Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Exploring Plausible Therapeutic Targets for Alzheimer's Disease using Multi-omics Approach, Machine Learning and Docking

Author(s): S. Akila Parvathy Dharshini, Nela Pragathi Sneha, Dhanusha Yesudhas, A. Kulandaisamy, Uday Rangaswamy, Anusuya Shanmugam, Y-H. Taguchi and M. Michael Gromiha*

Volume 22, Issue 22, 2022

Published on: 23 September, 2022

Page: [1868 - 1879] Pages: 12

DOI: 10.2174/1568026622666220902110115

Price: $65

Abstract

The progressive deterioration of neurons leads to Alzheimer's disease (AD), and developing a drug for this disorder is challenging. Substantial gene/transcriptome variability from multiple cell types leads to downstream pathophysiologic consequences that represent the heterogeneity of this disease. Identifying potential biomarkers for promising therapeutics is strenuous due to the fact that the transcriptome, epigenetic, or proteome changes detected in patients are not clear whether they are the cause or consequence of the disease, which eventually makes the drug discovery efforts intricate. The advancement in scRNA-sequencing technologies helps to identify cell type-specific biomarkers that may guide the selection of the pathways and related targets specific to different stages of the disease progression. This review is focussed on the analysis of multi-omics data from various perspectives (genomic and transcriptomic variants, and single-cell expression), which provide insights to identify plausible molecular targets to combat this complex disease. Further, we briefly outlined the developments in machine learning techniques to prioritize the risk-associated genes, predict probable mutations and identify promising drug candidates from natural products.

Keywords: Alzheimer's disease, Therapeutic targets, Multi-omics, Machine learning, Docking, Cell-type specific biomarker.

Graphical Abstract

[1]
Muddapu, V.R.; Dharshini, S.A.P.; Chakravarthy, V.S.; Gromiha, M.M. Neurodegenerative diseases – Is metabolic deficiency the root cause? Front. Neurosci., 2020, 14, 213.
[http://dx.doi.org/10.3389/fnins.2020.00213 ] [PMID: 32296300]
[2]
Wilde, G.J.C.; Pringle, A.K.; Wright, P.; Iannotti, F. Differential vulnerability of the CA1 and CA3 subfields of the hippocampus to superoxide and hydroxyl radicals in vitro. J. Neurochem., 1997, 69(2), 883-886.
[http://dx.doi.org/10.1046/j.1471-4159.1997.69020883.x ] [PMID: 9231752]
[3]
Pissadaki, E.K.; Bolam, J.P. The energy cost of action potential propagation in dopamine neurons: Clues to susceptibility in Parkinson’s disease. Front. Comput. Neurosci., 2013, 7, 13.
[http://dx.doi.org/10.3389/fncom.2013.00013 ] [PMID: 23515615]
[4]
Bolam, J.P.; Pissadaki, E.K. Living on the edge with too many mouths to feed: Why dopamine neurons die. Mov. Disord., 2012, 27(12), 1478-1483.
[http://dx.doi.org/10.1002/mds.25135 ] [PMID: 23008164]
[5]
Pacelli, C.; Giguère, N.; Bourque, M.J.; Lévesque, M.; Slack, R.S.; Trudeau, L.É. Elevated mitochondrial bioenergetics and axonal arborization size are key contributors to the vulnerability of dopamine neurons. Curr. Biol., 2015, 25(18), 2349-2360.
[http://dx.doi.org/10.1016/j.cub.2015.07.050 ] [PMID: 26320949]
[6]
Carriedo, S.G.; Sensi, S.L.; Yin, H.Z.; Weiss, J.H. AMPA exposures induce mitochondrial Ca2+ overload and ROS generation in spinal motor neurons in vitro. J. Neurosci., 2000, 20(1), 240-250.
[http://dx.doi.org/10.1523/JNEUROSCI.20-01-00240.2000 ] [PMID: 10627601]
[7]
Dharshini, S.A.P.; Taguchi, Y.; Gromiha, M.M. Investigating the energy crisis in Alzheimer’s disease using transcriptome study. Sci. Rep., 2019, 9(1), 18509.
[http://dx.doi.org/10.1038/s41598-019-54782-y ] [PMID: 31811163]
[8]
Patel, A.B.; Tiwari, V.; Veeraiah, P.; Saba, K. Increased astroglial activity and reduced neuronal function across brain in AβPP-PS1 mouse model of Alzheimer’s disease. J. Cereb. Blood Flow Metab., 2018, 38(7), 1213-1226.
[http://dx.doi.org/10.1177/0271678X17709463 ] [PMID: 28585882]
[9]
Miyazaki, K.; Ohta, Y.; Nagai, M.; Morimoto, N.; Kurata, T.; Takehisa, Y.; Ikeda, Y.; Matsuura, T.; Abe, K. Disruption of neurovascular unit prior to motor neuron degeneration in amyotrophic lateral sclerosis. J. Neurosci. Res., 2011, 89(5), 718-728.
[http://dx.doi.org/10.1002/jnr.22594 ] [PMID: 21337372]
[10]
Zhu, X.; Smith, M.A.; Honda, K.; Aliev, G.; Moreira, P.I.; Nunomura, A.; Casadesus, G.; Harris, P.L.R.; Siedlak, S.L.; Perry, G. Vascular oxidative stress in Alzheimer disease. J. Neurol. Sci., 2007, 257(1-2), 240-246.
[http://dx.doi.org/10.1016/j.jns.2007.01.039 ] [PMID: 17337008]
[11]
Chen, X.; Pan, W. The treatment strategies for neurodegenerative diseases by integrative medicine. Integr. Med. Int., 2015, 1(4), 223-225.
[http://dx.doi.org/10.1159/000381546]
[12]
Durães, F.; Pinto, M.; Sousa, E. Old drugs as new treatments for neurodegenerative diseases. Pharmaceuticals, 2018, 11(2), 44.
[http://dx.doi.org/10.3390/ph11020044 ] [PMID: 29751602]
[13]
Cummings, J.; Lee, G.; Zhong, K.; Fonseca, J.; Taghva, K. Alzheimer’s disease drug development pipeline: 2021. Alzheimers Dement., 2021, 7(1), e12179.
[http://dx.doi.org/10.1002/trc2.12179 ] [PMID: 34095440]
[14]
Ahmad, F.; Singh, K.; Das, D.; Gowaikar, R.; Shaw, E.; Ramachandran, A.; Rupanagudi, K.V.; Kommaddi, R.P.; Bennett, D.A.; Ravindranath, V. Reactive oxygen species-mediated loss of synaptic akt1 signaling leads to deficient activity-dependent protein translation early in Alzheimer’s disease. Antioxid. Redox Signal., 2017, 27(16), 1269-1280.
[http://dx.doi.org/10.1089/ars.2016.6860 ] [PMID: 28264587]
[15]
Llorens-MartÃn, M.; Blazquez-Llorca, L.; Benavides, P.R.; Rabano, A.; Hernandez, F.; Avila, J.; DeFelipe, J. Selective alterations of neurons and circuits related to early memory loss in Alzheimer’s disease. Front. Neuroanat., 2014, 8, 38.
[16]
Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G.; Bu, G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol., 2013, 9(2), 106-118.
[http://dx.doi.org/10.1038/nrneurol.2012.263 ] [PMID: 23296339]
[17]
Huang, Y. Roles of Apolipoprotein E4 (ApoE4) in the pathogenesis of Alzheimer’s disease: Lessons from ApoE mouse models. Biochem. Soc. Trans., 2011, 39(4), 924-932.
[http://dx.doi.org/10.1042/BST0390924 ] [PMID: 21787325]
[18]
Hung, S.Y.; Fu, W.M. Drug candidates in clinical trials for Alzheimer’s disease. J. Biomed. Sci., 2017, 24(1), 47.
[http://dx.doi.org/10.1186/s12929-017-0355-7 ] [PMID: 28720101]
[19]
Coultrap, S.J.; Nixon, K.M.; Alvestad, R.M.; Fernando Valenzuela, C.; Browning, M.D. Differential expression of NMDA receptor subunits and splice variants among the CA1, CA3 and dentate gyrus of the adult rat. Brain Res. Mol. Brain Res., 2005, 135(1-2), 104-111.
[http://dx.doi.org/10.1016/j.molbrainres.2004.12.005] [PMID: 15857673]
[20]
Liu, Z.; Lv, C.; Zhao, W.; Song, Y.; Pei, D.; Xu, T. NR2B-containing NMDA receptors expression and their relationship to apoptosis in hippocampus of Alzheimer’s disease-like rats. Neurochem. Res., 2012, 37(7), 1420-1427.
[http://dx.doi.org/10.1007/s11064-012-0726-0 ] [PMID: 22359056]
[21]
Mairet, C.G.; Courchet, J.; Pieraut, S.; Courchet, V.; Maximov, A.; Polleux, F. The CAMKK2-AMPK kinase pathway mediates the synaptotoxic effects of Aβ oligomers through Tau phosphorylation. Neuron, 2013, 78(1), 94-108.
[http://dx.doi.org/10.1016/j.neuron.2013.02.003 ] [PMID: 23583109]
[22]
Marcelo, K.L.; Means, A.R.; York, B. The Ca2+/calmodulin/] CaMKK2 Axis: Nature’s metabolic CaMshaft. Trends Endocrinol. Metab., 2016, 27(10), 706-718.
[http://dx.doi.org/10.1016/j.tem.2016.06.001 ] [PMID: 27449752]
[23]
Espeseth, A.S.; Huang, Q.; Gates, A.; Xu, M.; Yu, Y.; Simon, A.J.; Shi, X.P.; Zhang, X.; Hodor, P.; Stone, D.J.; Burchard, J.; Cavet, G.; Bartz, S.; Linsley, P.; Ray, W.J.; Hazuda, D. A genome wide analysis of ubiquitin ligases in APP processing identifies a novel regulator of BACE1 mRNA levels. Mol. Cell. Neurosci., 2006, 33(3), 227-235.
[http://dx.doi.org/10.1016/j.mcn.2006.07.003 ] [PMID: 16978875]
[24]
Perry, E.K.; Perry, R.H.; Tomlinson, B.E.; Blessed, G.; Gibson, P.H. Coenzyme a-acetylating enzymes in Alzheimer’s disease: Possible cholinergic ‘compartment’ of pyruvate dehydrogenase. Neurosci. Lett., 1980, 18(1), 105-110.
[http://dx.doi.org/10.1016/0304-3940(80)90220-7 ] [PMID: 6133246]
[25]
Wang, L.Y.; Shofer, J.B.; Rohde, K.; Hart, K.L.; Hoff, D.J.; McFall, Y.H.; Raskind, M.A.; Peskind, E.R. Prazosin for the treatment of behavioral symptoms in Alzhemier’s disease patents with agitataion and aggression. Am. J. Geriatr. Psychiatry, 2009, 17, 744.
[http://dx.doi.org/10.1097/JGP.0b013e3181ab8c61] [PMID: 19700947]
[26]
Dai, W.; Lopez, O.L.; Carmichael, O.T.; Becker, J.T.; Kuller, L.H.; Gach, H.M. Mild cognitive impairment and alzheimer disease: Patterns of altered cerebral blood flow at MR imaging. Radiology, 2009, 250(3), 856-866.
[http://dx.doi.org/10.1148/radiol.2503080751 ] [PMID: 19164119]
[27]
Craft, S. The role of metabolic disorders in Alzheimer disease and vascular dementia: Two roads converged. Arch. Neurol., 2009, 66(3), 300-305.
[http://dx.doi.org/10.1001/archneurol.2009.27 ] [PMID: 19273747]
[28]
Von Bernhardi, R.; Cornejo, F.; Parada, G.E.; Eugenín, J. Role of TGFβ signaling in the pathogenesis of Alzheimer’s disease. Front. Cell. Neurosci., 2015, 9, 426.
[http://dx.doi.org/10.3389/fncel.2015.00426 ] [PMID: 26578886]
[29]
Dharshini, S.A.P.; Jemimah, S.; Taguchi, Y.H.; Gromiha, M.M. Exploring common therapeutic targets for neurodegenerative disorders using transcriptome study. Front. Genet., 2021, 12, 639160.
[http://dx.doi.org/10.3389/fgene.2021.639160 ] [PMID: 33815473]
[30]
Coppedè, F. The potential of epigenetic therapies in neurodegenerative diseases. Front. Genet., 2014, 5, 220.
[http://dx.doi.org/10.3389/fgene.2014.00220 ] [PMID: 25071843]
[31]
Dokmanovic, M.; Clarke, C.; Marks, P.A. Histone deacetylase inhibitors: Overview and perspectives. Mol. Cancer Res., 2007, 5(10), 981-989.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-0324] [PMID: 17951399]
[32]
Gratuze, M.; Leyns, C.E.G.; Holtzman, D.M. New insights into the role of TREM2 in Alzheimer’s disease. Mol. Neurodegener., 2018, 13(1), 66.
[http://dx.doi.org/10.1186/s13024-018-0298-9 ] [PMID: 30572908]
[33]
Kargbo, R.B. Sigma-1 and sigma-2 receptor modulators as potential therapeutics for Alzheimer’s Disease. ACS Med. Chem. Lett., 2021, 12(2), 178-179.
[http://dx.doi.org/10.1021/acsmedchemlett.1c00002] [PMID: 33603961]
[34]
Paes, D.; Lardenoije, R.; Carollo, R.M.; Roubroeks, J.A.Y.; Schepers, M.; Coleman, P.; Mastroeni, D.; Delvaux, E.; Pishva, E.; Lunnon, K.; Vanmierlo, T.; van den Hove, D.; Prickaerts, J. Increased isoform-specific phosphodiesterase 4D expression is associated with pathology and cognitive impairment in Alzheimer’s disease. Neurobiol. Aging, 2021, 97, 56-64.
[http://dx.doi.org/10.1016/j.neurobiolaging.2020.10.004] [PMID: 33157432]
[35]
Esterline, R.; Oscarsson, J.; Burns, J. A role for sodium glucose Cotransporter 2 Inhibitors (SGLT2is) in the treatment of Alzheimer’s disease? Int. Rev. Neurobiol., 2020, 155, 113-140.
[http://dx.doi.org/10.1016/bs.irn.2020.03.018 ] [PMID: 32854852]
[36]
Grubman, A.; Chew, G.; Ouyang, J.F.; Sun, G.; Choo, X.Y.; McLean, C.; Simmons, R.K.; Buckberry, S.; Vargas, L.D.B.; Poppe, D.; Pflueger, J.; Lister, R.; Rackham, O.J.L.; Petretto, E.; Polo, J.M. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nat. Neurosci., 2019, 22(12), 2087-2097.
[37]
Settembre, C.; Fraldi, A.; Medina, D.L.; Ballabio, A. Signals from the lysosome: A control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol., 2013, 14(5), 283-296.
[http://dx.doi.org/10.1038/nrm3565 ] [PMID: 23609508]
[38]
Song, J.X.; Liu, J.; Jiang, Y.; Wang, Z.Y.; Li, M. Transcription factor EB: An emerging drug target for neurodegenerative disorders. Drug Discov. Today, 2021, 26(1), 164-172.
[http://dx.doi.org/10.1016/j.drudis.2020.10.013 ] [PMID: 33099023]
[39]
Mathys, H.; Davila-Velderrain, J.; Peng, Z.; Gao, F.; Mohammadi, S.; Young, J.Z.; Menon, M.; He, L.; Abdurrob, F.; Jiang, X.; Martorell, A.J.; Ransohoff, R.M.; Hafler, B.P.; Bennett, D.A.; Kellis, M.; Tsai, L.H. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature, 2019, 570(7761), 332-337.
[http://dx.doi.org/10.1038/s41586-019-1195-2 ] [PMID: 31042697]
[40]
He, Q.; Jiang, L.; Zhang, Y.; Yang, H.; Zhou, C.N.; Xie, Y.H.; Luo, Y.M.; Zhang, S.S.; Zhu, L.; Guo, Y.J.; Deng, Y.H.; Liang, X.; Xiao, Q.; Zhang, L.; Tang, J.; Huang, D.J.; Zhou, Y.N.; Dou, X.Y.; Chao, F.L.; Tang, Y. Anti-LINGO-1 antibody ameliorates cognitive impairment, promotes adult hippocampal neurogenesis, and increases the abundance of CB1R-rich CCK-GABAergic interneurons in AD mice. Neurobiol. Dis., 2021, 156, 105406.
[http://dx.doi.org/10.1016/j.nbd.2021.105406 ] [PMID: 34044148]
[41]
Xu, J.; Zhang, P.; Huang, Y.; Zhou, Y.; Hou, Y.; Bekris, L.M.; Lathia, J.; Chiang, C.W.; Li, L.; Pieper, A.A.; Leverenz, J.B.; Cummings, J.; Cheng, F. Multimodal single-cell/nucleus RNA sequencing data analysis uncovers molecular networks between disease-associated microglia and astrocytes with implications for drug repurposing in Alzheimer’s disease. Genome Res., 2021, 31(10), 1900-1912.
[http://dx.doi.org/10.1101/gr.272484.120 ] [PMID: 33627474]
[42]
Olah, M.; Menon, V.; Habib, N.; Taga, M.F.; Ma, Y.; Yung, C.J.; Cimpean, M.; Khairallah, A.; Corona, S.G.; Sankowski, R.; Grün, D.; Kroshilina, A.A.; Dionne, D.; Sarkis, R.A.; Cosgrove, G.R.; Helgager, J.; Golden, J.A.; Pennell, P.B.; Prinz, M.; Vonsattel, J.P.G.; Teich, A.F.; Schneider, J.A.; Bennett, D.A.; Regev, A.; Elyaman, W.; Bradshaw, E.M.; De Jager, P.L. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat. Commun., 2020, 11(1), 6129.
[http://dx.doi.org/10.1038/s41467-020-19737-2 ] [PMID: 33257666]
[43]
Bordone, M.C.; Barbosa-Morais, N.L. Unraveling targetable systemic and cell-type-specific molecular phenotypes of Alzheimer’s and Parkinson’s brains with digital cytometry. Front. Neurosci., 2020, 14, 607215.
[http://dx.doi.org/10.3389/fnins.2020.607215 ] [PMID: 33362460]
[44]
Sim, N.L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res., 2012, 40(W1), W452-W457.
[http://dx.doi.org/10.1093/nar/gks539 ] [PMID: 22689647]
[45]
Carter, H.; Douville, C.; Stenson, P.D.; Cooper, D.N.; Karchin, R. Identifying Mendelian disease genes with the variant effect scoring tool. BMC Genomics, 2013, 14(Suppl. 3), S3.
[http://dx.doi.org/10.1186/1471-2164-14-S3-S3 ] [PMID: 23819870]
[46]
Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res., 2019, 47(D1), D886-D894.
[http://dx.doi.org/10.1093/nar/gky1016 ] [PMID: 30371827]
[47]
Rogers, M.F.; Shihab, H.A.; Mort, M.; Cooper, D.N.; Gaunt, T.R.; Campbell, C. FATHMM-XF: Accurate prediction of pathogenic point mutations via extended features. Bioinformatics, 2018, 34(3), 511-513.
[http://dx.doi.org/10.1093/bioinformatics/btx536 ] [PMID: 28968714]
[48]
Ferreira, K.C.V.; Fialho, L.F.; Franco, O.L.; De Alencar, S.A.; Porto, W.F. Benchmarking analysis of deleterious SNP prediction tools on CYP2D6 enzyme. Chem. Biol. Drug Des., 2020, 96(3), 984-994.
[http://dx.doi.org/10.1111/cbdd.13676 ] [PMID: 32149466]
[49]
Kulandaisamy, A.; Zaucha, J.; Sakthivel, R.; Frishman, D.; Michael Gromiha, M. Pred‐MutHTP: Prediction of disease‐causing and neutral mutations in human transmembrane proteins. Hum. Mutat., 2020, 41(3), 581-590.
[http://dx.doi.org/10.1002/humu.23961 ] [PMID: 31821684]
[50]
Capriotti, E.; Altman, R.B. A new disease-specific machine learning approach for the prediction of cancer-causing missense variants. Genomics, 2011, 98(4), 310-317.
[http://dx.doi.org/10.1016/j.ygeno.2011.06.010 ] [PMID: 21763417]
[51]
Shihab, H.A.; Gough, J.; Cooper, D.N.; Stenson, P.D.; Barker, G.L.A.; Edwards, K.J.; Day, I.N.M.; Gaunt, T.R. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum. Mutat., 2013, 34(1), 57-65.
[http://dx.doi.org/10.1002/humu.22225 ] [PMID: 23033316]
[52]
Anoosha, P.; Sakthivel, R.; Michael Gromiha, M. Exploring preferred amino acid mutations in cancer genes: Applications to identify potential drug targets. Biochim. Biophys. Acta Mol. Basis Dis., 2016, 1862(2), 155-165.
[http://dx.doi.org/10.1016/j.bbadis.2015.11.006 ] [PMID: 26581171]
[53]
Tang, N.; Sandahl, T.D.; Ott, P.; Kepp, K.P. Computing the Pathogenicity of Wilson’s Disease ATP7B Mutations: Implications for disease prevalence. J. Chem. Inf. Model., 2019, 59(12), 5230-5243.
[http://dx.doi.org/10.1021/acs.jcim.9b00852 ] [PMID: 31751128]
[54]
Dorfman, R.; Nalpathamkalam, T.; Taylor, C.; Gonska, T.; Keenan, K.; Yuan, X.W.; Corey, M.; Tsui, L-C.; Zielenski, J.; Durie, P. Do common in silico tools predict the clinical consequences of amino-acid substitutions in the CFTR gene? Clin. Genet., 2010, 77(5), 464-473.
[http://dx.doi.org/10.1111/j.1399-0004.2009.01351.x] [PMID: 20059485]
[55]
Anoosha, P.; Huang, L.T.; Sakthivel, R.; Karunagaran, D.; Gromiha, M.M. Discrimination of driver and passenger mutations in epidermal growth factor receptor in cancer. Mutat. Res., 2015, 780, 24-34.
[http://dx.doi.org/10.1016/j.mrfmmm.2015.07.005] [PMID: 26264175]
[56]
Niroula, A.; Vihinen, M. Variation interpretation predictors: principles, types, performance, and choice. Hum. Mutat., 2016, 37(6), 579-597.
[http://dx.doi.org/10.1002/humu.22987 ] [PMID: 26987456]
[57]
Rangaswamy, U.; Dharshini, S.A.P.; Yesudhas, D.; Gromiha, M.M. VEPAD - Predicting the effect of variants associated with Alzheimer’s disease using machine learning. Comput. Biol. Med., 2020, 124, 103933.
[http://dx.doi.org/10.1016/j.compbiomed.2020.103933] [PMID: 32828070]
[58]
Kulandaisamy, A.; Parvathy Dharshini, S.A.; Gromiha, M.M. Alz-Disc: A tool to discriminate disease-causing and neutral mutations in Alzheimer’s disease. Comb. Chem. High Throughput Screen., 2022, 25. E-pub Ahead of Print]
[http://dx.doi.org/10.2174/1386207325666220520102316 ] [PMID: 35619290]
[59]
Lambert, J.C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; Jun, G.; DeStefano, A.L.; Bis, J.C.; Beecham, G.W.; Grenier-Boley, B.; Russo, G.; Thornton-Wells, T.A.; Jones, N.; Smith, A.V.; Chouraki, V.; Thomas, C.; Ikram, M.A.; Zelenika, D.; Vardarajan, B.N.; Kamatani, Y.; Lin, C-F.; Gerrish, A.; Schmidt, H.; Kunkle, B.; Dunstan, M.L.; Ruiz, A.; Bihoreau, M-T.; Choi, S-H.; Reitz, C.; Pasquier, F.; Hollingworth, P.; Ramirez, A.; Hanon, O.; Fitzpatrick, A.L.; Buxbaum, J.D.; Campion, D.; Crane, P.K.; Baldwin, C.; Becker, T.; Gudnason, V.; Cruchaga, C.; Craig, D.; Amin, N.; Berr, C.; Lopez, O.L.; De Jager, P.L.; Deramecourt, V.; Johnston, J.A.; Evans, D.; Lovestone, S.; Letenneur, L.; Morón, F.J.; Rubinsztein, D.C.; Eiriksdottir, G.; Sleegers, K.; Goate, A.M.; Fiévet, N.; Huentelman, M.J.; Gill, M.; Brown, K.; Kamboh, M.I.; Keller, L.; Barberger-Gateau, P.; McGuinness, B.; Larson, E.B.; Green, R.; Myers, A.J.; Dufouil, C.; Todd, S.; Wallon, D.; Love, S.; Rogaeva, E.; Gallacher, J.; St George-Hyslop, P.; Clarimon, J.; Lleo, A.; Bayer, A.; Tsuang, D.W.; Yu, L.; Tsolaki, M.; Bossù, P.; Spalletta, G.; Proitsi, P.; Collinge, J.; Sorbi, S.; Sanchez-Garcia, F.; Fox, N.C.; Hardy, J.; Naranjo, M.C.D.; Bosco, P.; Clarke, R.; Brayne, C.; Galimberti, D.; Mancuso, M.; Matthews, F.; Moebus, S.; Mecocci, P.; Del Zompo, M.; Maier, W.; Hampel, H.; Pilotto, A.; Bullido, M.; Panza, F.; Caffarra, P.; Nacmias, B.; Gilbert, J.R.; Mayhaus, M.; Lannfelt, L.; Hakonarson, H.; Pichler, S.; Carrasquillo, M.M.; Ingelsson, M.; Beekly, D.; Alvarez, V.; Zou, F.; Valladares, O.; Younkin, S.G.; Coto, E.; Hamilton-Nelson, K.L.; Gu, W.; Razquin, C.; Pastor, P.; Mateo, I.; Owen, M.J.; Faber, K.M.; Jonsson, P.V.; Combarros, O.; O’Donovan, M.C.; Cantwell, L.B.; Soininen, H.; Blacker, D.; Mead, S.; Mosley, T.H., Jr; Bennett, D.A.; Harris, T.B.; Fratiglioni, L.; Holmes, C.; de Bruijn, R.F.A.G.; Passmore, P.; Montine, T.J.; Bettens, K.; Rotter, J.I.; Brice, A.; Morgan, K.; Foroud, T.M.; Kukull, W.A.; Hannequin, D.; Powell, J.F.; Nalls, M.A.; Ritchie, K.; Lunetta, K.L.; Kauwe, J.S.K.; Boerwinkle, E.; Riemenschneider, M.; Boada, M.; Hiltunen, M.; Martin, E.R.; Schmidt, R.; Rujescu, D.; Wang, L-S.; Dartigues, J-F.; Mayeux, R.; Tzourio, C.; Hofman, A.; Nöthen, M.M.; Graff, C.; Psaty, B.M.; Jones, L.; Haines, J.L.; Holmans, P.A.; Lathrop, M.; Pericak-Vance, M.A.; Launer, L.J.; Farrer, L.A.; van Duijn, C.M.; Van Broeckhoven, C.; Moskvina, V.; Seshadri, S.; Williams, J.; Schellenberg, G.D.; Amouyel, P. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet., 2013, 45(12), 1452-1458.
[http://dx.doi.org/10.1038/ng.2802 ] [PMID: 24162737]
[60]
Carithers, L.J.; Moore, H.M. The Genotype-Tissue Expression (GTEx) Project. Biopreserv. Biobank., 2015, 13(5), 307-308.
[http://dx.doi.org/10.1089/bio.2015.29031.hmm ] [PMID: 26484569]
[61]
Xu, Y.; Kong, J.; Hu, P. Computational Drug Repurposing for Alzheimer’s Disease Using Risk Genes From GWAS and Single-Cell RNA Sequencing Studies. Front. Pharmacol., 2021, 12, 617537.
[http://dx.doi.org/10.3389/fphar.2021.617537 ] [PMID: 34276354]
[62]
Fang, J.; Zhang, P.; Wang, Q.; Chiang, C.W.; Zhou, Y.; Hou, Y.; Xu, J.; Chen, R.; Zhang, B.; Lewis, S.J.; Leverenz, J.B.; Pieper, A.A.; Li, B.; Li, L.; Cummings, J.; Cheng, F. Artificial intelligence framework identifies candidate targets for drug repurposing in Alzheimer’s disease. Alzheimers Res. Ther., 2022, 14(1), 7.
[http://dx.doi.org/10.1186/s13195-021-00951-z ] [PMID: 35012639]
[63]
Wu, A.T.H.; Lawal, B.; Wei, L.; Wen, Y.T.; Tzeng, D.T.W.; Lo, W.C. Multiomics identification of potential targets for Alzhemier’s disease and antrocin as a therapeutic candidate. Pharmaceutics, 2021, 13(10), 1555.
[http://dx.doi.org/10.3390/pharmaceutics13101555] [PMID: 34683848]
[64]
Stathias, V.; Turner, J.; Koleti, A.; Vidovic, D.; Cooper, D.; Fazel-Najafabadi, M.; Pilarczyk, M.; Terryn, R.; Chung, C.; Umeano, A.; Clarke, D.J.B.; Lachmann, A.; Evangelista, J.E.; Ma’ayan, A.; Medvedovic, M.; Schürer, S.C. LINCS Data Portal 2.0: Next generation access point for perturbation-response signatures. Nucleic Acids Res., 2020, 48(D1), D431-D439.
[http://dx.doi.org/10.1093/nar/gkz1023 ] [PMID: 31701147]
[65]
Kareti, S.R. P, S. In silico molecular docking analysis of potential anti-alzheimer’s compounds present in chloroform extract of Carissa carandas leaf using gas chromatography MS/MS. Curr. Ther. Res. Clin. Exp., 2020, 93, 100615.
[http://dx.doi.org/10.1016/j.curtheres.2020.100615] [PMID: 33306055]
[66]
Ponnulakshmi, R.; Sardar, H.; Vishnupriya, V.; Balakrishna, J.P.; Mohan, S.K.; Nivedha, R.P.; Vijayalakshmi, P.; Ponnulakshmi, R. Molecular docking analysis of amyloid precursor protein with compounds from the Australian cowplant. Bioinformation, 2020, 16(7), 561-566.
[http://dx.doi.org/10.6026/97320630016561 ] [PMID: 32994682]
[67]
Barale, S.S.; Parulekar, R.S.; Fandilolu, P.M.; Dhanavade, M.J.; Sonawane, K.D. Molecular insights into destabilization of Alzheimer’s aβ protofibril by arginine containing short peptides: A molecular modeling approach. ACS Omega, 2019, 4(1), 892-903.
[http://dx.doi.org/10.1021/acsomega.8b02672]
[68]
Melquiond, A.; Dong, X.; Mousseau, N.; Derreumaux, P. Role of the region 23-28 in Abeta fibril formation: Insights from simulations of the monomers and dimers of Alzheimer’s peptides Abeta40 and Abeta42. Curr. Alzheimer Res., 2008, 5(3), 244-250.
[http://dx.doi.org/10.2174/156720508784533330 ] [PMID: 18537541]
[69]
Khan, R.H.; Siddiqi, M.K.; Uversky, V.N.; Salahuddin, P. Molecular docking of Aβ1–40 peptide and its Iowa D23N mutant using small molecule inhibitors: Possible mechanisms of Aβ-peptide inhibition. Int. J. Biol. Macromol., 2019, 127, 250-270.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.12.271] [PMID: 30615966]
[70]
Hassan, M.; Shahzadi, S.; Seo, S.Y.; Alashwal, H.; Zaki, N.; Moustafa, A.A. Molecular docking and dynamic simulation of AZD3293 and solanezumab effects against bace1 to treat alzheimer’s disease. Front. Comput. Neurosci., 2018, 12, 34.
[http://dx.doi.org/10.3389/fncom.2018.00034 ] [PMID: 29910719]
[71]
Gosoi, D.; Saikia, R.; Kalita, J.; Paul, R.; Pegu, D.K.; Sinha, S.; Johari, S. Combining virtual screening, molecular docking and simulation studies towards the discovery of β-Secretase (BACE) inhibitors. Int. Conf. Bioinforma. Syst. Biol. BSB 2018, 2018, pp. 103-107.
[http://dx.doi.org/10.1109/BSB.2018.8770645]
[72]
Kumar, A.; Roy, S.; Tripathi, S.; Sharma, A. Molecular docking based virtual screening of natural compounds as potential BACE1 inhibitors: 3D QSAR pharmacophore mapping and molecular dynamics analysis. J. Biomol. Struct. Dyn., 2016, 34(2), 239-249.
[http://dx.doi.org/10.1080/07391102.2015.1022603] [PMID: 25707809]
[73]
Pradeepkiran, J.; Reddy, P. Structure based design and molecular docking studies for phosphorylated tau inhibitors in Alzheimer’s disease. Cells, 2019, 8(3), 260.
[http://dx.doi.org/10.3390/cells8030260 ] [PMID: 30893872]
[74]
Sato, R.; Vohra, S.; Yamamoto, S.; Suzuki, K.; Pavel, K.; Shulga, S.; Blume, Y.; Kurita, N. Specific interactions between tau protein and curcumin derivatives: Molecular docking and ab initio molecular orbital simulations. J. Mol. Graph. Model., 2020, 98, 107611.
[http://dx.doi.org/10.1016/j.jmgm.2020.107611] [PMID: 32276176]
[75]
Barredo, P.A.; Fernandez, M.J.F.; Ambe, C.E.; Balanay, M.P. Tau fibril with membrane lipids: Insight from computational modeling and simulations. PLoS One, 2021, 16(10), e0258692.
[http://dx.doi.org/10.1371/journal.pone.0258692 ] [PMID: 34653235]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy