Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Current Frontiers

In vivo PET Imaging of EGFR Expression: An Overview of Radiolabeled EGFR TKIs

Author(s): Jing Zhu, Yalun Li, Xiaoai Wu, Yunchun Li, Li Wang* and Hong Fan*

Volume 22, Issue 28, 2022

Published on: 28 October, 2022

Page: [2329 - 2342] Pages: 14

DOI: 10.2174/1568026622666220903142416

Price: $65

Abstract

With the development of epidermal growth factor receptor (EGFR)-based tyrosine kinase inhibitors (TKIs) and their applications in the clinic, non-small-cell lung cancer (NSCLC) treatment has entered a new era, and a great number of patients have benefited. However, there still exist other subgroups of patients who may not benefit from EGFR TKIs, although EGFR mutation is the main driving mutation that leads to NSCLC. To identify potential NSCLC responders for TKI therapy and to detect EGFR status in vivo, noninvasive technology, such as TKI PET imaging, has been developed in recent years, and a great number of tyrosine kinase-targeted PET tracers have been reported. The visualization and quantification of EGFR expression in vivo by PET would provide the most important information for personalizing NSCLC therapy and prediction of response in clinical. This article reviews the progress of small molecular tyrosine kinase-targeted PET tracers and their applications in preclinical experiments and clinical studies. The current limitations and future development of these tracers are also briefly discussed.

Keywords: Epidermal growth factor receptor, Non-small-cell lung cancer, Tyrosine kinase inhibitors, PET, Noninvasive

Graphical Abstract

[1]
Nasim, F.; Sabath, B.F.; Eapen, G.A. Lung cancer. Med. Clin. North Am., 2019, 103(3), 463-473.
[http://dx.doi.org/10.1016/j.mcna.2018.12.006] [PMID: 30955514]
[2]
Bade, B.C.; Dela Cruz, C.S. Lung cancer 2020. Clin. Chest Med., 2020, 41(1), 1-24.
[http://dx.doi.org/10.1016/j.ccm.2019.10.001] [PMID: 32008623]
[3]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer (Oxford, England : 1990), 2018, 103, 356-387.
[4]
Brennan, P.; Hainaut, P.; Boffetta, P. Genetics of lung-cancer susceptibility. Lancet Oncol., 2011, 12(4), 399-408.
[http://dx.doi.org/10.1016/S1470-2045(10)70126-1 ] [PMID: 20951091]
[5]
Rodriguez, C.J.; Parra, C.E.; Wistuba, I.I. Diagnosis and molecular classification of lung cancer. Cancer Treat. Res., 2016, 170, 25-4.
[http://dx.doi.org/10.1007/978-3-319-40389-2_2] [PMID: 27535388]
[6]
Zheng, D.; Wang, R.; Ye, T.; Yu, S.; Hu, H.; Shen, X.; Li, Y.; Ji, H.; Sun, Y.; Chen, H. MET exon 14 skipping defines a unique molecular class of non-small cell lung cancer. Oncotarget, 2016, 7(27), 41691-41702.
[http://dx.doi.org/10.18632/oncotarget.9541] [PMID: 27223439]
[7]
Bae, J.H.; Schlessinger, J. Asymmetric tyrosine kinase arrangements in activation or autophosphorylation of receptor tyrosine kinases. Mol. Cells, 2010, 29(5), 443-448.
[http://dx.doi.org/10.1007/s10059-010-0080-5] [PMID: 20432069]
[8]
Sheetz, J.B.; Mathea, S.; Karvonen, H.; Malhotra, K.; Chatterjee, D.; Niininen, W.; Perttilä, R.; Preuss, F.; Suresh, K.; Stayrook, S.E.; Tsutsui, Y.; Radhakrishnan, R.; Ungureanu, D.; Knapp, S.; Lemmon, M.A. Structural insights into pseudokinase domains of receptor tyrosine kinases. Mol. Cell, 2020, 79(3), 390-405.e7.
[http://dx.doi.org/10.1016/j.molcel.2020.06.018] [PMID: 32619402]
[9]
Liu, X.; Wang, P.; Zhang, C.; Ma, Z. Epidermal Growth Factor Receptor (EGFR): A rising star in the era of precision medicine of lung cancer. Oncotarget, 2017, 8(30), 50209-50220.
[http://dx.doi.org/10.18632/oncotarget.16854] [PMID: 28430586]
[10]
Sabbah, D.A.; Hajjo, R.; Sweidan, K. Review on Epidermal Growth Factor Receptor (EGFR) structure, signaling pathways, interactions, and recent updates of EGFR inhibitors. Curr. Top. Med. Chem., 2020, 20(10), 815-834.
[http://dx.doi.org/10.2174/1568026620666200303123102 ] [PMID: 32124699]
[11]
Singh, D.; Kumar Attri, B.; Kaur Gill, R.; Bariwal, J. Review on EGFR inhibitors: Critical updates. Mini Rev. Med. Chem., 2016, 16(14), 1134-1166.
[http://dx.doi.org/10.2174/1389557516666160321114917 ] [PMID: 26996617]
[12]
Rude, V.B.; Damstrup, L.; Spang, T.M.; Skovgaard, P.H. Epidermal Growth Factor Receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann. Oncol., 1997, 8(12), 1197-1206.
[http://dx.doi.org/10.1023/A:1008209720526] [PMID: 9496384]
[13]
Wang, Z.; Erb, B. Receptors and cancer. Methods Mol. Biol., 2017, 1652, 3-35.
[http://dx.doi.org/10.1007/978-1-4939-7219-7_1] [PMID: 28791631]
[14]
Jones, G.S.; Baldwin, D.R. Recent advances in the management of lung cancer. Clin. Med., 2018, (18)(Suppl. 2), s41-s46.
[http://dx.doi.org/10.7861/clinmedicine.18-2-s41] [PMID: 29700092]
[15]
Da Cunha, S.G.; Shepherd, F.A.; Tsao, M.S. EGFR mutations and lung cancer. Annu. Rev. Pathol., 2011, 6(1), 49-69.
[http://dx.doi.org/10.1146/annurev-pathol-011110-130206 ] [PMID: 20887192]
[16]
Lim, S.M.; Syn, N.L.; Cho, B.C.; Soo, R.A. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Treat. Rev., 2018, 65, 1-10.
[http://dx.doi.org/10.1016/j.ctrv.2018.02.006] [PMID: 29477930]
[17]
Yeh, H.H.; Ogawa, K.; Balatoni, J.; Mukhapadhyay, U.; Pal, A.; Gonzalez-Lepera, C.; Shavrin, A.; Soghomonyan, S.; Flores, L,II.; Young, D.; Volgin, A.Y.; Najjar, A.M.; Krasnykh, V.; Tong, W.; Alauddin, M.M.; Gelovani, J.G. Molecular imaging of active mutant L858R EGF Receptor (EGFR) kinase-expressing nonsmall cell lung carcinomas using PET/CT. Proc. Natl. Acad. Sci. USA, 2011, 108(4), 1603-1608.
[http://dx.doi.org/10.1073/pnas.1010744108] [PMID: 21220318]
[18]
Bahce, I.; Yaqub, M.; Smit, E.F.; Lammertsma, A.A.; Van Dongen, G.A.M.S.; Hendrikse, N.H. Personalizing NSCLC therapy by characterizing tumors using TKI-PET and immuno-PET. Lung Cancer, 2017, 107, 1-13.
[http://dx.doi.org/10.1016/j.lungcan.2016.05.025] [PMID: 27319335]
[19]
Ratti, M.; Tomasello, G. Emerging combination therapies to overcome resistance in EGFR-driven tumors. Anticancer Drugs, 2014, 25(2), 127-139.
[http://dx.doi.org/10.1097/CAD.0000000000000035 ] [PMID: 24113593]
[20]
Zhou, W.; Ercan, D.; Chen, L.; Yun, C.H.; Li, D.; Capelletti, M.; Cortot, A.B.; Chirieac, L.; Iacob, R.E.; Padera, R.; Engen, J.R.; Wong, K.K.; Eck, M.J.; Gray, N.S.; Jänne, P.A. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature, 2009, 462(7276), 1070-1074.
[http://dx.doi.org/10.1038/nature08622] [PMID: 20033049]
[21]
Jia, Y.; Yun, C.H.; Park, E.; Ercan, D.; Manuia, M.; Juarez, J.; Xu, C.; Rhee, K.; Chen, T.; Zhang, H.; Palakurthi, S.; Jang, J.; Lelais, G.; DiDonato, M.; Bursulaya, B.; Michellys, P.Y.; Epple, R.; Marsilje, T.H.; McNeill, M.; Lu, W.; Harris, J.; Bender, S.; Wong, K.K.; Jänne, P.A.; Eck, M.J. Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors. Nature, 2016, 534(7605), 129-132.
[http://dx.doi.org/10.1038/nature17960] [PMID: 27251290]
[22]
Xia, N.; An, J.; Jiang, Q.; Li, M.; Tan, J.; Hu, C. Analysis of EGFR, EML4-ALK, KRAS, and c-MET mutations in Chinese lung adenocarcinoma patients. Exp. Lung Res., 2013, 39(8), 328-335.
[http://dx.doi.org/10.3109/01902148.2013.819535 ] [PMID: 23919423]
[23]
Brugger, W.; Triller, N.; Blasinska-Morawiec, M.; Curescu, S.; Sakalauskas, R.; Manikhas, G.M.; Mazieres, J.; Whittom, R.; Ward, C.; Mayne, K.; Trunzer, K.; Cappuzzo, F. Prospective molecular marker analyses of EGFR and KRAS from a randomized, placebo-controlled study of erlotinib maintenance therapy in advanced non-small-cell lung cancer. J. Clin. Oncol., 2011, 29(31), 4113-4120.
[http://dx.doi.org/10.1200/JCO.2010.31.8162] [PMID: 21969500]
[24]
Neumann, J.; Wehweck, L.; Maatz, S.; Engel, J.; Kirchner, T.; Jung, A. Alterations in the EGFR pathway coincide in colorectal cancer and impact on prognosis. Virchows Archiv: An Int J. Pathol., 2013, 463(4), 509-523.
[25]
Pfeiffer, P.; Nexø, E.; Bentzen, S.M.; Clausen, P.P.; Andersen, K.; Rose, C. Enzyme-linked immunosorbent assay of epidermal growth factor receptor in lung cancer: Comparisons with immunohistochemistry, clinicopathological features and prognosis. Br. J. Cancer, 1998, 78(1), 96-99.
[http://dx.doi.org/10.1038/bjc.1998.448] [PMID: 9662257]
[26]
Sun, X.; Xiao, Z.; Chen, G.; Han, Z.; Liu, Y.; Zhang, C.; Sun, Y.; Song, Y.; Wang, K.; Fang, F.; Wang, X.; Lin, Y.; Xu, L.; Shao, L.; Li, J.; Cheng, Z.; Gambhir, S.S.; Shen, B. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management. Sci. Transl. Med., 2018, 10(431), eaan8840.
[http://dx.doi.org/10.1126/scitranslmed.aan8840] [PMID: 29515002]
[27]
Shibata, D. Cancer. Heterogeneity and tumor history. Science, 2012, 336(6079), 304-305.
[http://dx.doi.org/10.1126/science.1222361] [PMID: 22517848]
[28]
Swanton, C. Intratumor heterogeneity: Evolution through space and time. Cancer Res., 2012, 72(19), 4875-4882.
[http://dx.doi.org/10.1158/0008-5472.CAN-12-2217 ] [PMID: 23002210]
[29]
Manning, H.C. World molecular imaging Congress 2015: Precision medicine visualized. Mol. Imaging Biol., 2015, 17(3), 295-296.
[http://dx.doi.org/10.1007/s11307-015-0855-3] [PMID: 25862478]
[30]
De Silva, R.A.; Kumar, D.; Lisok, A.; Chatterjee, S.; Wharram, B.; Venkateswara Rao, K.; Mease, R.; Dannals, R.F.; Pomper, M.G.; Nimmagadda, S. Peptide-based 68 Ga-PET radiotracer for imaging PD-L1 expression in cancer. Mol. Pharm., 2018, 15(9), 3946-3952.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00399 ] [PMID: 30037229]
[31]
Maute, R.L.; Gordon, S.R.; Mayer, A.T.; McCracken, M.N.; Natarajan, A.; Ring, N.G.; Kimura, R.; Tsai, J.M.; Manglik, A.; Kruse, A.C.; Gambhir, S.S.; Weissman, I.L.; Ring, A.M. Engineering high-affinity PD-1 variants for optimized immunotherapy and immuno-PET imaging. Proc. Natl. Acad. Sci. USA, 2015, 112(47), E6506-E6514.
[http://dx.doi.org/10.1073/pnas.1519623112] [PMID: 26604307]
[32]
Niemeijer, A.N.; Leung, D.; Huisman, M.C.; Bahce, I.; Hoekstra, O.S.; van Dongen, G.A.M.S.; Boellaard, R.; Du, S.; Hayes, W.; Smith, R.; Windhorst, A.D.; Hendrikse, N.H.; Poot, A.; Vugts, D.J.; Thunnissen, E.; Morin, P.; Lipovsek, D.; Donnelly, D.J.; Bonacorsi, S.J.; Velasquez, L.M.; de Gruijl, T.D.; Smit, E.F.; de Langen, A.J. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat. Commun., 2018, 9(1), 4664.
[http://dx.doi.org/10.1038/s41467-018-07131-y] [PMID: 30405135]
[33]
Bonasera, T.A.; Ortu, G.; Rozen, Y.; Krais, R.; Freedman, N.M.T.; Chisin, R.; Gazit, A.; Levitzki, A.; Mishani, E. Potential 18F-labeled biomarkers for epidermal growth factor receptor tyrosine kinase. Nucl. Med. Biol., 2001, 28(4), 359-374.
[http://dx.doi.org/10.1016/S0969-8051(01)00200-1 ] [PMID: 11395308]
[34]
Wang, H.; Yu, J.; Yang, G.; Song, X.; Sun, X.; Zhao, S.; Mu, D. Assessment of 11 C-labeled-4- N -(3-bromoanilino)-6, 7-dimethoxyquinazoline as a positron emission tomography agent to monitor epidermal growth factor receptor expression. Cancer Sci., 2007, 98(9), 1413-1416.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00562.x ] [PMID: 17627611]
[35]
Meng, X.; Loo, B.W., Jr; Ma, L.; Murphy, J.D.; Sun, X.; Yu, J. Molecular imaging with 11C-PD153035 PET/CT predicts survival in non-small cell lung cancer treated with EGFR-TKI: A pilot study. J. Nucl. Med., 2011, 52(10), 1573-1579.
[36]
Dai, D.; Li, X.F.; Wang, J.; Liu, J.J.; Zhu, Y.J.; Zhang, Y.; Wang, Q.; Xu, W.G. Predictive efficacy of 11 C-PD153035 PET imaging for EGFR-tyrosine kinase inhibitor sensitivity in non-small cell lung cancer patients. Int. J. Cancer, 2016, 138(4), 1003-1012.
[http://dx.doi.org/10.1002/ijc.29832] [PMID: 26334931]
[37]
Memon, A.A.; Jakobsen, S.; Dagnaes-Hansen, F.; Sorensen, B.S.; Keiding, S.; Nexo, E. Positron emission tomography (PET) imaging with [11C]-labeled erlotinib: A micro-PET study on mice with lung tumor xenografts. Cancer Res., 2009, 69(3), 873-878.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3118 ] [PMID: 19155297]
[38]
Bahce, I.; Yaqub, M.; Errami, H.; Schuit, R.C.; Schober, P.; Thunnissen, E.; Windhorst, A.D.; Lammertsma, A.A.; Smit, E.F.; Hendrikse, N.H. Effects of erlotinib therapy on [11C]erlotinib uptake in EGFR mutated, advanced NSCLC. EJNMMI Res., 2016, 6(1), 10.
[http://dx.doi.org/10.1186/s13550-016-0169-8] [PMID: 26857779]
[39]
Abourbeh, G.; Itamar, B.; Salnikov, O.; Beltsov, S.; Mishani, E. Identifying erlotinib-sensitive non-small cell lung carcinoma tumors in mice using [11C]erlotinib PET. EJNMMI Res., 2015, 5(1), 4.
[http://dx.doi.org/10.1186/s13550-014-0080-0] [PMID: 25853010]
[40]
Weber, B.; Winterdahl, M.; Memon, A.; Sorensen, B.S.; Keiding, S.; Sorensen, L.; Nexo, E.; Meldgaard, P. Erlotinib accumulation in brain metastases from non-small cell lung cancer: Visualization by positron emission tomography in a patient harboring a mutation in the epidermal growth factor receptor. J. Thorac. Oncol., 2011, 6(7), 1287-1289.
[41]
Bahce, I.; Smit, E.F.; Lubberink, M.; van der Veldt, A.A.M.; Yaqub, M.; Windhorst, A.D.; Schuit, R.C.; Thunnissen, E.; Heideman, D.A.M.; Postmus, P.E.; Lammertsma, A.A.; Hendrikse, N.H. Development of [(11)C]erlotinib positron emission tomography for in vivo evaluation of EGF receptor mutational status. Clin. Cancer Res., 2013, 19(1), 183-193.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0289 ] [PMID: 23136193]
[42]
Petrulli, J.R.; Sullivan, J.M.; Zheng, M.Q.; Bennett, D.C.; Charest, J.; Huang, Y.; Morris, E.D.; Contessa, J.N. Quantitative analysis of [11C]-erlotinib PET demonstrates specific binding for activating mutations of the EGFR kinase domain. Neoplasia, 2013, 15(12), 1347-1353.
[http://dx.doi.org/10.1593/neo.131666] [PMID: 24403856]
[43]
Jain, A.; Kameswaran, M.; Pandey, U.; Prabhash, K.; Sarma, H.D.; Dash, A. 68 Ga labeled erlotinib: A novel PET probe for imaging EGFR over-expressing tumors. Bioorg. Med. Chem. Lett., 2017, 27(19), 4552-4557.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.065] [PMID: 28893469]
[44]
Huang, S.; Han, Y.; Chen, M.; Hu, K.; Qi, Y.; Sun, P.; Wang, M.; Wu, H.; Li, G.; Wang, Q.; Du, Z.; Zhang, K.; Zhao, S.; Zheng, X. Radiosynthesis and biological evaluation of 18F-labeled 4-anilinoquinazoline derivative (18F-FEA-Erlotinib) as a potential EGFR PET agent. Bioorg. Med. Chem. Lett., 2018, 28(6), 1143-1148.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.066] [PMID: 29486966]
[45]
Shamni, O.; Grievink, H.; Itamar, B.; Mishani, E.; Abourbeh, G. Development of a fluorinated analogue of erlotinib for PET imaging of EGFR mutation–positive NSCLC. Mol. Imaging Biol., 2019, 21(4), 696-704.
[http://dx.doi.org/10.1007/s11307-018-1286-8] [PMID: 30377939]
[46]
Seimbille, Y.; Phelps, M.E.; Czernin, J.; Silverman, D.H.S. Fluorine-18 labeling of 6,7-disubstituted anilinoquinazoline derivatives for Positron Emission Tomography (PET) imaging of tyrosine kinase receptors: Synthesis of18F-Iressa and related molecular probes. J. Labelled Comp. Radiopharm., 2005, 48(11), 829-843.
[http://dx.doi.org/10.1002/jlcr.998]
[47]
Wang, J.Q.; Gao, M.; Miller, K.D.; Sledge, G.W.; Zheng, Q.H. Synthesis of [11C]Iressa as a new potential PET cancer imaging agent for epidermal growth factor receptor tyrosine kinase. Bioorg. Med. Chem. Lett., 2006, 16(15), 4102-4106.
[http://dx.doi.org/10.1016/j.bmcl.2006.04.080] [PMID: 16697188]
[48]
Holt, D.P.; Ravert, H.T.; Dannals, R.F.; Pomper, M.G. Synthesis of [11C]gefitinib for imaging epidermal growth factor receptor tyrosine kinase with positron emission tomography. J. Labelled Comp. Radiopharm., 2006, 49(10), 883-888.
[http://dx.doi.org/10.1002/jlcr.1104]
[49]
Su, H.; Seimbille, Y.; Ferl, G.Z.; Bodenstein, C.; Fueger, B.; Kim, K.J.; Hsu, Y.T.; Dubinett, S.M.; Phelps, M.E.; Czernin, J.; Weber, W.A. Evaluation of [18F]gefitinib as a molecular imaging probe for the assessment of the epidermal growth factor receptor status in malignant tumors. Eur. J. Nucl. Med. Mol. Imaging, 2008, 35(6), 1089-1099.
[http://dx.doi.org/10.1007/s00259-007-0636-6] [PMID: 18239919]
[50]
Xiao, Z.; Song, Y.; Wang, K.; Sun, X.; Shen, B. One-step radiosynthesis of 18 F-IRS: A novel radiotracer targeting mutant EGFR in NSCLC for PET/CT imaging. Bioorg. Med. Chem. Lett., 2016, 26(24), 5985-5988.
[http://dx.doi.org/10.1016/j.bmcl.2016.10.084] [PMID: 27825546]
[51]
Song, Y.; Xiao, Z.; Wang, K.; Wang, X.; Zhang, C.; Fang, F.; Sun, X.; Shen, B. Development and evaluation of 18F-IRS for molecular imaging mutant EGF receptors in NSCLC. Sci. Rep., 2017, 7(1), 3121.
[http://dx.doi.org/10.1038/s41598-017-01443-7] [PMID: 28600491]
[52]
Lu, X.; Wang, C.; Li, X.; Gu, P.; Jia, L.; Zhang, L. Synthesis and preliminary evaluation of 18F-icotinib for EGFR-targeted PET imaging of lung cancer. Bioorg. Med. Chem., 2019, 27(3), 545-551.
[http://dx.doi.org/10.1016/j.bmc.2018.12.034] [PMID: 30611635]
[53]
Makino, A.; Miyazaki, A.; Tomoike, A.; Kimura, H.; Arimitsu, K.; Hirata, M.; Ohmomo, Y.; Nishii, R.; Okazawa, H.; Kiyono, Y.; Ono, M.; Saji, H. PET probe detecting non-small cell lung cancer susceptible to epidermal growth factor receptor tyrosine kinase inhibitor therapy. Bioorg. Med. Chem., 2018, 26(8), 1609-1613.
[http://dx.doi.org/10.1016/j.bmc.2018.02.007] [PMID: 29478801]
[54]
Ortu, G.; Ben-David, I.; Rozen, Y.; Freedman, N.M.T.; Chisin, R.; Levitzki, A.; Mishani, E. Labeled EGFr-TK irreversible inhibitor (ML03): In vitro and in vivo properties, potential as PET biomarker for cancer and feasibility as anticancer drug. Int. J. Cancer, 2002, 101(4), 360-370.
[http://dx.doi.org/10.1002/ijc.10619] [PMID: 12209961]
[55]
Ben, D.I.; Rozen, Y.; Ortu, G.; Mishani, E. Radiosynthesis of ML03, a novel positron emission tomography biomarker for targeting epidermal growth factor receptor via the labeling synthon: [11C]acryloyl chloride. Appl. Radiat. Isot., 2003, 58(2), 209-217.
[http://dx.doi.org/10.1016/S0969-8043(02)00301-9 ] [PMID: 12573320]
[56]
Gelovani, J.G. Molecular imaging of epidermal growth factor receptor expression–activity at the kinase level in tumors with positron emission tomography. Cancer Metastasis Rev., 2008, 27(4), 645-653.
[http://dx.doi.org/10.1007/s10555-008-9156-5] [PMID: 18626573]
[57]
Abourbeh, G.; Dissoki, S.; Jacobson, O.; Litchi, A.; Daniel, R.B.; Laki, D.; Levitzki, A.; Mishani, E. Evaluation of radiolabeled ML04, a putative irreversible inhibitor of epidermal growth factor receptor, as a bioprobe for PET imaging of EGFR-overexpressing tumors. Nucl. Med. Biol., 2007, 34(1), 55-70.
[http://dx.doi.org/10.1016/j.nucmedbio.2006.10.012 ] [PMID: 17210462]
[58]
Slobbe, P.; Windhorst, A.D.; Walsum, M.S.; Schuit, R.C.; Smit, E.F.; Niessen, H.G.; Solca, F.; Stehle, G.; van Dongen, G.A.M.S.; Poot, A.J. Development of [18F]afatinib as new TKI-PET tracer for EGFR positive tumors. Nucl. Med. Biol., 2014, 41(9), 749-757.
[http://dx.doi.org/10.1016/j.nucmedbio.2014.06.005 ] [PMID: 25066021]
[59]
Slobbe, P.; Windhorst, A.D.; Van Walsum, S.M.; Smit, E.F.; Niessen, H.G.; Solca, F.; Stehle, G.; Van Dongen, G.A.M.S.; Poot, A.J. A comparative PET imaging study with the reversible and irreversible EGFR tyrosine kinase inhibitors [11C]erlotinib and [18F]afatinib in lung cancer-bearing mice. EJNMMI Res., 2015, 5(1), 14.
[http://dx.doi.org/10.1186/s13550-015-0088-0] [PMID: 25853020]
[60]
Van De Stadt, E.A.; Yaqub, M.; Lammertsma, A.A.; Poot, A.J.; Schober, P.R.; Schuit, R.C.; Smit, E.F.; Bahce, I.; Hendrikse, N.H. Quantification of [18F]afatinib using PET/CT in NSCLC patients: A feasibility study. EJNMMI Res., 2020, 10(1), 97.
[http://dx.doi.org/10.1186/s13550-020-00684-4] [PMID: 32804306]
[61]
Yeh, S.H.H.; Lin, C.F.; Kong, F.L.; Wang, H.E.; Hsieh, Y.J.; Gelovani, J.G.; Liu, R.S. Molecular imaging of nonsmall cell lung carcinomas expressing active mutant EGFR kinase using PET with [(124)i]-morpholino-IPQA. BioMed Res. Int., 2013, 2013, 549359.
[http://dx.doi.org/10.1155/2013/549359] [PMID: 23956990]
[62]
Weitsman, G.; Mitchell, N.J.; Evans, R.; Cheung, A.; Kalber, T.L.; Bofinger, R.; Fruhwirth, G.O.; Keppler, M.; Wright, Z.V.F.; Barber, P.R.; Gordon, P.; de Koning, T.; Wulaningsih, W.; Sander, K.; Vojnovic, B.; Ameer-Beg, S.; Lythgoe, M.; Arnold, J.N.; Årstad, E.; Festy, F.; Hailes, H.C.; Tabor, A.B.; Ng, T. Detecting intratumoral heterogeneity of EGFR activity by liposome-based in vivo transfection of a fluorescent biosensor. Oncogene, 2017, 36(25), 3618-3628.
[http://dx.doi.org/10.1038/onc.2016.522] [PMID: 28166195]
[63]
Pal, A.; Glekas, A.; Doubrovin, M.; Balatoni, J.; Beresten, T.; Maxwell, D.; Soghomonyan, S.; Shavrin, A.; Ageyeva, L.; Finn, R.; Larson, S.M.; Bornmann, W.; Gelovani, J.G.; Gelovani, J.G. Molecular imaging of EGFR kinase activity in tumors with 124I-labeled small molecular tracer and positron emission tomography. Mol. Imaging Biol., 2006, 8(5), 262-277.
[http://dx.doi.org/10.1007/s11307-006-0049-0] [PMID: 16897320]
[64]
Pisaneschi, F.; Nguyen, Q.D.; Shamsaei, E.; Glaser, M.; Robins, E.; Kaliszczak, M.; Smith, G.; Spivey, A.C.; Aboagye, E.O. Development of a new epidermal growth factor receptor positron emission tomography imaging agent based on the 3-cyanoquinoline core: Synthesis and biological evaluation. Bioorg. Med. Chem., 2010, 18(18), 6634-6645.
[http://dx.doi.org/10.1016/j.bmc.2010.08.004] [PMID: 20797871]
[65]
Pisaneschi, F.; Slade, R.L.; Iddon, L.; George, G.P.C.; Nguyen, Q.D.; Spivey, A.C.; Aboagye, E.O. Synthesis of a new fluorine-18 glycosylated ‘click’ cyanoquinoline for the imaging of epidermal growth factor receptor. J. Labelled Comp. Radiopharm., 2014, 57(2), 92-96.
[http://dx.doi.org/10.1002/jlcr.3170] [PMID: 24307532]
[66]
Kimura, H.; Okuda, H.; Ishiguro, M.; Arimitsu, K.; Makino, A.; Nishii, R.; Miyazaki, A.; Yagi, Y.; Watanabe, H.; Kawasaki, I.; Ono, M.; Saji, H. 18 F-labeled pyrido[3,4- d]pyrimidine as an effective probe for imaging of L858R mutant epidermal growth factor receptor. ACS Med. Chem. Lett., 2017, 8(4), 418-422.
[http://dx.doi.org/10.1021/acsmedchemlett.6b00520 ] [PMID: 28435529]
[67]
Goggi, J.L.; Haslop, A.; Ramasamy, B.; Cheng, P.; Jiang, L.; Soh, V.; Robins, E.G. Identifying nonsmall-cell lung tumours bearing the T790M EGFR TKI resistance mutation using PET imaging. J. Labelled Comp. Radiopharm., 2019, 62(9), 596-603.
[http://dx.doi.org/10.1002/jlcr.3771] [PMID: 31132309]
[68]
Fawwaz, M.; Mishiro, K.; Nishii, R.; Makino, A.; Kiyono, Y.; Shiba, K.; Kinuya, S.; Ogawa, K. A radiobrominated tyrosine kinase inhibitor for EGFR with L858R/T790M mutations in lung carcinoma. Pharmaceuticals, 2021, 14(3), 256.
[http://dx.doi.org/10.3390/ph14030256] [PMID: 33809064]
[69]
Memon, A.A.; Weber, B.; Winterdahl, M.; Jakobsen, S.; Meldgaard, P.; Madsen, H.H.; Keiding, S.; Nexo, E.; Sorensen, B.S. PET imaging of patients with non-small cell lung cancer employing an EGF receptor targeting drug as tracer. British journal of Cancer, 2011, 105(12), 1850-1855.
[http://dx.doi.org/10.1038/bjc.2011.493] [PMID: 22095231]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy