Generic placeholder image

Current Pediatric Reviews

Editor-in-Chief

ISSN (Print): 1573-3963
ISSN (Online): 1875-6336

Review Article

Targeted Treatment and Immunotherapy in High-risk and Relapsed/ Refractory Pediatric Acute Lymphoblastic Leukemia

Author(s): Violeta Graiqevci-Uka, Emir Behluli, Lidvana Spahiu, Thomas Liehr and Gazmend Temaj*

Volume 19, Issue 2, 2023

Published on: 26 September, 2022

Page: [150 - 156] Pages: 7

DOI: 10.2174/1573396318666220901165247

open access plus

Abstract

Acute lymphoblastic leukemia is the most frequent pediatric malignancy in children, comprising 30% of all pediatric malignancies; adult ALL comprises 5% of all ALL cases, which have a 186.6 per 1 million incidence. In pediatric ALL (pALL), on which this review focuses, approximately 1 in 285 children are diagnosed with cancer before the age of 20, and approximately 1 in 530 young adults between the ages of 20 and 39 years old is a childhood cancer survivor. The survival probability in pALL is now very high, approximately 80-90%. Thus, the most important is to improve supportive care and treatment based on relapse risk, optimally being based on the genetic feature of malignant cells. Improvements made by now are mainly the classifying of subgroups based on genetic characteristics such as aneuploidy or translocation and aligning them with treatment response. Relevant genetic changes in ALL pathogenesis are transcription regulators of lymphoid development (PAX5, IKZF1, EBF1, and LEF1) and/or coactivators (TBL1XR1 and ERG), lymphoid signaling (BTLA, and CD200 TOX), and tumor suppressor genes (CDKN2A, CDKN2B, RB1, and TP53). This review aims to summarize treatment strategies inhibiting tyrosine kinases, influencing different signaling pathways, BCL inhibitors, and anti-CD therapy (anti-cluster differentiation therapy) in pALL. CAR T-cell therapy (chimeric antigen receptors T-cell therapy) is under research and requires further development.

Keywords: Pediatric acute lymphoblastic leukemia (pALL), gene fusion, signaling pathway, diagnosis, treatment, CAR T-cell therapy.

Graphical Abstract

[1]
Ward E, DeSantis C, Robbins A, Kohler B, Jemal A. Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin 2014; 64(2): 83-103.
[http://dx.doi.org/10.3322/caac.21219] [PMID: 24488779]
[2]
Pui CH, Pei D, Campana D, et al. A revised definition for cure of childhood acute lymphoblastic leukemia. Leukemia 2014; 28(12): 2336-43.
[http://dx.doi.org/10.1038/leu.2014.142] [PMID: 24781017]
[3]
Greaves MF, Maia AT, Wiemels JL, Ford AM. Leukemia in twins: Lessons in natural history. Blood 2003; 102(7): 2321-33.
[http://dx.doi.org/10.1182/blood-2002-12-3817] [PMID: 12791663]
[4]
Lo Nigro L. Biology of childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2013; 35(4): 245-52.
[http://dx.doi.org/10.1097/MPH.0b013e31828f8746] [PMID: 23612374]
[5]
Mullighan CG. The molecular genetic makeup of acute lymphoblastic leukemia. Hematology (Am Soc Hematol Educ Program) 2012; 2012(1): 389-96.
[http://dx.doi.org/10.1182/asheducation.V2012.1.389.3798360] [PMID: 23233609]
[6]
Hirabayashi S, Ohki K, Nakabayashi K, et al. ZNF384 -related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype. Haematologica 2017; 102(1): 118-29.
[http://dx.doi.org/10.3324/haematol.2016.151035] [PMID: 27634205]
[7]
(a) Inaba H, Mullighan CG. Pediatric acute lymphoblastic leukemia. Haematologica 2020; 105(11): 2524-39.
[http://dx.doi.org/10.3324/haematol.2020.247031] [PMID: 33054110];
(b) Inaba H, Pui CH. Advances in the Diagnosis and Treatment of Pediatric Acute Lymphoblastic Leukemia. J Clin Med 2021; 10(9): 1926.
[http://dx.doi.org/10.3390/jcm10091926] [PMID: 33946897]
[8]
Heerema NA, Nachman JB, Sather HN, et al. Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: A report from the children’s cancer group. Blood 1999; 94(12): 4036-45.
[PMID: 10590047]
[9]
Uckun FM, Sensel MG, Sather HN, et al. Clinical significance of translocation t(1;19) in childhood acute lymphoblastic leukemia in the context of contemporary therapies: A report from the children’s cancer group. J Clin Oncol 1998; 16(2): 527-35.
[http://dx.doi.org/10.1200/JCO.1998.16.2.527] [PMID: 9469337]
[10]
Pui CH, Gaynon PS, Boyett JM, et al. Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet 2002; 359(9321): 1909-15.
[http://dx.doi.org/10.1016/S0140-6736(02)08782-2] [PMID: 12057554]
[11]
Romana SP, Poirel H, Leconiat M, et al. High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood 1995; 86(11): 4263-9.
[http://dx.doi.org/10.1182/blood.V86.11.4263.bloodjournal86114263] [PMID: 7492786]
[12]
Seeger K, Buchwald D, Peter A, et al. TEL-AML1 fusion in relapsed childhood acute lymphoblastic leukemia. Blood 1999; 94(1): 374-6.
[http://dx.doi.org/10.1182/blood.V94.1.374.413a48c_374_376] [PMID: 10428549]
[13]
Loh ML, Silverman LB, Young ML, et al. Incidence of TEL/AML1 fusion in children with relapsed acute lymphoblastic leukemia. Blood 1998; 92(12): 4792-7.
[http://dx.doi.org/10.1182/blood.V92.12.4792] [PMID: 9845546]
[14]
Kar YD, Özdemir ZC, Bör Ö. Evaluation of febrile neutropenic attacks of pediatric hematology-oncology patients. Turk Pediatri Ars 2017; 52(4): 213-20.
[PMID: 29483801]
[15]
Slayton WB, Schultz KR, Silverman LB, Hunger SP. How we approach Philadelphia chromosome‐positive acute lymphoblastic leukemia in children and young adults. Pediatr Blood Cancer 2020; 67(10): e28543.
[http://dx.doi.org/10.1002/pbc.28543] [PMID: 32779849]
[16]
Tasian SK, Loh ML, Hunger SP. Philadelphia chromosome-like acute lymphoblastic leukemia. Blood 2017; 130(19): 2064-72.
[http://dx.doi.org/10.1182/blood-2017-06-743252] [PMID: 28972016]
[17]
Tanasi I, Ba I, Sirvent N, et al. Efficacy of tyrosine kinase inhibitors in Ph-like acute lymphoblastic leukemia harboring ABL-class rearrangements. Blood 2019; 134(16): 1351-5.
[http://dx.doi.org/10.1182/blood.2019001244] [PMID: 31434701]
[18]
Kapoor I, Bodo J, Hill BT, Hsi ED, Almasan A. Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance. Cell Death Dis 2020; 11(11): 941.
[http://dx.doi.org/10.1038/s41419-020-03144-y] [PMID: 33139702]
[19]
Karol SE, Cooper TM, Bittencourt H, et al. Safety, efficacy, and PK of the BCL2 inhibitor venetoclax in combination with chemotherapy in pediatric and young adult patients with relapsed/refractory acute myeloid leukemia and acute lymphoblastic leukemia: Phase 1 study. Blood 2019; 134 (Suppl. 1): 2649.
[http://dx.doi.org/10.1182/blood-2019-129805]
[20]
Pullarkat VA, Lacayo NJ, Jabbour E, et al. Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Cancer Discov 2021; 11(6): 1440-53.
[http://dx.doi.org/10.1158/2159-8290.CD-20-1465] [PMID: 33593877]
[21]
Horton TM, Gannavarapu A, Blaney SM, D’Argenio DZ, Plon SE, Berg SL. Bortezomib interactions with chemotherapy agents in acute leukemia in vitro. Cancer Chemother Pharmacol 2006; 58(1): 13-23.
[http://dx.doi.org/10.1007/s00280-005-0135-z] [PMID: 16292537]
[22]
Messinger YH, Gaynon PS, Sposto R, et al. Bortezomib with chemotherapy is highly active in advanced B-precursor acute lymphoblastic leukemia: Therapeutic Advances In Childhood Leukemia & Lymphoma (TACL) study. Blood 2012; 120(2): 285-90.
[http://dx.doi.org/10.1182/blood-2012-04-418640] [PMID: 22653976]
[23]
Teachey DT, Devidas M, Wood BL, et al. Cranial radiation can be eliminated in most children with T-Cell Acute Lymphoblastic Leukemia (T-ALL) and bortezomib potentially improves survival in children with T-cell Lymphoblastic Lymphoma (T-LL): Results of Children’s Oncology Group (COG) trial AALL1231. Blood 2020; 136 (Suppl. 1): 11-2.
[http://dx.doi.org/10.1182/blood-2020-134730]
[24]
Gutierrez A, Sanda T, Grebliunaite R, et al. High frequency of PTEN, PI3K, and AKT abnormalities in T-cell acute lymphoblastic leukemia. Blood 2009; 114(3): 647-50.
[http://dx.doi.org/10.1182/blood-2009-02-206722] [PMID: 19458356]
[25]
Teachey DT, Obzut DA, Cooperman J, et al. The mTOR inhibitor CCI-779 induces apoptosis and inhibits growth in preclinical models of primary adult human ALL. Blood 2006; 107(3): 1149-55.
[http://dx.doi.org/10.1182/blood-2005-05-1935] [PMID: 16195324]
[26]
Wei G, Twomey D, Lamb J, et al. Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance. Cancer Cell 2006; 10(4): 331-42.
[http://dx.doi.org/10.1016/j.ccr.2006.09.006] [PMID: 17010674]
[27]
Crazzolara R, Cisterne A, Thien M, et al. Potentiating effects of RAD001 (Everolimus) on vincristine therapy in childhood acute lymphoblastic leukemia. Blood 2009; 113(14): 3297-306.
[http://dx.doi.org/10.1182/blood-2008-02-137752] [PMID: 19196656]
[28]
Avellino R, Romano S, Parasole R, et al. Rapamycin stimulates apoptosis of childhood acute lymphoblastic leukemia cells. Blood 2005; 106(4): 1400-6.
[http://dx.doi.org/10.1182/blood-2005-03-0929] [PMID: 15878982]
[29]
Place AE, Pikman Y, Stevenson KE, et al. Phase I trial of the mTOR inhibitor everolimus in combination with multi-agent chemotherapy in relapsed childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 2018; 65(7): e27062.
[http://dx.doi.org/10.1002/pbc.27062] [PMID: 29603593]
[30]
Ferrando A. Can one target T-cell all? Best Pract Res Clin Haematol 2018; 31(4): 361-6.
[http://dx.doi.org/10.1016/j.beha.2018.10.001] [PMID: 30466748]
[31]
Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood 2017; 129(9): 1113-23.
[http://dx.doi.org/10.1182/blood-2016-10-706465] [PMID: 28115373]
[32]
McMahon CM, Luger SM, Relapsed T. Relapsed T cell all: Current approaches and new directions. Curr Hematol Malig Rep 2019; 14(2): 83-93.
[http://dx.doi.org/10.1007/s11899-019-00501-3] [PMID: 30880359]
[33]
Belver L, Ferrando A. The genetics and mechanisms of T cell acute lymphoblastic leukaemia. Nat Rev Cancer 2016; 16(8): 494-507.
[http://dx.doi.org/10.1038/nrc.2016.63] [PMID: 27451956]
[34]
Bongiovanni D, Saccomani V, Piovan E. Aberrant signaling pathways in T-cell acute lymphoblastic leukemia. Int J Mol Sci 2017; 18(9): 1904.
[http://dx.doi.org/10.3390/ijms18091904] [PMID: 28872614]
[35]
Maude SL, Dolai S, Delgado-Martin C, et al. Efficacy of JAK/STAT pathway inhibition in murine xenograft models of Early T-Cell Precursor (ETP) acute lymphoblastic leukemia. Blood 2015; 125(11): 1759-67.
[http://dx.doi.org/10.1182/blood-2014-06-580480] [PMID: 25645356]
[36]
Inaba H, Pui CH. Immunotherapy in pediatric acute lymphoblastic leukemia. Cancer Metastasis Rev 2019; 38(4): 595-610.
[http://dx.doi.org/10.1007/s10555-019-09834-0] [PMID: 31811553]
[37]
Kantarjian H, Stein A, Gökbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med 2017; 376(9): 836-47.
[http://dx.doi.org/10.1056/NEJMoa1609783] [PMID: 28249141]
[38]
Gökbuget N, Dombret H, Bonifacio M, et al. Blinatumomab for minimal residual disease in adults with B-cell precursor acute lymphoblastic leukemia. Blood 2018; 131(14): 1522-31.
[http://dx.doi.org/10.1182/blood-2017-08-798322] [PMID: 29358182]
[39]
Brown PA, Ji L, Xu X, et al. Effect of post-reinduction therapy consolidation with blinatumomab vs. chemotherapy on disease-free survival in children, adolescents, and young adults with the first relapse of B-cell acute lymphoblastic leukemia: A randomized clinical trial. JAMA 2021; 325(9): 833-42.
[http://dx.doi.org/10.1001/jama.2021.0669] [PMID: 33651090]
[40]
Locatelli F, Zugmaier G, Rizzari C, et al. Effect of blinatumomab vs. chemotherapy on event-free survival among children with high-risk first-relapse B-cell acute lymphoblastic leukemia: A randomized clinical trial. JAMA 2021; 325(9): 843-54.
[http://dx.doi.org/10.1001/jama.2021.0987] [PMID: 33651091]
[41]
Hathaway L, Sen JM, Keng M. Impact of blinatumomab on patient outcomes in relapsed/refractory acute lymphoblastic leukemia: Evidence to date. Patient Relat Outcome Meas 2018; 9: 329-37.
[http://dx.doi.org/10.2147/PROM.S149420] [PMID: 30323696]
[42]
Aldoss I, Song J, Stiller T, et al. Correlates of resistance and relapse during blinatumomab therapy for relapsed/refractory acute lymphoblastic leukemia. Am J Hematol 2017; 92(9): 858-65.
[http://dx.doi.org/10.1002/ajh.24783] [PMID: 28494518]
[43]
Köhnke T, Krupka C, Tischer J, Knösel T, Subklewe M. Increase of PD-L1 expressing B-precursor all cells in a patient resistant to the CD19/CD3-bispecific T cell engager antibody blinatumomab. J Hematol Oncol 2015; 8(1): 111.
[http://dx.doi.org/10.1186/s13045-015-0213-6] [PMID: 26449653]
[44]
Braig F, Brandt A, Goebeler M, et al. Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. Blood 2017; 129(1): 100-4.
[http://dx.doi.org/10.1182/blood-2016-05-718395] [PMID: 27784674]
[45]
Orlando EJ, Han X, Tribouley C, et al. Genetic mechanisms of target antigen loss in CAR19 therapy of acute lymphoblastic leukemia. Nat Med 2018; 24(10): 1504-6.
[http://dx.doi.org/10.1038/s41591-018-0146-z] [PMID: 30275569]
[46]
Sotillo E, Barrett DM, Black KL, et al. Convergence of acquired mutations and alternative splicing of CD19 enables resistance to CART-19 immunotherapy. Cancer Discov 2015; 5(12): 1282-95.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1020] [PMID: 26516065]
[47]
Bride KL, Vincent TL, Im SY, et al. Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia. Blood 2018; 131(9): 995-9.
[http://dx.doi.org/10.1182/blood-2017-07-794214] [PMID: 29305553]
[48]
Hodby KA, Marks DI. Recent advances in the management of acute lymphoblastic leukaemia. Curr Treat Options Oncol 2020; 21(3): 23.
[http://dx.doi.org/10.1007/s11864-020-0712-8] [PMID: 32095902]
[49]
Dai H, Wang Y, Lu X, Han W. Chimeric antigen receptors modified T-cells for cancer therapy. Natl Cancer Inst 2016; 108(7): djv439.
[50]
Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018; 378(5): 439-48.
[http://dx.doi.org/10.1056/NEJMoa1709866] [PMID: 29385370]
[51]
Maude SL, Barrett D, Teachey DT, Grupp SA. Managing cytokine release syndrome associated with novel T cell-engaging therapies. Cancer J 2014; 20(2): 119-22.
[http://dx.doi.org/10.1097/PPO.0000000000000035] [PMID: 24667956]
[52]
Lee DW, Gardner R, Porter DL, et al. Current concepts in the diagnosis and management of cytokine release syndrome. Blood 2014; 124(2): 188-95.
[http://dx.doi.org/10.1182/blood-2014-05-552729] [PMID: 24876563]
[53]
Kadauke S, Myers RM, Li Y, et al. Risk-adapted preemptive tocilizumab to prevent severe cytokine release syndrome after CTL019 for pediatric B-cell acute lymphoblastic leukemia: A prospective clinical trial. J Clin Oncol 2021; 39(8): 920-30.
[http://dx.doi.org/10.1200/JCO.20.02477] [PMID: 33417474]
[54]
Hill JA, Seo SK. How I prevent infections in patients receiving CD19-targeted chimeric antigen receptor T cells for B-cell malignancies. Blood 2020; 136(8): 925-35.
[http://dx.doi.org/10.1182/blood.2019004000] [PMID: 32582924]
[55]
Haso W, Lee DW, Shah NN, et al. Anti-CD22-chimeric antigen receptors targeting B-cell precursor acute lymphoblastic leukemia. Blood 2013; 121(7): 1165-74.
[http://dx.doi.org/10.1182/blood-2012-06-438002] [PMID: 23243285]
[56]
Shah NN, Fry TJ. Mechanisms of resistance to CAR T cell therapy. Nat Rev Clin Oncol 2019; 16(6): 372-85.
[http://dx.doi.org/10.1038/s41571-019-0184-6] [PMID: 30837712]
[57]
Majzner RG, Mackall CL. Tumor antigen escapes from CAR T-cell therapy. Cancer Discov 2018; 8(10): 1219-26.
[http://dx.doi.org/10.1158/2159-8290.CD-18-0442] [PMID: 30135176]
[58]
Fry TJ, Shah NN, Orentas RJ, et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat Med 2018; 24(1): 20-8.
[http://dx.doi.org/10.1038/nm.4441] [PMID: 29155426]
[59]
Qin H, Cho M, Haso W, et al. Eradication of B-ALL using chimeric antigen receptor-expressing T cells targeting the TSLPR oncoprotein. Blood 2015; 126(5): 629-39.
[http://dx.doi.org/10.1182/blood-2014-11-612903] [PMID: 26041741]
[60]
Schultz LM, Muffly LS, Spiegel JY, et al. Phase I trial using CD19/CD22 bispecific CAR T cells in pediatric and adult Acute Lymphoblastic Leukemia (ALL). Blood 2019; 134 (Suppl. 1): 744.
[http://dx.doi.org/10.1182/blood-2019-129411]
[61]
Wang N, Hu X, Cao W, et al. Efficacy and safety of CAR19/22 T-cell cocktail therapy in patients with refractory/relapsed B-cell malignancies. Blood 2020; 135(1): 17-27.
[http://dx.doi.org/10.1182/blood.2019000017] [PMID: 31697824]
[62]
Pan J, Zuo S, Deng B, et al. Sequential CD19-22 CAR T therapy induces sustained remission in children with r/r B-ALL. Blood 2020; 135(5): 387-91.
[http://dx.doi.org/10.1182/blood.2019003293] [PMID: 31725148]
[63]
Kantarjian HM, DeAngelo DJ, Stelljes M, et al. Inotuzumab ozogamicin versus standard therapy for acute lymphoblastic leukemia. N Engl J Med 2016; 375(8): 740-53.
[http://dx.doi.org/10.1056/NEJMoa1509277] [PMID: 27292104]
[64]
Kebriaei P, Cutler C, De Lima M, et al. Management of important adverse events associated with inotuzumab ozogamicin: Expert panel review. Bone Marrow Transplant 2018; 53(4): 449-56.
[http://dx.doi.org/10.1038/s41409-017-0019-y] [PMID: 29330398]
[65]
Brivio E, Locatelli F, Lopez YM, et al. A phase 1 study of inotuzumab ozogamicin in pediatric relapsed/refractory acute lymphoblastic leukemia (ITCC-059 study). Blood 2021; 137(12): 1582-90.
[http://dx.doi.org/10.1182/blood.2020007848] [PMID: 33067614]
[66]
Jabbour E, O’Brien S, Thomas D, et al. Inotuzumab Ozogamicin (IO) in combination with low-intensity chemotherapy (mini-hyper-CVD) as frontline therapy for older patients (pts) and as salvage therapy for adult with Relapsed/Refractory (R/R) Acute Lymphoblastic Leukemia (ALL). Clin Lymphoma Myeloma Leuk 2015; 15: S171.
[http://dx.doi.org/10.1016/j.clml.2015.04.006]

© 2024 Bentham Science Publishers | Privacy Policy