Pharm., 2017, 525(1), 123-138.
[http://dx.doi.org/10.1016/j.ijpharm.2017.03.081] [PMID: 28392279]
[43]
Kheiri Manjili, H.; Ma’mani, L.; Tavaddod, S.; Mashhadikhan, M.; Shafiee, A.; Naderi-Manesh, H.; Manjili, K.D. L-sulforaphane loaded Fe3O4@ gold core shell nanoparticles: A potential sulforaphane delivery system. PLoS One, 2016, 11(3), e0151344.
[http://dx.doi.org/10.1371/journal.pone.0151344] [PMID: 26982588]
[44]
Dhandapani, S.; Xu, X.; Wang, R.; Puja, A.M.; Kim, H.; Perumalsamy, H.; Balusamy, S.R.; Kim, Y.J. Biosynthesis of gold nanoparticles using Nigella sativa and Curtobacterium proimmune K3 and evaluation of their anticancer activity. Mater. Sci. Eng. C, 2021, 127, 112214.
[http://dx.doi.org/10.1016/j.msec.2021.112214] [PMID: 34225866]
[45]
Karpuz, M.; Silindir-Gunay, M.; Ozer, A.Y.; Ozturk, S.C.; Yanik, H.; Tuncel, M.; Aydin, C.; Esendagli, G. Diagnostic and therapeutic evalua-tion of folate-targeted paclitaxel and vinorelbine encapsulating theranostic liposomes for non-small cell lung cancer. Eur. J. Pharm. Sci., 2021, 156, 105576.
[http://dx.doi.org/10.1016/j.ejps.2020.105576] [PMID: 32987115]
[46]
Chen, Y.; Lu, Y.; Hu, D.; Peng, J.; Xiao, Y.; Hao, Y.; Pan, M.; Yuan, L.; Qian, Z. Cabazitaxel-loaded MPEG-PCL copolymeric nanoparticles for enhanced colorectal cancer therapy. Appl. Mater. Today, 2021, 25, 101210.
[http://dx.doi.org/10.1016/j.apmt.2021.101210]
[47]
Skalickova, S.; Nejdl, L.; Kudr, J.; Ruttkay-Nedecky, B.; Jimenez, A.M.; Kopel, P.; Kremplova, M.; Masarik, M.; Stiborova, M.; Eckschlager, T.; Adam, V.; Kizek, R. Fluorescence characterization of gold modified liposomes with antisense N-myc DNA bound to the magnetisable par-ticles with encapsulated anticancer drugs (doxorubicin, ellipticine and etoposide). Sensors (Basel), 2016, 16(3), 290.
[http://dx.doi.org/10.3390/s16030290] [PMID: 26927112]
[48]
Moramkar, N.; Bhatt, P. Insight into chitosan derived nanotherapeutics for anticancer drug delivery and imaging. Eur. Polym. J., 2021, 154, 110540.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110540]
[49]
Patra, A.; Satpathy, S.; Shenoy, A.K.; Bush, J.A.; Kazi, M.; Hussain, M.D. Formulation and evaluation of mixed polymeric micelles of quer-cetin for treatment of breast, ovarian, and multidrug resistant cancers. Int. J. Nanomedicine, 2018, 13, 2869-2881.
[http://dx.doi.org/10.2147/IJN.S153094] [PMID: 29844670]
[50]
Parveen, R.; Ahmad, F.J.; Iqbal, Z.; Samim, M.; Ahmad, S. Solid lipid nanoparticles of anticancer drug andrographolide: Formulation, in vitro and in vivo studies. Drug Dev. Ind. Pharm., 2014, 40(9), 1206-1212.
[http://dx.doi.org/10.3109/03639045.2013.810636] [PMID: 23826860]
[51]
Kim, H.J.; Lee, G.J.; Choi, A.J.; Kim, T.H.; Kim, T.I.; Oh, J.M. Layered double hydroxide nanomaterials encapsulating Angelica gigas Nakai extract for potential anticancer nanomedicine. Front. Pharmacol., 2018, 9, 723.
[http://dx.doi.org/10.3389/fphar.2018.00723] [PMID: 30038570]
[52]
Mohammed, S.; Albermani, K.; Zainab, A.; Tameemi, A.; Al-Mukhtar, A. Vinblastine based iron oxide nano drug delivery system. J. Glob. Pharma Technol., 2017, 9(8), 90-96.
[53]
Sun, Y.W.; Wang, L.H.; Meng, D.L.; Che, X. A green and facile preparation approach, licochalcone A capped on hollow gold nanoparticles, for improving the solubility and dissolution of anticancer natural product. Oncotarget, 2017, 8(62), 105673-105681.
[http://dx.doi.org/10.18632/oncotarget.22387] [PMID: 29285282]
[54]
Patra, A.; Satpathy, S.; Hussain, M.D. Nanodelivery and anticancer effect of a limonoid, nimbolide, in breast and pancreatic cancer cells. Int. J. Nanomedicine, 2019, 14, 8095-8104.
[http://dx.doi.org/10.2147/IJN.S208540] [PMID: 31632020]
[55]
Romio, M.; Morgese, G.; Trachsel, L.; Babity, S.; Paradisi, C.; Brambilla, D.; Benetti, E.M. Poly (2-oxazoline)-Pterostilbene block copolymer nanoparticles for dual-anticancer drug delivery. Biomacromolecules, 2018, 19(1), 103-111.
[http://dx.doi.org/10.1021/acs.biomac.7b01279] [PMID: 29216713]
[56]
Kundu, M.; Majumder, R.; Das, C.K.; Mandal, M. Natural products based nanoformulations for cancer treatment: Current evolution in Indian research. Biomed. Mater., 2021, 16(4), 044101.
[http://dx.doi.org/10.1088/1748-605X/abe8f2] [PMID: 33621207]
[57]
Mouhid, L.; Corzo-Martínez, M.; Torres, C.; Vázquez, L.; Reglero, G.; Fornari, T.; Ramírez de Molina, A. Improving in vivo efficacy of bio-active molecules: An overview of potentially antitumor phytochemicals and currently available lipid-based delivery systems. J. Oncol., 2017, 2017, 7351976.
[http://dx.doi.org/10.1155/2017/7351976] [PMID: 28555156]
[58]
Rizwanullah, M.; Amin, S.; Mir, S.R.; Fakhri, K.U.; Rizvi, M.M.A. Phytochemical based nanomedicines against cancer: Current status and future prospects. J. Drug Target., 2018, 26(9), 731-752.
[http://dx.doi.org/10.1080/1061186X.2017.1408115] [PMID: 29157022]
[59]
Choudhari, A.S.; Mandave, P.C.; Deshpande, M.; Ranjekar, P.; Prakash, O. Phytochemicals in cancer treatment: From preclinical studies to clinical practice. Front. Pharmacol., 2020, 10, 1614.
[http://dx.doi.org/10.3389/fphar.2019.01614] [PMID: 32116665]
[60]
Atrafi, F.; Dumez, H.; Mathijssen, R.H.J. Menke van der Houven van Oordt, C.W.; Rijcken, C.J.F.; Hanssen, R.; Eskens, F.A.L.M.; Schöff-ski, P. A phase I dose-escalation and pharmacokinetic study of a micellar nanoparticle with entrapped docetaxel (CPC634) in patients with advanced solid tumours. J. Control. Release, 2020, 325, 191-197.
[http://dx.doi.org/10.1016/j.jconrel.2020.06.020] [PMID: 32590047]
[61]
Li, X.; Nan, K.; Li, L.; Zhang, Z.; Chen, H. In vivo evaluation of curcumin nanoformulation loaded methoxy poly(ethylene glycol)-graft-chitosan composite film for wound healing application. Carbohydr. Polym., 2012, 88(11), 84-90.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.068]
[62]
Wang-Gillam, A.; Hubner, R.A.; Siveke, J.T.; Von Hoff, D.D.; Belanger, B.; de Jong, F.A.; Mirakhur, B.; Chen, L.T. NAPOLI-1 phase 3 study of liposomal irinotecan in metastatic pancreatic cancer: Final overall survival analysis and characteristics of long-term survivors. Eur. J. Cancer, 2019, 108, 78-87.
[http://dx.doi.org/10.1016/j.ejca.2018.12.007] [PMID: 30654298]
[63]
Fujiwara, Y.; Mukai, H.; Saeki, T.; Ro, J.; Lin, Y.C.; Nagai, S.E.; Lee, K.S.; Watanabe, J.; Ohtani, S.; Kim, S.B.; Kuroi, K.; Tsugawa, K.; To-kuda, Y.; Iwata, H.; Park, Y.H.; Yang, Y.; Nambu, Y. A multi-national, randomised, open-label, parallel, phase III non-inferiority study com-paring NK105 and paclitaxel in metastatic or recurrent breast cancer patients. Br. J. Cancer, 2019, 120(5), 475-480.
[http://dx.doi.org/10.1038/s41416-019-0391-z] [PMID: 30745582]
[64]
Lee, S.W.; Kim, Y.M.; Cho, C.H.; Kim, Y.T.; Kim, S.M.; Hur, S.Y.; Kim, J.H.; Kim, B.G.; Kim, S.C.; Ryu, H.S.; Kang, S.B. An open-label, randomized, parallel, phase II trial to evaluate the efficacy and safety of a cremophor-free polymeric micelle formulation of paclitaxel as first-line treatment for ovarian cancer: A Korean Gynecologic Oncology Group study (KGOG-3021). Cancer Res. Treat., 2018, 50(1), 195.
[http://dx.doi.org/10.4143/crt.2016.376]
[65]
Douer, D. Efficacy and safety of vincristine sulfate liposome injection in the treatment of adult acute lymphocytic leukemia. Oncologist, 2016, 21(7), 840-847.
[http://dx.doi.org/10.1634/theoncologist.2015-0391] [PMID: 27328933]
[66]
Yang, S.H.; Lin, C.C.; Lin, Z.Z.; Tseng, Y.L.; Hong, R.L. A phase I and pharmacokinetic study of liposomal vinorelbine in patients with ad-vanced solid tumor. Invest. New Drugs, 2012, 30(1), 282-289.
[http://dx.doi.org/10.1007/s10637-010-9522-3] [PMID: 20809205]
[67]
Maniam, G.; Mai, C.W.; Zulkefeli, M.; Dufès, C.; Tan, D.M.; Fu, J.Y. Challenges and opportunities of nanotechnology as delivery platform for tocotrienols in cancer therapy. Front. Pharmacol., 2018, 9, 1358.
[http://dx.doi.org/10.3389/fphar.2018.01358] [PMID: 30534071]
[68]
Dhupal, M.; Chowdhury, D. Phytochemical-based nanomedicine for advanced cancer theranostics: Perspectives on clinical trials to clinical use. Int. J. Nanomedicine, 2020, 15, 9125-9157.
[http://dx.doi.org/10.2147/IJN.S259628] [PMID: 33244231]
[69]
Einbond, L.S.; Mighty, J.; Redenti, S.; Wu, H.A. Actein induces calcium release in human breast cancer cells. Fitoterapia, 2013, 91, 28-38.
[http://dx.doi.org/10.1016/j.fitote.2013.07.025] [PMID: 23939423]
[70]
Yang, H.G.; Kim, H.J.; Kim, H.S.; Park, S.N. Ethosome formulation for enhanced transdermal delivery of Artemisia princeps Pampanini ex-tracts. Appl. Chem. Eng., 2013, 24(2), 190-195.
[71]
Jin, Y.; Wen, J.; Garg, S.; Liu, D.; Zhou, Y.; Teng, L.; Zhang, W. Development of a novel niosomal system for oral delivery of Ginkgo biloba extract. Int. J. Nanomedicine, 2013, 8, 421-430.
[http://dx.doi.org/10.2147/IJN.S37984] [PMID: 23378764]
[72]
Dong, X.; Mattingly, C.A.; Tseng, M.T.; Cho, M.J.; Liu, Y.; Adams, V.R.; Mumper, R.J. Doxorubicin and paclitaxel-loaded lipid-based nano-particles overcome multidrug resistance by inhibiting P-glycoprotein and depleting ATP. Cancer Res., 2009, 69(9), 3918-3926.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-2747] [PMID: 19383919]
[73]
Yin, Y.M.; Cui, F.D.; Mu, C.F.; Choi, M.K.; Kim, J.S.; Chung, S.J.; Shim, C.K.; Kim, D.D. Docetaxel microemulsion for enhanced oral bioa-vailability: Preparation and in vitro and in vivo evaluation. J. Control. Release, 2009, 140(2), 86-94.
[http://dx.doi.org/10.1016/j.jconrel.2009.08.015] [PMID: 19709639]
[74]
Li, X.; Chen, S.; Zhang, B.; Li, M.; Diao, K.; Zhang, Z.; Li, J.; Xu, Y.; Wang, X.; Chen, H. In situ injectable nano-composite hydrogel com-posed of curcumin, N,O-carboxymethyl chitosan and oxidized alginate for wound healing application. Int. J. Pharm., 2012, 437(1-2), 110-119.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.001] [PMID: 22903048]
[75]
Sethiya, N.K.; Trivedi, A.; Patel, M.B.; Mishra, S.H. Comparative pharmacognostical investigation on four ethanobotanicals traditionally used as Shankhpushpi in India. J. Adv. Pharm. Technol. Res., 2010, 1(4), 388-395.
[http://dx.doi.org/10.4103/0110-5558.76437] [PMID: 22247878]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy