Generic placeholder image

Recent Advances in Drug Delivery and Formulation

Editor-in-Chief

ISSN (Print): 2667-3878
ISSN (Online): 2667-3886

Review Article

Recent Advancements in Hyperthermia-Driven Controlled Drug Delivery from Nanotherapeutics

Author(s): Mirza Shahed Baig, Mohammad Akiful Haque, Teja Kumar Reddy Konatham, Badrud Duza Mohammad, Barrawaz Aateka Yahya, Shaikh Sana Saffiruddin, Falak A. Siddiqui and Sharuk L. Khan*

Volume 16, Issue 4, 2022

Published on: 26 September, 2022

Page: [270 - 286] Pages: 17

DOI: 10.2174/2667387816666220902091043

Price: $65

Abstract

Previous reviews of the works on magnetic nanoparticles for hyperthermia-induced treatment concentrated mostly on magnetic fluid hyperthermia (MFH) employing monometallic/metal oxide nanocomposites. In the literature, the word "hyperthermia" was also limited to the use of heat for medicinal purposes. A number of articles have recently been published demonstrating that magnetic nanoparticle-based hyperthermia may produce restricted high temperatures, resulting in the release of medicines that are either connected to the magnetic nanoparticles or encased in polymer matrices. In this debate, we propose broadening the concept of "hyperthermia" to encompass temperature-based treatment as well as magnetically controlled medication delivery. The review also addresses core-shell magnetic nanomaterials, particularly nanoshells made by stacked assembly, for the use of hyperthermia- based treatment and precise administration of drugs. The primary objective of this review article is to demonstrate how the combination of hyperthermia-induced therapy and on-demand' drug release models may lead to effective applications in personalized medicine.

Keywords: Magnetic nanomaterials, hyperthermia, polymeric matrix, thermotherapy, controlled drug delivery, nanotherapeutics.

Graphical Abstract

[1]
van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P. The role of mitochondrial factors in apoptosis: A Russian roulette with more than one bullet. Cell Death Differ 2002; 9(10): 1031-42.
[http://dx.doi.org/10.1038/sj.cdd.4401088] [PMID: 12232790]
[2]
Goldstein LS, Dewhirst MW, Repacholi M, Kheifets L. Summary, conclusions and recommendations: Adverse tem-perature levels in the human body. Int J Hyperthermia 2003; 19(3): 373-84.
[http://dx.doi.org/10.1080/0265673031000090701] [PMID: 12745976]
[3]
Hildebrandt B, Wust P, Ahlers O, et al. The cellular and mo-lecular basis of hyperthermia. Crit Rev Oncol Hematol 2002; 43(1): 33-56.
[http://dx.doi.org/10.1016/S1040-8428(01)00179-2] [PMID: 12098606]
[4]
Ahmed SR, Chand R, Kumar S, Mittal N, Srinivasan S, Ra-jabzadeh AR. Recent biosensing advances in the rapid detec-tion of illicit drugs. Trends Analyt Chem 2020; 131: 116006.
[http://dx.doi.org/10.1016/j.trac.2020.116006]
[5]
Rahin Ahmed S, Sherazee M, Srinivasan S, Reza Rajabzadeh A. Nanozymatic detection of thiocyanate through accelerating the growth of ultra-small gold nanoparticles/graphene quan-tum dots hybrids. Food Chem 2022; 379: 132152.
[http://dx.doi.org/10.1016/j.foodchem.2022.132152] [PMID: 35063843]
[6]
Rajabzadeh M, Eshghi H, Khalifeh R, Bakavoli M. Genera-tion of Cu nanoparticles on novel designed Fe3O4@SiO2/EP.EN.EG as reusable nanocatalyst for the reduction of ni-tro compounds. RSC Advances 2016; 6(23): 19331-40.
[http://dx.doi.org/10.1039/C5RA26020E]
[7]
Falk MH, Issels RD. Hyperthermia in oncology. Int J Hyperthermia 2001; 17(1): 1-18.
[http://dx.doi.org/10.1080/02656730150201552] [PMID: 11212876]
[8]
Yu X, Ding S, Yang R, Wu C, Zhang W. Research progress on magnetic nanoparticles for magnetic induction hyperther-mia of malignant tumor. Ceram Int 2021; 47(5): 5909-17.
[http://dx.doi.org/10.1016/j.ceramint.2020.11.049]
[9]
Feddersen TV, Hernandez-Tamames JA, Franckena M, van Rhoon GC, Paulides MM. Clinical performance and future potential of magnetic resonance thermometry in hyperther-mia. Cancers (Basel) 2020; 13(1): 31.
[http://dx.doi.org/10.3390/cancers13010031] [PMID: 33374176]
[10]
Ganguly S, Margel S. Design of magnetic hydrogels for hy-perthermia and drug delivery. Polymers (Basel) 2021; 13(23): 4259.
[http://dx.doi.org/10.3390/polym13234259] [PMID: 34883761]
[11]
Mortezaee K, Narmani A, Salehi M, et al. Synergic effects of nanoparticles-mediated hyperthermia in radiothera-py/chemotherapy of cancer. Life Sci 2021; 269: 119020.
[http://dx.doi.org/10.1016/j.lfs.2021.119020] [PMID: 33450258]
[12]
Périgo EA, Hemery G, Sandre O, et al. Fundamentals and advances in magnetic hyperthermia. Appl Phys Rev 2015; 2(4): 041302.
[http://dx.doi.org/10.1063/1.4935688]
[13]
Maimaitiyiming Y, Wang QQ, Yang C, et al. Hyperthermia selectively destabilizes oncogenic fusion proteins. Blood Cancer Discov 2021; 2(4): 388-401.
[http://dx.doi.org/10.1158/2643-3230.BCD-20-0188] [PMID: 34661159]
[14]
Behrouzkia Z, Joveini Z, Keshavarzi B, Eyvazzadeh N, Agh-dam RZ. Hyperthermia: How can it be used? Oman Med J 2016; 31(2): 89-97.
[http://dx.doi.org/10.5001/omj.2016.19] [PMID: 27168918]
[15]
Nielsen OS, Horsman M, Overgaard J. A future for hyper-thermia in cancer treatment? Eur J Cancer 2001; 37(13): 1587-9.
[http://dx.doi.org/10.1016/S0959-8049(01)00193-9] [PMID: 11527682]
[16]
Hoshi Y, Shibasaki K, Gailly P, Ikegaya Y, Koyama R. Thermosensitive receptors in neural stem cells link stress-induced hyperthermia to impaired neurogenesis via microgli-al engulfment. Sci Adv 2021; 7(48): eabj8080.
[http://dx.doi.org/10.1126/sciadv.abj8080] [PMID: 34826234]
[17]
Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C. Magnetic hyperthermia therapy for the treatment of glioblas-toma: A review of the therapy’s history, efficacy and appli-cation in humans. Int J Hyperthermia 2018; 34(8): 1316-28.
[http://dx.doi.org/10.1080/02656736.2018.1430867] [PMID: 29353516]
[18]
Ito A, Honda H, Kobayashi T. Cancer immunotherapy based on intracellular hyperthermia using magnetite nanoparticles: A novel concept of “heat-controlled necrosis” with heat shock protein expression. Cancer Immunol Immunother 2006; 55(3): 320-8.
[http://dx.doi.org/10.1007/s00262-005-0049-y] [PMID: 16133113]
[19]
Whitesides GM. The ‘right’ size in nanobiotechnology. Nat Biotechnol 2003; 21(10): 1161-5.
[http://dx.doi.org/10.1038/nbt872] [PMID: 14520400]
[20]
Ferrero R, Barrera G, Celegato F, et al. Experimental and modelling analysis of the hyperthermia properties of iron ox-ide nanocubes. Nanomaterials (Basel) 2021; 11(9): 2179.
[http://dx.doi.org/10.3390/nano11092179] [PMID: 34578497]
[21]
Stephens F. Pharmacokinetics of intra-arterial chemotherapy. Recent Results Cancer Res 1983; 86: 1-12.
[22]
Hortobágyi GN. Anthracyclines in the treatment of cancer. An overview. Drugs 1997; 54 (Suppl. 4): 1-7.
[PMID: 9361955]
[23]
Cervadoro A, Giverso C, Pande R, et al. Design maps for the hyperthermic treatment of tumors with superparamagnetic nanoparticles. PLoS One 2013; 8(2): e57332.
[http://dx.doi.org/10.1371/journal.pone.0057332] [PMID: 23451208]
[24]
Ahmed M, Brace CL, Lee FT Jr, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology 2011; 258(2): 351-69.
[http://dx.doi.org/10.1148/radiol.10081634] [PMID: 21273519]
[25]
Myerson RJ, Moros EG, Diederich CJ, et al. Components of a hyperthermia clinic: Recommendations for staffing, equip-ment, and treatment monitoring. Int J Hyperthermia 2014; 30(1): 1-5.
[http://dx.doi.org/10.3109/02656736.2013.861520] [PMID: 24350642]
[26]
Ebadi A, Rajabzadeh M, Khalifeh R. Fe3O4@SiO2/EP.EN.EG.Cu as a highly efficient and recoverable catalytic system for synthesis of 1,4‐disubstituted 1,2,3‐triazole de-rivatives via the click reaction. ChemistrySelect 2019; 4(24): 7211-8.
[http://dx.doi.org/10.1002/slct.201901237]
[27]
Das TK, Ganguly S, Ghosh S, Remanan S, Ghosh SK, Das NC. In-situ synthesis of magnetic nanoparticle immobilized heterogeneous catalyst through mussel mimetic approach for the efficient removal of water pollutants. Colloid Interface Sci Commun 2019; 33: 100218.
[http://dx.doi.org/10.1016/j.colcom.2019.100218]
[28]
Zhou YF. High intensity focused ultrasound in clinical tumor ablation. World J Clin Oncol 2011; 2(1): 8-27.
[http://dx.doi.org/10.5306/wjco.v2.i1.8] [PMID: 21603311]
[29]
Hurwitz MD, Kaplan ID, Svensson GK, Hansen MS, Hynynen K. Feasibility and patient tolerance of a novel transrectal ultrasound hyperthermia system for treatment of prostate cancer. Int J Hyperthermia 2001; 17(1): 31-7.
[http://dx.doi.org/10.1080/02656730150201570] [PMID: 11212878]
[30]
Ganguly S, Kanovsky N, Das P, Gedanken A, Margel S. Photopolymerized thin coating of polypyrrole/graphene nan-ofiber/iron oxide onto nonpolar plastic for flexible electro-magnetic radiation shielding, strain sensing, and non‐contact heating applications. Adv Mater Interfaces 2021; 8(23): 2101255.
[http://dx.doi.org/10.1002/admi.202101255]
[31]
Salgaonkar VA, Diederich CJ. Catheter-based ultrasound technology for image-guided thermal therapy: Current tech-nology and applications. Int J Hyperthermia 2015; 31(2): 203-15.
[http://dx.doi.org/10.3109/02656736.2015.1006269] [PMID: 25799287]
[32]
Chopra R, Burtnyk M, Haider MA, Bronskill MJ. Method for MRI-guided conformal thermal therapy of prostate with pla-nar transurethral ultrasound heating applicators. Phys Med Biol 2005; 50(21): 4957-75.
[http://dx.doi.org/10.1088/0031-9155/50/21/001] [PMID: 16237234]
[33]
Liu D, Adams MS, Burdette EC, Diederich CJ. Transurethral high-intensity ultrasound for treatment of stress urinary in-continence (SUI): Simulation studies with patient-specific models. Int J Hyperthermia 2018; 34(8): 1236-47.
[http://dx.doi.org/10.1080/02656736.2018.1456679] [PMID: 29566562]
[34]
Curto S, Faridi P, Shrestha TB, et al. An integrated platform for small-animal hyperthermia investigations under ultra-high-field MRI guidance. Int J Hyperthermia 2018; 34(4): 341-51.
[http://dx.doi.org/10.1080/02656736.2017.1339126] [PMID: 28728442]
[35]
Fisher C. Examination of the physical and molecular parame-ters that modulate the response of malignant gliomas to pho-todynamic therapy. Canada: University of Toronto 2016.
[36]
Rieke V. MR thermometry. J Magn Reson Imaging 2008; 27(2): 376-90.
[37]
Chaughule RS, Purushotham S, Ramanujan RV. Magnetic nanoparticles as contrast agents for magnetic resonance im-aging. Proc Natl Acad Sci, India, Sect A Phys Sci 2012; 82(3): 257-68.
[http://dx.doi.org/10.1007/s40010-012-0038-4]
[38]
Lewis LH, Jiménez-Villacorta F. Perspectives on permanent magnetic materials for energy conversion and power genera-tion. Metall Mater Trans, A Phys Metall Mater Sci 2013; 44(S1): 2-20.
[http://dx.doi.org/10.1007/s11661-012-1278-2]
[39]
Konar S, Mukherjee PS, Zangrando E, Lloret F, Chaudhuri NR. A three-dimensional homometallic molecular ferrimag-net. Angew Chem Int Ed 2002; 41(9): 1561-3.
[http://dx.doi.org/10.1002/1521-3773(20020503)41:9<1561::AIDANIE1561>3.0.CO;2-J] [PMID: 19750665]
[40]
Fukuda K, Fujieda S, Shinoda K, Suzuki S, Jeyadevan B. Low temperature synthesis of FePt alloy nanoparticles by polyol process. J Phys Conf Ser 2012; 352: 012020.
[41]
Azzaza S, Alleg S, Moumeni H, Nemamcha AR, Rehspringer JL, Greneche JM. Magnetic properties of nanostructured ball-milled Fe and Fe50Co50 alloy. J Phys Condens Matter 2006; 18(31): 7257-72.
[http://dx.doi.org/10.1088/0953-8984/18/31/020]
[42]
White CW, Withrow SP, Sorge KD, et al. Oriented ferromag-netic Fe-Pt alloy nanoparticles produced in Al2O3 by ion-beam synthesis. J Appl Phys 2003; 93(9): 5656-69.
[http://dx.doi.org/10.1063/1.1565691]
[43]
Chung HJ, Lee H, Bae KH, et al. Facile synthetic route for surface-functionalized magnetic nanoparticles: Cell labeling and magnetic resonance imaging studies. ACS Nano 2011; 5(6): 4329-36.
[http://dx.doi.org/10.1021/nn201198f] [PMID: 21619063]
[44]
Nguyen Q, Chinnasamy C, Yoon S, Sivasubramanian S, Sakai T, Baraskar A. Functionalization of FeCo alloy nanoparticles with highly dielectric amorphous oxide coatings. J Appl Phys 2008; 103(7): 07D532.
[http://dx.doi.org/10.1063/1.2839593]
[45]
Dai ZR, Pan ZW, Wang ZL. Novel nanostructures of func-tional oxides synthesized by thermal evaporation. Adv Funct Mater 2003; 13(1): 9-24.
[http://dx.doi.org/10.1002/adfm.200390013]
[46]
Wu W, Wu Z, Yu T, Jiang C, Kim WS. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface func-tional strategies and biomedical applications. Sci Technol Adv Mater 2015; 16(2): 023501.
[http://dx.doi.org/10.1088/1468-6996/16/2/023501] [PMID: 27877761]
[47]
Hilger I, Kaiser WA. Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine (Lond) 2012; 7(9): 1443-59.
[http://dx.doi.org/10.2217/nnm.12.112] [PMID: 22994960]
[48]
Ganguly S. Neelam, Grinberg I, Margel S. Layer by layer controlled synthesis at room temperature of tri‐modal (MRI, fluorescence and CT) core/shell superparamagnetic IO/human serum albumin nanoparticles for diagnostic applica-tions. Polym Adv Technol 2021; 32(10): 3909-21.
[http://dx.doi.org/10.1002/pat.5344]
[49]
Santra S, Kaittanis C, Grimm J, Perez JM. Drug/dye‐loaded, multifunctional iron oxide nanoparticles for combined target-ed cancer therapy and dual optical/magnetic resonance imag-ing. Small 2009; 5(16): 1862-8.
[50]
Sathe TR, Agrawal A, Nie S. Mesoporous silica beads em-bedded with semiconductor quantum dots and iron oxide nanocrystals: Dual-function microcarriers for optical encod-ing and magnetic separation. Anal Chem 2006; 78(16): 5627-32.
[http://dx.doi.org/10.1021/ac0610309] [PMID: 16906704]
[51]
Fu L, Liu Z, Liu Y, et al. Beaded cobalt oxide nanoparticles along carbon nanotubes: Towards more highly integrated electronic devices. Adv Mater 2005; 17(2): 217-21.
[http://dx.doi.org/10.1002/adma.200400833]
[52]
Tailhades P, Gillot B, Rousset A. Mixed-valence defect ferrites: A new family of fine powders and thin films of spinel ferrites. J Phys IV France 1997; 7(1): C1-249-52.
[http://dx.doi.org/10.1051/jp4:1997196]
[53]
Herring NP, Panda AB, AbouZeid K, Almahoudi SH, Olson CR, Patel A. Microwave synthesis of metal oxide nanoparti-cles. In: Metal Oxide Nanomaterials for Chemical Sensors. Springer 2013; pp. 245-84.
[http://dx.doi.org/10.1007/978-1-4614-5395-6_8]
[54]
Jana NR, Chen Y, Peng X. Size-and shape-controlled magnet-ic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chem Mater 2004; 16(20): 3931-5.
[http://dx.doi.org/10.1021/cm049221k]
[55]
Roberts AP, Heslop D, Zhao X, Pike CR. Understanding fine magnetic particle systems through use of first-order reversal curve diagrams. Rev Geophys 2014; 52(4): 557-602.
[http://dx.doi.org/10.1002/2014RG000462]
[56]
Cartmell SH, Dobson J, Verschueren SB, El Haj AJ. Devel-opment of magnetic particle techniques for long-term culture of bone cells with intermittent mechanical activation. IEEE Trans Nanobiosci 2002; 1(2): 92-7.
[http://dx.doi.org/10.1109/TNB.2002.806945] [PMID: 16689213]
[57]
Ovcharenko VI, Sagdeev RZ. Molecular ferromagnets. Russ Chem Rev 1999; 68(5): 345-63.
[http://dx.doi.org/10.1070/RC1999v068n05ABEH000513]
[58]
Dietl T. Functional ferromagnets. Nat Mater 2003; 2(10): 646-8.
[http://dx.doi.org/10.1038/nmat989] [PMID: 14520343]
[59]
de Groot RA, Mueller FM, Engen PG, Buschow KHJ. New class of materials: Half-metallic ferromagnets. Phys Rev Lett 1983; 50(25): 2024-7.
[http://dx.doi.org/10.1103/PhysRevLett.50.2024]
[60]
Dzyaloshinskii I. Magnetoelectricity in ferromagnets. Europhys Lett 2008; 83(6): 67001.
[http://dx.doi.org/10.1209/0295-5075/83/67001]
[61]
Wetzel ED, Fink BK. Feasibility of magnetic particle films for curie temperature-controlled processing of composite materi-als. Defence Technical Information Centre ADA389016, 2001.
[62]
Liu P, Tang J. A magnetic polaron model for the enhanced Curie temperature of EuO 1− x. J Phys Condens Matter 2013; 25(12): 125802.
[http://dx.doi.org/10.1088/0953-8984/25/12/125802] [PMID: 23449037]
[63]
Ahmed AS, Ramanujan RV. Curie temperature controlled self-healing magnet–polymer composites. J Mater Res 2015; 30(7): 946-58.
[http://dx.doi.org/10.1557/jmr.2015.59]
[64]
Cao L, Xie D, Guo M, Park HS, Fujita T. Size and shape effects on Curie temperature of ferromagnetic nanoparticles. Trans Nonferrous Met Soc China 2007; 17(6): 1451-5.
[http://dx.doi.org/10.1016/S1003-6326(07)60293-3]
[65]
Jonsson T, Mattsson J, Djurberg C, Khan FA, Nordblad P, Svedlindh P. Aging in a magnetic particle system. Phys Rev Lett 1995; 75(22): 4138-41.
[http://dx.doi.org/10.1103/PhysRevLett.75.4138] [PMID: 10059824]
[66]
Virden AE, O’Grady K. Structure and magnetic properties of NiZn ferrite nanoparticles. J Magn Magn Mater 2005; 290-291: 868-70.
[http://dx.doi.org/10.1016/j.jmmm.2004.11.398]
[67]
Valberg PA, Feldman HA. Magnetic particle motions within living cells. Measurement of cytoplasmic viscosity and mo-tile activity. Biophys J 1987; 52(4): 551-61.
[http://dx.doi.org/10.1016/S0006-3495(87)83244-7] [PMID: 3676436]
[68]
Kumar CSSR, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 2011; 63(9): 789-808.
[http://dx.doi.org/10.1016/j.addr.2011.03.008] [PMID: 21447363]
[69]
Ortega D, Pankhurst QA. Magnetic hyperthermia. Nanosci-ence 2013; 1(60): e88.
[70]
Manju S, Sreenivasan K. Enhanced drug loading on magnetic nanoparticles by layer-by-layer assembly using drug conju-gates: Blood compatibility evaluation and targeted drug deliv-ery in cancer cells. Langmuir 2011; 27(23): 14489-96.
[http://dx.doi.org/10.1021/la202470k] [PMID: 21988497]
[71]
Amirfazli A. Magnetic nanoparticles hit the target. Nat Nanotechnol 2007; 2(8): 467-8.
[http://dx.doi.org/10.1038/nnano.2007.234] [PMID: 18654342]
[72]
Ferretti AM, Usseglio S, Mondini S, et al. Towards biocompatible magnetic nanoparticles: Immune-related effects, in vitro internalization, and in vivo bio-distribution of zwitterionic ferrite nanoparticles with unexpected renal clearance. J Colloid Interface Sci 2021; 582(Pt B): 678-700.
[http://dx.doi.org/10.1016/j.jcis.2020.08.026] [PMID: 32911414]
[73]
Szalay B, Tátrai E. Nyírő G, Vezér T, Dura G. Potential toxic effects of iron oxide nanoparticles in in vivo and in vitro ex-periments. J Appl Toxicol 2012; 32(6): 446-53.
[http://dx.doi.org/10.1002/jat.1779] [PMID: 22161551]
[74]
Sarkar TR, Irudayaraj J. Carboxyl-coated magnetic nanopar-ticles for mRNA isolation and extraction of supercoiled plasmid DNA. Anal Biochem 2008; 379(1): 130-2.
[http://dx.doi.org/10.1016/j.ab.2008.04.016] [PMID: 18471426]
[75]
Chapman S, Dobrovolskaia M, Farahani K, et al. Nanoparti-cles for cancer imaging: The good, the bad, and the promise. Nano Today 2013; 8(5): 454-60.
[http://dx.doi.org/10.1016/j.nantod.2013.06.001] [PMID: 25419228]
[76]
Malhotra N, Lee JS, Liman RAD, et al. Potential toxicity of iron oxide magnetic nanoparticles: A review. Molecules 2020; 25(14): 3159.
[http://dx.doi.org/10.3390/molecules25143159] [PMID: 32664325]
[77]
Prijic S, Sersa G. Magnetic nanoparticles as targeted delivery systems in oncology. Radiol Oncol 2011; 45(1): 1-16.
[http://dx.doi.org/10.2478/v10019-011-0001-z] [PMID: 22933928]
[78]
Briceño S, Hernandez AC, Sojo J, Lascano L, Gonzalez G. Degradation of magnetite nanoparticles in biomimetic media. J Nanopart Res 2017; 19(4): 140.
[http://dx.doi.org/10.1007/s11051-017-3800-3]
[79]
Biswas A, Patra AK, Sarkar S, Das D, Chattopadhyay D, De S. Synthesis of highly magnetic iron oxide nanomaterials from waste iron by one-step approach. Colloids Surf A Physicochem Eng Asp 2020; 589: 124420.
[http://dx.doi.org/10.1016/j.colsurfa.2020.124420]
[80]
Sarkar J, Mollick MMR, Chattopadhyay D, Acharya K, Acharya K. An eco-friendly route of γ-Fe2O3 nanoparticles formation and investigation of the mechanical properties of the HPMC-γ-Fe2O3 nanocomposites. Bioprocess Biosyst Eng 2017; 40(3): 351-9.
[http://dx.doi.org/10.1007/s00449-016-1702-x] [PMID: 27826743]
[81]
Johannsen M, Thiesen B, Wust P, Jordan A. Magnetic nano-particle hyperthermia for prostate cancer. Int J Hyperthermia 2010; 26(8): 790-5.
[http://dx.doi.org/10.3109/02656731003745740] [PMID: 20653418]
[82]
Lévy M, Lagarde F, Maraloiu VA, et al. Degradability of superparamagnetic nanoparticles in a model of intracellular environment: follow-up of magnetic, structural and chemical properties. Nanotechnology 2010; 21(39): 395103.
[http://dx.doi.org/10.1088/0957-4484/21/39/395103] [PMID: 20820094]
[83]
Foy SP, Labhasetwar V. Oh the irony: Iron as a cancer cause or cure? Biomaterials 2011; 32(35): 9155-8.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.047] [PMID: 21963282]
[84]
Hergt R, Hiergeist R, Zeisberger M, et al. Magnetic properties of bacterial magnetosomes as potential diagnostic and thera-peutic tools. J Magn Magn Mater 2005; 293(1): 80-6.
[http://dx.doi.org/10.1016/j.jmmm.2005.01.047]
[85]
Gonzales-Weimuller M, Zeisberger M, Krishnan KM. Size-dependant heating rates of iron oxide nanoparticles for mag-netic fluid hyperthermia. J Magn Magn Mater 2009; 321(13): 1947-50.
[http://dx.doi.org/10.1016/j.jmmm.2008.12.017] [PMID: 26405373]
[86]
Suto M, Hirota Y, Mamiya H, et al. Heat dissipation mecha-nism of magnetite nanoparticles in magnetic fluid hyperther-mia. J Magn Magn Mater 2009; 321(10): 1493-6.
[http://dx.doi.org/10.1016/j.jmmm.2009.02.070]
[87]
Lévy M, Wilhelm C, Siaugue JM, Horner O, Bacri JC, Gazeau F. Magnetically induced hyperthermia: Size-dependent heat-ing power of γ-Fe2O3 nanoparticles. J Phys Condens Matter 2008; 20(20): 204133.
[http://dx.doi.org/10.1088/0953-8984/20/20/204133] [PMID: 21694262]
[88]
Jun Y, Huh YM, Choi J, et al. Nanoscale size effect of mag-netic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 2005; 127(16): 5732-3.
[http://dx.doi.org/10.1021/ja0422155] [PMID: 15839639]
[89]
Purushotham S, Ramanujan RV. Modeling the performance of magnetic nanoparticles in multimodal cancer therapy. J Appl Phys 2010; 107(11): 114701.
[http://dx.doi.org/10.1063/1.3432757]
[90]
Jeyadevan B. Present status and prospects of magnetite na-noparticles-based hyperthermia. J Ceram Soc Jpn 2010; 118(1378): 391-401.
[http://dx.doi.org/10.2109/jcersj2.118.391]
[91]
Fortin JP, Wilhelm C, Servais J, Ménager C, Bacri JC, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 2007; 129(9): 2628-35.
[http://dx.doi.org/10.1021/ja067457e] [PMID: 17266310]
[92]
Fortin J-P, Gazeau F, Wilhelm C. Internal heating of living cells with magnetic nanomediators. Eur Biophys J 2008; 37: 223-8.
[http://dx.doi.org/10.1007/s00249-007-0197-4] [PMID: 17641885]
[93]
Torres TE, Lima E Jr, Calatayud MP, et al. The relevance of Brownian relaxation as power absorption mechanism in magnetic hyperthermia. Sci Rep 2019; 9(1): 3992.
[http://dx.doi.org/10.1038/s41598-019-40341-y] [PMID: 30850704]
[94]
Pradhan P, Giri J, Samanta G, et al. Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. J Biomed Mater Res B Appl Biomater 2007; 81B(1): 12-22.
[http://dx.doi.org/10.1002/jbm.b.30630] [PMID: 16924619]
[95]
Kieler-Ferguson HM, Fréchet JMJ, Szoka FC Jr. Clinical de-velopments of chemotherapeutic nanomedicines: polymers and liposomes for delivery of camptothecins and platinum (II) drugs. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013; 5(2): 130-8.
[http://dx.doi.org/10.1002/wnan.1209] [PMID: 23335566]
[96]
Li L, ten Hagen TLM, Bolkestein M, et al. Improved intra-tumoral nanoparticle extravasation and penetration by mild hyperthermia. J Control Release 2013; 167(2): 130-7.
[http://dx.doi.org/10.1016/j.jconrel.2013.01.026] [PMID: 23391444]
[97]
Minchinton AI, Tannock IF. Drug penetration in solid tu-mours. Nat Rev Cancer 2006; 6(8): 583-92.
[http://dx.doi.org/10.1038/nrc1893] [PMID: 16862189]
[98]
Ganguly S, Margel S. Review: Remotely controlled magneto-regulation of therapeutics from magnetoelastic gel matrices. Biotechnol Adv 2020; 44: 107611.
[http://dx.doi.org/10.1016/j.biotechadv.2020.107611] [PMID: 32818552]
[99]
Primeau AJ, Rendon A, Hedley D, Lilge L, Tannock IF. The distribution of the anticancer drug Doxorubicin in relation to blood vessels in solid tumors. Clin Cancer Res 2005; 11(24): 8782-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-1664] [PMID: 16361566]
[100]
Teicher BA, Ara G, Keyes SR, Herbst RS, Frei E III. Acute in in vivo resistance in high-dose therapy. Clin Cancer Res 1998; 4(2): 483-91.
[PMID: 9516940]
[101]
Larsen AK, Escargueil AE, Skladanowski A. Resistance mechanisms associated with altered intracellular distribution of anticancer agents. Pharmacol Ther 2000; 85(3): 217-29.
[http://dx.doi.org/10.1016/S0163-7258(99)00073-X] [PMID: 10739876]
[102]
Gartung A, Yang J, Sukhatme VP, et al. Suppression of chemotherapy-induced cytokine/lipid mediator surge and ovarian cancer by a dual COX-2/sEH inhibitor. Proc Natl Acad Sci USA 2019; 116(5): 1698-703.
[http://dx.doi.org/10.1073/pnas.1803999116] [PMID: 30647111]
[103]
Chang J, Bhasin SS, Bielenberg DR, et al. Chemotherapy‐generated cell debris stimulates colon carcinoma tumor growth via osteopontin. FASEB J 2019; 33(1): 114-25.
[http://dx.doi.org/10.1096/fj.201800019RR] [PMID: 29957058]
[104]
Seelig KJ, Révész L. Effect of lethally damaged tumour cells upon the growth of admixed viable cells in diffusion cham-bers. Br J Cancer 1960; 14(1): 126-38.
[http://dx.doi.org/10.1038/bjc.1960.15] [PMID: 14444502]
[105]
Tan Q, Saggar JK, Yu M, Wang M, Tannock IF. Mechanisms of drug resistance related to the microenvironment of solid tumors and possible strategies to inhibit them. Cancer J 2015; 21(4): 254-62.
[http://dx.doi.org/10.1097/PPO.0000000000000131] [PMID: 26222076]
[106]
Kakwere H, Leal MP, Materia ME, et al. Functionalization of strongly interacting magnetic nanocubes with (ther-mo)responsive coating and their application in hyperthermia and heat-triggered drug delivery. ACS Appl Mater Interfaces 2015; 7(19): 10132-45.
[http://dx.doi.org/10.1021/am5088117] [PMID: 25840122]
[107]
Eidi H, Joubert O, Némos C, et al. Drug delivery by poly-meric nanoparticles induces autophagy in macrophages. Int J Pharm 2012; 422(1-2): 495-503.
[http://dx.doi.org/10.1016/j.ijpharm.2011.11.020] [PMID: 22119964]
[108]
Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug delivery. In: Cancer Nano-technology. Springer 2010; pp. 163-75.
[109]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75(1): 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[110]
Ganguly S, Maity PP, Mondal S, et al. Polysaccharide and poly(methacrylic acid) based biodegradable elastomeric bio-compatible semi-IPN hydrogel for controlled drug delivery. Mater Sci Eng C 2018; 92: 34-51.
[http://dx.doi.org/10.1016/j.msec.2018.06.034] [PMID: 30184759]
[111]
Ganguly S, Maity T, Mondal S, Das P, Das NC. Starch func-tionalized biodegradable semi-IPN as a pH-tunable controlled release platform for memantine. Int J Biol Macromol 2017; 95: 185-98.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.055] [PMID: 27865957]
[112]
Bhowmik M, Kumari P, Sarkar G, et al. Effect of xanthan gum and guar gum on in situ gelling ophthalmic drug delivery system based on poloxamer-407. Int J Biol Macromol 2013; 62: 117-23.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.024] [PMID: 23988556]
[113]
Bhowmik M, Das S, Chattopadhyay D, Ghosh LK. Study of thermo-sensitive in situ gels for ocular delivery. Sci Pharm 2011; 79(2): 351-8.
[http://dx.doi.org/10.3797/scipharm.1010-04] [PMID: 21773071]
[114]
Shum P, Kim JM, Thompson DH. Phototriggering of liposo-mal drug delivery systems. Adv Drug Deliv Rev 2001; 53(3): 273-84.
[http://dx.doi.org/10.1016/S0169-409X(01)00232-0] [PMID: 11744172]
[115]
He H, Lu Y, Qi J, Zhu Q, Chen Z, Wu W. Adapting lipo-somes for oral drug delivery. Acta Pharm Sin B 2019; 9(1): 36-48.
[http://dx.doi.org/10.1016/j.apsb.2018.06.005] [PMID: 30766776]
[116]
Gregoriadis G. Engineering liposomes for drug delivery: Progress and problems. Trends Biotechnol 1995; 13(12): 527-37.
[http://dx.doi.org/10.1016/S0167-7799(00)89017-4] [PMID: 8595139]
[117]
Ganguly S, Das P, Itzhaki E, Hadad E, Gedanken A, Margel S. Microwave-synthesized polysaccharide-derived carbon dots as therapeutic cargoes and toughening agents for elas-tomeric gels. ACS Appl Mater Interfaces 2020; 12(46): 51940-51.
[http://dx.doi.org/10.1021/acsami.0c14527] [PMID: 33156599]
[118]
Das P, Maruthapandi M, Saravanan A, et al. Carbon dots for heavy-metal sensing, pH-sensitive cargo delivery, and anti-bacterial applications. ACS Appl Nano Mater 2020; 3(12): 11777-90.
[http://dx.doi.org/10.1021/acsanm.0c02305]
[119]
Saravanan A, Maruthapandi M, Das P, et al. Applications of N-doped carbon dots as antimicrobial agents, antibiotic carri-ers, and selective fluorescent probes for nitro explosives. ACS Appl Bio Mater 2020; 3(11): 8023-31.
[http://dx.doi.org/10.1021/acsabm.0c01104] [PMID: 35019541]
[120]
Webber MJ, Langer R. Drug delivery by supramolecular design. Chem Soc Rev 2017; 46(21): 6600-20.
[http://dx.doi.org/10.1039/C7CS00391A] [PMID: 28828455]
[121]
Li Z, Song N, Yang YW. Stimuli-responsive drug-delivery systems based on supramolecular nanovalves. Matter 2019; 1(2): 345-68.
[http://dx.doi.org/10.1016/j.matt.2019.05.019] [PMID: 34104881]
[122]
Leite D, Barbu E, Pilkington G, Lalatsa A. Peptide self-assemblies for drug delivery. Curr Top Med Chem 2015; 15(22): 2277-89.
[http://dx.doi.org/10.2174/1568026615666150605120456] [PMID: 26043734]
[123]
Zhou M, Wen K, Bi Y, et al. The application of stimuli-responsive nanocarriers for targeted drug delivery. Curr Top Med Chem 2017; 17(20): 2319-34.
[http://dx.doi.org/10.2174/1568026617666170224121008] [PMID: 28240179]
[124]
Simões S, Veiga F, Torres-Labandeira J, Ribeiro A, Conchei-ro A, Alvarez-Lorenzo C. Syringeable self-assembled cy-clodextrin gels for drug delivery. Curr Top Med Chem 2014; 14(4): 494-509.
[http://dx.doi.org/10.2174/1568026613666131219124308] [PMID: 24354670]
[125]
Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer 2008; 8(6): 473-80.
[http://dx.doi.org/10.1038/nrc2394] [PMID: 18469827]
[126]
Das P, Ganguly S, Margel S, Gedanken A. Tailor made mag-netic nanolights: Fabrication to cancer theranostics applica-tions. Nanoscale Adv 2021; 3(24): 6762-96.
[http://dx.doi.org/10.1039/D1NA00447F]
[127]
Onoue S, Yamada S, Chan K. Nanodrugs: Pharmacokinetics and safety. Int J Nanomedicine 2014; 9: 1025-37.
[http://dx.doi.org/10.2147/IJN.S38378] [PMID: 24591825]
[128]
He C, Liu D, Lin W. Self-assembled core-shell nanoparticles for combined chemotherapy and photodynamic therapy of resistant head and neck cancers. ACS Nano 2015; 9(1): 991-1003.
[http://dx.doi.org/10.1021/nn506963h] [PMID: 25559017]
[129]
Uziely B, Jeffers S, Isacson R, et al. Liposomal doxorubicin: Antitumor activity and unique toxicities during two comple-mentary phase I studies. J Clin Oncol 1995; 13(7): 1777-85.
[http://dx.doi.org/10.1200/JCO.1995.13.7.1777] [PMID: 7602367]
[130]
Barenholz YC. Doxil® — The first FDA-approved nano-drug: Lessons learned. J Control Release 2012; 160(2): 117-34.
[http://dx.doi.org/10.1016/j.jconrel.2012.03.020] [PMID: 22484195]
[131]
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene de-livery. Adv Drug Deliv Rev 2016; 99(Pt A): 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[132]
Cherukuri P, Glazer ES, Curley SA. Targeted hyperthermia using metal nanoparticles. Adv Drug Deliv Rev 2010; 62(3): 339-45.
[http://dx.doi.org/10.1016/j.addr.2009.11.006] [PMID: 19909777]
[133]
Ikehara Y, Niwa T, Biao L, et al. A carbohydrate recognition-based drug delivery and controlled release system using in-traperitoneal macrophages as a cellular vehicle. Cancer Res 2006; 66(17): 8740-8.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0470] [PMID: 16951190]
[134]
Branca RT, Cleveland ZI, Fubara B, et al. Molecular MRI for sensitive and specific detection of lung metastases. Proc Natl Acad Sci USA 2010; 107(8): 3693-7.
[http://dx.doi.org/10.1073/pnas.1000386107] [PMID: 20142483]
[135]
Bozzuto G, Molinari A. Liposomes as nanomedical devices. Int J Nanomedicine 2015; 10: 975-99.
[http://dx.doi.org/10.2147/IJN.S68861] [PMID: 25678787]
[136]
Lasic DD, Papahadjopoulos D. Liposomes Revisited. Science 1995; 267(5202): 1275-6.
[http://dx.doi.org/10.1126/science.7871422] [PMID: 7871422]
[137]
Jesorka A, Orwar O. Liposomes: Technologies and analytical applications. Annu Rev Anal Chem (Palo Alto, Calif) 2008; 1(1): 801-32.
[http://dx.doi.org/10.1146/annurev.anchem.1.031207.112747] [PMID: 20636098]
[138]
Torchilin VP. Recent advances with liposomes as pharma-ceutical carriers. Nat Rev Drug Discov 2005; 4(2): 145-60.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[139]
Papahadjopoulos D, Gabizon A. Liposomes designed to avoid the reticuloendothelial system. Prog Clin Biol Res 1990; 343: 85-93.
[PMID: 2198586]
[140]
Allen TM, Hansen CB, de Menezes DEL. Pharmacokinetics of long-circulating liposomes. Adv Drug Deliv Rev 1995; 16(2-3): 267-84.
[http://dx.doi.org/10.1016/0169-409X(95)00029-7]
[141]
Di Corato R, Béalle G, Kolosnjaj-Tabi J, et al. Combining magnetic hyperthermia and photodynamic therapy for tumor ablation with photoresponsive magnetic liposomes. ACS Nano 2015; 9(3): 2904-16.
[http://dx.doi.org/10.1021/nn506949t] [PMID: 25695371]
[142]
Espinosa A, Di Corato R, Kolosnjaj-Tabi J, Flaud P, Pelle-grino T, Wilhelm C. Duality of iron oxide nanoparticles in cancer therapy: Amplification of heating efficiency by mag-netic hyperthermia and photothermal bimodal treatment. ACS Nano 2016; 10(2): 2436-46.
[http://dx.doi.org/10.1021/acsnano.5b07249] [PMID: 26766814]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy