Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Relationship Between Autophagy and Drug Resistance in Tumors

Author(s): Xuan Hu, Lu Wen, Xianfeng Li* and Chuanying Zhu*

Volume 23, Issue 10, 2023

Published on: 16 December, 2022

Page: [1072 - 1078] Pages: 7

DOI: 10.2174/1389557522666220905090732

Price: $65

Abstract

Multidrug Resistance (MDR) in tumor cells, a phenomenon in which tumor cells become resistant to chemotherapeutic drugs with different chemical structures and mechanisms of action, is a major obstacle to tumor therapy and is an urgent problem to be addressed. Autophagy, widely found in eukaryotic cells, is a lysosome-dependent pathway of self-degradation. In different environments, autophagy can play different roles in the self-protection of cells. At different stages of tumorigenesis, autophagy can play two distinct roles: inhibition of cancer and promotion of cancer. The relationship between autophagy and drug resistance in tumor cells is complex. Moreover, autophagy can play a role in promoting drug resistance and drug sensitivity through different molecular pathways. This study aimed to investigate the relationship between autophagy and drug resistance in tumor cells from the perspective of molecular mechanisms.

Keywords: MDR, Autophagy, Chemotherapy, Self-protection, drug sensitivity, Tumorigenesis

[1]
Kaur, J.; Debnath, J. Autophagy at the crossroads of catabolism and anabolism. Nat. Rev. Mol. Cell Biol., 2015, 16(8), 461-472.
[http://dx.doi.org/10.1038/nrm4024] [PMID: 26177004]
[2]
Mizushima, N.; Komatsu, M. Autophagy: Renovation of cells and tissues. Cell, 2011, 147(4), 728-741.
[http://dx.doi.org/10.1016/j.cell.2011.10.026] [PMID: 22078875]
[3]
Reggiori, F.; Komatsu, M.; Finley, K.; Simonsen, A. Autophagy: More than a nonselective pathway. Int. J. Cell Biol., 2012, 2012, 219625.
[http://dx.doi.org/10.1155/2012/219625] [PMID: 22666256]
[4]
Ameisen, J.C. On the origin, evolution, and nature of programmed cell death: A timeline of four billion years. Cell Death Differ., 2002, 9(4), 367-393.
[http://dx.doi.org/10.1038/sj.cdd.4400950] [PMID: 11965491]
[5]
Lee, N.; Bertholet, S.; Debrabant, A.; Muller, J.; Duncan, R.; Nakhasi, H.L. Programmed cell death in the unicellular protozoan parasite Leishmania. Cell Death Differ., 2002, 9(1), 53-64.
[http://dx.doi.org/10.1038/sj.cdd.4400952] [PMID: 11803374]
[6]
Arnoult, D.; Akarid, K.; Grodet, A.; Petit, P.X.; Estaquier, J.; Ameisen, J.C. On the evolution of programmed cell death: Apoptosis of the unicellular eukaryote Leishmania major involves cysteine proteinase activation and mitochondrion permeabilization. Cell Death Differ., 2002, 9(1), 65-81.
[http://dx.doi.org/10.1038/sj.cdd.4400951] [PMID: 11803375]
[7]
Noda, N.N.; Inagaki, F. Mechanisms of autophagy. Annu. Rev. Biophys., 2015, 44(1), 101-122.
[http://dx.doi.org/10.1146/annurev-biophys-060414-034248] [PMID: 25747593]
[8]
Feng, Y.; He, D.; Yao, Z.; Klionsky, D.J. The machinery of macroautophagy. Cell Res., 2014, 24(1), 24-41.
[http://dx.doi.org/10.1038/cr.2013.168] [PMID: 24366339]
[9]
Hurley, J.H.; Schulman, B.A. Atomistic autophagy: The structures of cellular self-digestion. Cell, 2014, 157(2), 300-311.
[http://dx.doi.org/10.1016/j.cell.2014.01.070] [PMID: 24725401]
[10]
Kim, J.; Kundu, M.; Viollet, B.; Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol., 2011, 13(2), 132-141.
[http://dx.doi.org/10.1038/ncb2152] [PMID: 21258367]
[11]
Egan, D.F.; Shackelford, D.B.; Mihaylova, M.M.; Gelino, S.; Kohnz, R.A.; Mair, W.; Vasquez, D.S.; Joshi, A.; Gwinn, D.M.; Taylor, R.; Asara, J.M.; Fitzpatrick, J.; Dillin, A.; Viollet, B.; Kundu, M.; Hansen, M.; Shaw, R.J. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science, 2011, 331(6016), 456-461.
[http://dx.doi.org/10.1126/science.1196371] [PMID: 21205641]
[12]
Kang, R.; Zeh, H.J.; Lotze, M.T.; Tang, D. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ., 2011, 18(4), 571-580.
[http://dx.doi.org/10.1038/cdd.2010.191] [PMID: 21311563]
[13]
Backer, J.M. The intricate regulation and complex functions of the class III phosphoinositide 3-kinase Vps34. Biochem. J., 2016, 473(15), 2251-2271.
[http://dx.doi.org/10.1042/BCJ20160170] [PMID: 27470591]
[14]
Ohashi, Y.; Tremel, S.; Williams, R.L. VPS34 complexes from a structural perspective. J. Lipid Res., 2019, 60(2), 229-241.
[http://dx.doi.org/10.1194/jlr.R089490] [PMID: 30397185]
[15]
Rostislavleva, K.; Soler, N.; Ohashi, Y.; Zhang, L.; Pardon, E.; Burke, J.E.; Masson, G.R.; Johnson, C.; Steyaert, J.; Ktistakis, N.T.; Williams, R.L. Structure and flexibility of the endosomal Vps34 complex reveals the basis of its function on membranes. Science, 2015, 350(6257), aac7365.
[http://dx.doi.org/10.1126/science.aac7365] [PMID: 26450213]
[16]
Itakura, E.; Kishi, C.; Inoue, K.; Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol. Biol. Cell, 2008, 19(12), 5360-5372.
[http://dx.doi.org/10.1091/mbc.e08-01-0080] [PMID: 18843052]
[17]
Nakatogawa, H. Mechanisms governing autophagosome biogenesis. Nat. Rev. Mol. Cell Biol., 2020, 21(8), 439-458.
[http://dx.doi.org/10.1038/s41580-020-0241-0] [PMID: 32372019]
[18]
Nishimura, T.; Tooze, S.A. Emerging roles of ATG proteins and membrane lipids in autophagosome formation. Cell Discov., 2020, 6(1), 32.
[http://dx.doi.org/10.1038/s41421-020-0161-3] [PMID: 32509328]
[19]
Melia, T.J.; Lystad, A.H.; Simonsen, A. Autophagosome biogenesis: From membrane growth to closure. J. Cell Biol., 2020, 219(6), e202002085.
[http://dx.doi.org/10.1083/jcb.202002085] [PMID: 32357219]
[20]
Dudley, L.J.; Makar, A.N.; Gammoh, N. Membrane targeting of core autophagy players during autophagosome biogenesis. FEBS J., 2020, 287(22), 4806-4821.
[http://dx.doi.org/10.1111/febs.15334] [PMID: 32301577]
[21]
Kitada, M.; Koya, D. Autophagy in metabolic disease and ageing. Nat. Rev. Endocrinol., 2021, 17(11), 647-661.
[http://dx.doi.org/10.1038/s41574-021-00551-9] [PMID: 34508250]
[22]
Zech, A.T.L.; Singh, S.R.; Schlossarek, S.; Carrier, L. Autophagy in cardiomyopathies. Biochim. Biophys. Acta Mol. Cell Res., 2020, 1867(3), 118432.
[http://dx.doi.org/10.1016/j.bbamcr.2019.01.013] [PMID: 30831130]
[23]
Dinkins, C.; Pilli, M.; Kehrl, J.H. Roles of autophagy in HIV infection. Immunol. Cell Biol., 2015, 93(1), 11-17.
[http://dx.doi.org/10.1038/icb.2014.88] [PMID: 25385065]
[24]
Hou, X.; Watzlawik, J.O.; Fiesel, F.C.; Springer, W. Autophagy in Parkinson’s disease. J. Mol. Biol., 2020, 432(8), 2651-2672.
[http://dx.doi.org/10.1016/j.jmb.2020.01.037] [PMID: 32061929]
[25]
Tanaka, S.; Hikita, H.; Tatsumi, T.; Sakamori, R.; Nozaki, Y.; Sakane, S.; Shiode, Y.; Nakabori, T.; Saito, Y.; Hiramatsu, N.; Tabata, K.; Kawabata, T.; Hamasaki, M.; Eguchi, H.; Nagano, H.; Yoshimori, T.; Takehara, T. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology, 2016, 64(6), 1994-2014.
[http://dx.doi.org/10.1002/hep.28820] [PMID: 27637015]
[26]
Marsh, T.; Debnath, J. Autophagy suppresses breast cancer metastasis by degrading NBR1. Autophagy, 2020, 16(6), 1164-1165.
[http://dx.doi.org/10.1080/15548627.2020.1753001] [PMID: 32267786]
[27]
Mowers, E.E.; Sharifi, M.N.; Macleod, K.F. Functions of autophagy in the tumor microenvironment and cancer metastasis. FEBS J., 2018, 285(10), 1751-1766.
[http://dx.doi.org/10.1111/febs.14388] [PMID: 29356327]
[28]
Mowers, E.E.; Sharifi, M.N.; Macleod, K.F. Autophagy in cancer metastasis. Oncogene, 2017, 36(12), 1619-1630.
[http://dx.doi.org/10.1038/onc.2016.333] [PMID: 27593926]
[29]
Smith, A.G.; Macleod, K.F. Autophagy, cancer stem cells and drug resistance. J. Pathol., 2019, 247(5), 708-718.
[http://dx.doi.org/10.1002/path.5222] [PMID: 30570140]
[30]
Aita, V.M.; Liang, X.H.; Murty, V.V.V.S.; Pincus, D.L.; Yu, W.; Cayanis, E.; Kalachikov, S.; Gilliam, T.C.; Levine, B. Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics, 1999, 59(1), 59-65.
[http://dx.doi.org/10.1006/geno.1999.5851] [PMID: 10395800]
[31]
Liang, C.; Feng, P.; Ku, B.; Dotan, I.; Canaani, D.; Oh, B.H.; Jung, J.U. Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat. Cell Biol., 2006, 8(7), 688-698.
[http://dx.doi.org/10.1038/ncb1426] [PMID: 16799551]
[32]
Takahashi, Y.; Coppola, D.; Matsushita, N.; Cualing, H.D.; Sun, M.; Sato, Y.; Liang, C.; Jung, J.U.; Cheng, J.Q.; Mul, J.J.; Pledger, W.J.; Wang, H.G. Bif-1 interacts with beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat. Cell Biol., 2007, 9(10), 1142-1151.
[http://dx.doi.org/10.1038/ncb1634] [PMID: 17891140]
[33]
Yue, Z.; Jin, S.; Yang, C.; Levine, A.J.; Heintz, N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. USA, 2003, 100(25), 15077-15082.
[http://dx.doi.org/10.1073/pnas.2436255100] [PMID: 14657337]
[34]
Guo, J.Y.; Xia, B.; White, E. Autophagy-mediated tumor promotion. Cell, 2013, 155(6), 1216-1219.
[http://dx.doi.org/10.1016/j.cell.2013.11.019] [PMID: 24315093]
[35]
Karsli-Uzunbas, G.; Guo, J.Y.; Price, S.; Teng, X.; Laddha, S.V.; Khor, S.; Kalaany, N.Y.; Jacks, T.; Chan, C.S.; Rabinowitz, J.D.; White, E. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov., 2014, 4(8), 914-927.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0363] [PMID: 24875857]
[36]
White, E. The role for autophagy in cancer. J. Clin. Invest., 2015, 125(1), 42-46.
[http://dx.doi.org/10.1172/JCI73941] [PMID: 25654549]
[37]
Endo, S.; Nakata, K.; Ohuchida, K.; Takesue, S.; Nakayama, H.; Abe, T.; Koikawa, K.; Okumura, T.; Sada, M.; Horioka, K.; Zheng, B.; Mizuuchi, Y.; Iwamoto, C.; Murata, M.; Moriyama, T.; Miyasaka, Y.; Ohtsuka, T.; Mizumoto, K.; Oda, Y.; Hashizume, M.; Nakamura, M. Autophagy is required for activation of pancreatic stellate cells, associated with pancreatic cancer progression and promotes growth of pancreatic tumors in mice. Gastroenterology, 2017, 152(6), 1492-1506.e24.
[http://dx.doi.org/10.1053/j.gastro.2017.01.010] [PMID: 28126348]
[38]
Digomann, D.; Linge, A.; Dubrovska, A. SLC3A2/CD98hc, autophagy and tumor radioresistance: A link confirmed. Autophagy, 2019, 15(10), 1850-1851.
[http://dx.doi.org/10.1080/15548627.2019.1639302] [PMID: 31276435]
[39]
Abdel-Mohsen, M.A.; Ahmed, O.A.; El-Kerm, Y.M. BRCA1 gene mutations and influence of chemotherapy on autophagy and apoptotic mechanisms in Egyptian breast cancer patients. Asian Pac. J. Cancer Prev., 2016, 17(3), 1285-1292.
[http://dx.doi.org/10.7314/APJCP.2016.17.3.1285] [PMID: 27039761]
[40]
Huang, F.; Wang, B.R.; Wang, Y.G. Role of autophagy in tumorigenesis, metastasis, targeted therapy and drug resistance of hepatocellular carcinoma. World J. Gastroenterol., 2018, 24(41), 4643-4651.
[http://dx.doi.org/10.3748/wjg.v24.i41.4643] [PMID: 30416312]
[41]
Marinković M.; Šprung, M.; Buljubašić M.; Novak, I. Autophagy modulation in cancer: Current knowledge on action and therapy. Oxid. Med. Cell. Longev., 2018, 2018, 1-18.
[http://dx.doi.org/10.1155/2018/8023821] [PMID: 29643976]
[42]
Yazdani, H.; Huang, H.; Tsung, A. Autophagy: Dual response in the development of hepatocellular carcinoma. Cells, 2019, 8(2), 91.
[http://dx.doi.org/10.3390/cells8020091] [PMID: 30695997]
[43]
Assaraf, Y.G.; Brozovic, A.; Gonçalves, A.C.; Jurkovicova, D. Linē A.; Machuqueiro, M.; Saponara, S.; Sarmento-Ribeiro, A.B.; Xavier, C.P.R.; Vasconcelos, M.H. The multi-factorial nature of clinical multidrug resistance in cancer. Drug Resist. Updat., 2019, 46, 100645.
[http://dx.doi.org/10.1016/j.drup.2019.100645] [PMID: 31585396]
[44]
Austin Doyle, L.; Ross, D.D. Multidrug resistance mediated by the Breast Cancer Resistance Protein BCRP (ABCG2). Oncogene, 2003, 22(47), 7340-7358.
[http://dx.doi.org/10.1038/sj.onc.1206938] [PMID: 14576842]
[45]
Turella, P.; Filomeni, G.; Dupuis, M.L.; Ciriolo, M.R.; Molinari, A.; De Maria, F.; Tombesi, M.; Cianfriglia, M.; Federici, G.; Ricci, G.; Caccuri, A.M. A strong glutathione S-transferase inhibitor overcomes the P-glycoprotein-mediated resistance in tumor cells. 6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol (NBDHEX) triggers a caspase-dependent apoptosis in MDR1-expressing leukemia cells. J. Biol. Chem., 2006, 281(33), 23725-23732.
[http://dx.doi.org/10.1074/jbc.M604372200] [PMID: 16769721]
[46]
Keogh, J.P. Membrane transporters in drug development. Adv. Pharmacol., 2012, 63, 1-42.
[http://dx.doi.org/10.1016/B978-0-12-398339-8.00001-X] [PMID: 22776638]
[47]
DeGorter, M.K.; Xia, C.Q.; Yang, J.J.; Kim, R.B. Drug transporters in drug efficacy and toxicity. Annu. Rev. Pharmacol. Toxicol., 2012, 52(1), 249-273.
[http://dx.doi.org/10.1146/annurev-pharmtox-010611-134529] [PMID: 21942630]
[48]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[49]
Milane, L.; Ganesh, S.; Shah, S.; Duan, Z.; Amiji, M. Multi-modal strategies for overcoming tumor drug resistance: Hypoxia, the Warburg effect, stem cells, and multifunctional nanotechnology. J. Control. Release, 2011, 155(2), 237-247.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.032] [PMID: 21497176]
[50]
Erin, N.; Grahovac, J.; Brozovic, A.; Efferth, T. Tumor microenvironment and epithelial mesenchymal transition as targets to overcome tumor multidrug resistance. Drug Resist. Updat., 2020, 53, 100715.
[http://dx.doi.org/10.1016/j.drup.2020.100715] [PMID: 32679188]
[51]
Li, Y.J.; Lei, Y.H.; Yao, N.; Wang, C.R.; Hu, N.; Ye, W.C.; Zhang, D.M.; Chen, Z.S. Autophagy and multidrug resistance in cancer. Chin. J. Cancer, 2017, 36(1), 52.
[http://dx.doi.org/10.1186/s40880-017-0219-2] [PMID: 28646911]
[52]
Gottesman, M.M.; Ling, V. The molecular basis of multidrug resistance in cancer: The early years of P-glycoprotein research. FEBS Lett., 2006, 580(4), 998-1009.
[http://dx.doi.org/10.1016/j.febslet.2005.12.060] [PMID: 16405967]
[53]
Martins, I.; Michaud, M.; Sukkurwala, A.Q.; Adjemian, S.; Ma, Y.; Shen, S.; Kepp, O.; Menger, L.; Vacchelli, E.; Galluzzi, L.; Zitvogel, L.; Kroemer, G. Premortem autophagy determines the immunogenicity of chemotherapy-induced cancer cell death. Autophagy, 2012, 8(3), 413-415.
[http://dx.doi.org/10.4161/auto.19009] [PMID: 22361584]
[54]
Michaud, M.; Martins, I.; Sukkurwala, A.Q.; Adjemian, S.; Ma, Y.; Pellegatti, P.; Shen, S.; Kepp, O.; Scoazec, M.; Mignot, G.; Rello-Varona, S.; Tailler, M.; Menger, L.; Vacchelli, E.; Galluzzi, L.; Ghiringhelli, F.; di Virgilio, F.; Zitvogel, L.; Kroemer, G. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science, 2011, 334(6062), 1573-1577.
[http://dx.doi.org/10.1126/science.1208347] [PMID: 22174255]
[55]
Kohli, L.; Kaza, N.; Coric, T.; Byer, S.J.; Brossier, N.M.; Klocke, B.J.; Bjornsti, M.A.; Carroll, S.L.; Roth, K.A. 4-Hydroxytamoxifen induces autophagic death through K-Ras degradation. Cancer Res., 2013, 73(14), 4395-4405.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-3765] [PMID: 23722551]
[56]
Kohli, L.; Kaza, N.; Carroll, S.L.; Roth, K.A. Protector turns predator. Autophagy, 2013, 9(9), 1438-1439.
[http://dx.doi.org/10.4161/auto.25837] [PMID: 24121562]
[57]
Bonapace, L.; Bornhauser, B.C.; Schmitz, M.; Cario, G.; Ziegler, U.; Niggli, F.K.; Schäfer, B.W.; Schrappe, M.; Stanulla, M.; Bourquin, J.P. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J. Clin. Invest., 2010, 120(4), 1310-1323.
[http://dx.doi.org/10.1172/JCI39987] [PMID: 20200450]
[58]
Heidari, N.; Hicks, M.A.; Harada, H. GX15-070 (obatoclax) overcomes glucocorticoid resistance in acute lymphoblastic leukemia through induction of apoptosis and autophagy. Cell Death Dis., 2010, 1(9), e76.
[http://dx.doi.org/10.1038/cddis.2010.53] [PMID: 21364679]
[59]
Lin, C.I.; Whang, E.E.; Abramson, M.A.; Jiang, X.; Price, B.D.; Donner, D.B.; Moore, F.D., Jr; Ruan, D.T. Autophagy: A new target for advanced papillary thyroid cancer therapy. Surgery, 2009, 146(6), 1208-1214.
[http://dx.doi.org/10.1016/j.surg.2009.09.019] [PMID: 19958950]
[60]
Lin, C.I.; Whang, E.E.; Donner, D.B.; Du, J.; Lorch, J.; He, F.; Jiang, X.; Price, B.D.; Moore, F.D., Jr; Ruan, D.T. Autophagy induction with RAD001 enhances chemosensitivity and radiosensitivity through Met inhibition in papillary thyroid cancer. Mol. Cancer Res., 2010, 8(9), 1217-1226.
[http://dx.doi.org/10.1158/1541-7786.MCR-10-0162] [PMID: 20736296]
[61]
Jin, S.M.; Jang, H.W.; Sohn, S.Y.; Kim, N.K.; Joung, J.Y.; Cho, Y.Y.; Kim, S.W.; Chung, J.H. Role of autophagy in the resistance to tumour necrosis factor-related apoptosis-inducing ligand-induced apoptosis in papillary and anaplastic thyroid cancer cells. Endocrine, 2014, 45(2), 256-262.
[http://dx.doi.org/10.1007/s12020-013-9997-8] [PMID: 23821365]
[62]
Kim, K.Y.; Park, K.I.; Kim, S.H.; Yu, S.N.; Park, S.G.; Kim, Y.; Seo, Y.K.; Ma, J.Y.; Ahn, S.C. Inhibition of autophagy promotes salinomycin-induced apoptosis via reactive oxygen species-mediated PI3K/AKT/mTOR and ERK/p38 MAPK-dependent signaling in human prostate cancer cells. Int. J. Mol. Sci., 2017, 18(5), 1088.
[http://dx.doi.org/10.3390/ijms18051088] [PMID: 28524116]
[63]
Wang, L.; Tang, B.; Han, H.; Mao, D.; Chen, J.; Zeng, Y.; Xiong, M. MiR-155 affects osteosarcoma MG-63 cell autophagy induced by adriamycin through regulating PTEN-PI3K/AKT/mTOR signaling pathway. Cancer Biother. Radiopharm., 2018, 33(1), 32-38.
[http://dx.doi.org/10.1089/cbr.2017.2306] [PMID: 29412697]
[64]
Chen, L.U.; Jiang, K.E.; Jiang, H.U.A.; Wei, P. MiR-155 mediates drug resistance in osteosarcoma cells via inducing autophagy. Exp. Ther. Med., 2014, 8(2), 527-532.
[http://dx.doi.org/10.3892/etm.2014.1752] [PMID: 25009614]
[65]
Ravikumar, B.; Futter, M.; Jahreiss, L.; Korolchuk, V.I.; Lichtenberg, M.; Luo, S.; Massey, D.C.O.; Menzies, F.M.; Narayanan, U.; Renna, M.; Jimenez-Sanchez, M.; Sarkar, S.; Underwood, B.; Winslow, A.; Rubinsztein, D.C. Mammalian macroautophagy at a glance. J. Cell Sci., 2009, 122(11), 1707-1711.
[http://dx.doi.org/10.1242/jcs.031773] [PMID: 19461070]
[66]
Renna, M.; Jimenez-Sanchez, M.; Sarkar, S.; Rubinsztein, D.C. Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J. Biol. Chem., 2010, 285(15), 11061-11067.
[http://dx.doi.org/10.1074/jbc.R109.072181] [PMID: 20147746]
[67]
Itakura, E.; Mizushima, N. Characterization of autophagosome formation site by a hierarchical analysis of mammalian Atg proteins. Autophagy, 2010, 6(6), 764-776.
[http://dx.doi.org/10.4161/auto.6.6.12709] [PMID: 20639694]
[68]
Ma, S.; Kong, D.; Fu, X.; Liu, L.; Liu, Y.; Xue, C.; Tian, Z.; Li, L.; Liu, X. P53-Induced autophagy regulates chemotherapy and radiotherapy resistance in multidrug resistance cancer cells. Dose Response, 2021, 19(4), 15593258211048046.
[http://dx.doi.org/10.1177/15593258211048046] [PMID: 34646092]
[69]
Lee, H.; Cerchione, C. How I treat relapsed and/or refractory multiple myeloma. Hematol. Rep., 2020, 12(11)(Suppl. 1), 8955.
[http://dx.doi.org/10.4081/hr.2020.8955] [PMID: 33042504]
[70]
Shim, D.; Duan, L.; Maki, C.G. P53-regulated autophagy and its impact on drug resistance and cell fate. Cancer Drug Resist., 2021, 4, 85-95.
[http://dx.doi.org/10.20517/cdr.2020.85] [PMID: 34532654]
[71]
Tang, D.; Kang, R.; Livesey, K.M.; Cheh, C.W.; Farkas, A.; Loughran, P.; Hoppe, G.; Bianchi, M.E.; Tracey, K.J.; Zeh, H.J., III; Lotze, M.T. Endogenous HMGB1 regulates autophagy. J. Cell Biol., 2010, 190(5), 881-892.
[http://dx.doi.org/10.1083/jcb.200911078] [PMID: 20819940]
[72]
Tang, D.; Kang, R.; Livesey, K.M.; Kroemer, G.; Billiar, T.R.; Van Houten, B.; Zeh, H.J., III; Lotze, M.T. High-mobility group box 1 is essential for mitochondrial quality control. Cell Metab., 2011, 13(6), 701-711.
[http://dx.doi.org/10.1016/j.cmet.2011.04.008] [PMID: 21641551]
[73]
Tang, D.; Kang, R.; Cheh, C-W.; Livesey, K.M.; Liang, X.; Schapiro, N.E.; Benschop, R.; Sparvero, L.J.; Amoscato, A.A.; Tracey, K.J.; Zeh, H.J.; Lotze, M.T. HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene, 2010, 29(38), 5299-5310.
[http://dx.doi.org/10.1038/onc.2010.261] [PMID: 20622903]
[74]
Liu, B.; Qi, X.; Zhang, X.; Gao, D.; Fang, K.; Guo, Z.; Li, L. Med19 is involved in chemoresistance by mediating autophagy through HMGB1 in breast cancer. J. Cell. Biochem., 2019, 120(1), 507-518.
[http://dx.doi.org/10.1002/jcb.27406] [PMID: 30161287]
[75]
Desai, S.; Liu, Z.; Yao, J.; Patel, N.; Chen, J.; Wu, Y.; Ahn, E.E.Y.; Fodstad, O.; Tan, M. Heat Shock Factor 1 (HSF1) controls chemoresistance and autophagy through transcriptional regulation of autophagy-related protein 7 (ATG7). J. Biol. Chem., 2013, 288(13), 9165-9176.
[http://dx.doi.org/10.1074/jbc.M112.422071] [PMID: 23386620]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy