Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Considering the Conception of Nanotechnology Integrated on Herbal Formulation for the Management of Cancer

Author(s): Smriti Ojha, Shalini Yadav, Ajeet, Babita Aggarwal, Saurabh Kumar Gupta and Sudhanshu Mishra*

Volume 20, Issue 10, 2023

Published on: 13 October, 2022

Page: [1437 - 1457] Pages: 21

DOI: 10.2174/1570180819666220901093732

Price: $65

Abstract

Metastases result from a complicated process in which malignant cells detach from the initial cancerous cells and disseminate to other locations. Few therapy options are available that aim to prevent or counteract metastatic disorders. Identifying novel molecular targets and medications, developing techniques to distribute preexisting chemicals, and combining resources to supervise individualized treatment are all part of this process. Because of its improved sensitivity, accuracy, and multiplexed measurement capacity, nanotechnology has been investigated to recognize extracellular cancer biomarkers, cancer cells, and bioimaging. Nanotechnology is a vast and rapidly expanding field with enormous potential in cancer treatment. Nanoparticles can treat resistant cancers with minimal harm to healthy tissues and organs by targeting cancer stem cells. Nanoparticles can also trigger immune cells, which can help to destroy malignancies. The potential of herbal-based nano formulation as a specialized and high-efficacy therapeutic method opens the path for future research into the screening and use of herbal nanoparticles for cancer treatment. The possible impacts of nanoparticles in the therapy of metastatic cancer, specifically on cell stability, proliferation suppression, eventual interaction with adhesion molecules, and antiangiogenic activity, are discussed in this paper.

Keywords: Metastases, Nanotechnology, Metallic Nanoparticles, Quantum dot, Liquid Crystals

Graphical Abstract

[1]
NIH National Cancer Institute. Cancer facts & figures CA CancerJ. Clin., 2020, 1-76.
[2]
Srinivasarao, M.; Galliford, C.V.; Low, P.S. Principles in the design of ligand-targeted cancer therapeutics and imaging agents. Nat. Rev. Drug Discov., 2015, 14(3), 203-219.
[http://dx.doi.org/10.1038/nrd4519] [PMID: 25698644]
[3]
Ahmad, A.; Khan, F.; Mishra, R.K.; Khan, R. Precision cancer nanotherapy: Evolving role of multifunctional nanoparticles for cancer active targeting. J. Med. Chem., 2019, 62(23), 10475-10496.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00511] [PMID: 31339714]
[4]
Bharali, D.J.; Mousa, S.A. Emerging nanomedicines for early cancer detection and improved treatment: Current perspective and future promise. Pharmacol. Ther., 2010, 128(2), 324-335.
[http://dx.doi.org/10.1016/j.pharmthera.2010.07.007] [PMID: 20705093]
[5]
Zitvogel, L.; Apetoh, L.; Ghiringhelli, F.; Kroemer, G. Immunological aspects of cancer chemotherapy. Nat. Rev. Immunol., 2008, 8(1), 59-73.
[http://dx.doi.org/10.1038/nri2216] [PMID: 18097448]
[6]
Dadwal, A.; Baldi, A.; Kumar Narang, R. Nanoparticles as carriers for drug delivery in cancer Artif. Cells. Nanomed, Biotechnol,., 2018, 46(sup2), 295-305.
[http://dx.doi.org/10.1080/21691401.2018.1457039]
[7]
Palazzolo, S.; Bayda, S.; Hadla, M.; Caligiuri, I.; Corona, G.; Toffoli, G.; Rizzolio, F. The clinical translation of organic nanomaterials for cancer therapy: A focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr. Med. Chem., 2018, 25(34), 4224-4268.
[http://dx.doi.org/10.2174/0929867324666170830113755] [PMID: 28875844]
[8]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. In: Nano-Enabled Medical Applications; Jenny Stanford Publishing, 2020; pp. 61-91.
[http://dx.doi.org/10.1201/9780429399039-2]
[9]
Kim, B.Y.S.; Rutka, J.T.; Chan, W.C.W. Nanomedicine. N. Engl. J. Med., 2010, 363(25), 2434-2443.
[http://dx.doi.org/10.1056/NEJMra0912273] [PMID: 21158659]
[10]
Peer, D.; Karp, J.M.; Hong, S.; Farokhzad, O.C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol., 2007, 2(12), 751-760.
[http://dx.doi.org/10.1038/nnano.2007.387] [PMID: 18654426]
[11]
Malam, Y.; Loizidou, M.; Seifalian, A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci., 2009, 30(11), 592-599.
[http://dx.doi.org/10.1016/j.tips.2009.08.004] [PMID: 19837467]
[12]
Sutradhar, K.B.; Amin, M.L. Nanoemulsions: Increasing possibilities in drug delivery. Eur. J. Nanomed., 2014, 6(1), 53-53.
[http://dx.doi.org/10.1515/ejnm-2014-0007]
[13]
Chen, Y.; Gao, D.Y.; Huang, L. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Adv. Drug Deliv. Rev., 2015, 81, 128-141.
[http://dx.doi.org/10.1016/j.addr.2014.05.009] [PMID: 24859533]
[14]
Praetorius, N.; Mandal, T. Engineered nanoparticles in cancer therapy. Recent Pat. Drug Deliv. Formul., 2007, 1(1), 37-51.
[http://dx.doi.org/10.2174/187221107779814104] [PMID: 19075873]
[15]
Park, K. Nanotechnology: What it can do for drug delivery. J. Control. Release, 2007, 120(1-2), 1.
[16]
Nagahara, L.A.; Lee, J.S.; Molnar, L.K.; Panaro, N.J.; Farrell, D.; Ptak, K.; Grodzinski, P. Strategic workshops on cancer nanotechnology. Cancer Res., 2010, 70(11), 4265-4268.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-3716]
[17]
Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 2008, 8(12), 958-969.
[http://dx.doi.org/10.1038/nri2448] [PMID: 19029990]
[18]
Martinez, F.O.; Gordon, S. The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep., 2014, 6, 13.
[http://dx.doi.org/10.12703/P6-13] [PMID: 24669294]
[19]
Barbul, A.; Breslin, R.J.; Woodyard, J.P.; Wasserkrug, H.L.; Efron, G. The effect of in vivo T helper and T suppressor lymphocyte depletion on wound healing. Ann. Surg., 1989, 209(4), 479-483.
[http://dx.doi.org/10.1097/00000658-198904000-00015] [PMID: 2522759]
[20]
Ali, E.S.; Sharker, S.M.; Islam, M.T.; Khan, I.N.; Shaw, S.; Rahman, M.A.; Mubarak, M.S. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. In: Seminars in cancer biology; Academic Press, 2021; 69, pp. 52-68.
[http://dx.doi.org/10.1016/j.semcancer.2020.01.011]
[21]
Rosenblum, D.; Joshi, N.; Tao, W.; Karp, J.M.; Peer, D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun., 2018, 9(1), 1410.
[http://dx.doi.org/10.1038/s41467-018-03705-y] [PMID: 29650952]
[22]
Leo, C.P.; Hentschel, B.; Szucs, T.D.; Leo, C. FDA and EMA approvals of new breast cancer drugs—A comparative regulatory analysis. Cancers, 2020, 12(2), 437.
[http://dx.doi.org/10.3390/cancers12020437] [PMID: 32069837]
[23]
Xia, L.; Wang, Y.; Cai, S.; Xu, M. DGAT1 expression promotes ovarian cancer progression and is associated with poor prognosis. J. Immunol. Res., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/6636791] [PMID: 34095320]
[24]
Anand, P.; Nair, H.B.; Sung, B.; Kunnumakkara, A.B.; Yadav, V.R.; Tekmal, R.R.; Aggarwal, B.B. RETRACTED: Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem. Pharmacol., 2010, 79(3), 330-338.
[http://dx.doi.org/10.1016/j.bcp.2009.09.003] [PMID: 19735646]
[25]
Arayne, M.S.; Sultana, N.; Bahadur, S.S. The berberis story: Berberis vulgaris in therapeutics. Pak. J. Pharm. Sci., 2007, 20(1), 83-92.
[PMID: 17337435]
[26]
Arıca Yegin, B.; Benoît, J.P.; Lamprecht, A. Paclitaxel-loaded lipid nanoparticles prepared by solvent injection or ultrasound emulsification. Drug Dev. Ind. Pharm., 2006, 32(9), 1089-1094.
[http://dx.doi.org/10.1080/03639040600683501] [PMID: 17012121]
[27]
Cirla, A.; Mann, J. Combretastatins: From natural products to drug discovery. Nat. Prod. Rep., 2003, 20(6), 558-564.
[http://dx.doi.org/10.1039/b306797c] [PMID: 14700199]
[28]
Chiang, Y.M.; Chang, J.Y.; Kuo, C.C.; Chang, C.Y.; Kuo, Y.H. Cytotoxic triterpenes from the aerial roots of Ficus microcarpa. Phytochemistry, 2005, 66(4), 495-501.
[http://dx.doi.org/10.1016/j.phytochem.2004.12.026] [PMID: 15694457]
[29]
Zhang, W.; Gou, P.; Dupret, J.M.; Chomienne, C.; Rodrigues-Lima, F. Etoposide, an anticancer drug involved in therapy-related secondary leukemia: Enzymes at play. Transl. Oncol., 2021, 14(10), 101169.
[http://dx.doi.org/10.1016/j.tranon.2021.101169] [PMID: 34243013]
[30]
Dasgupta, A. Unexpected laboratory test results due to use of herbal remedies. Arch. Pathol. Lab. Med., 2010, 134, 1-17.
[31]
Khuda-Bukhsh, A.R.; Bhattacharyya, S.S.; Paul, S.; Boujedaini, N. Polymeric nanoparticle encapsulation of a naturally occurring plant scopoletin and its effects on human melanoma cell A375. J. Chin. Integr. Med., 2010, 8(9), 853-862.
[http://dx.doi.org/10.3736/jcim20100909] [PMID: 20836976]
[32]
Ojha, S.; Kumar, B.; Chadha, H. Neuroprotective potential of dimethyl Fumarate Loaded Polymeric nanoparticles against Multiple Sclerosis. Indian J. Pharm. Sci., 2019, 81(3), 496-502.
[33]
Ajazuddin, S.S.; Saraf, S. Applications of novel drug delivery system for herbal formulations. Fitoterapia, 2010, 81(7), 680-689.
[http://dx.doi.org/10.1016/j.fitote.2010.05.001] [PMID: 20471457]
[34]
Kumari, A.; Yadav, S.K.; Yadav, S.C. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf. B Biointerfaces, 2010, 75(1), 1-18.
[http://dx.doi.org/10.1016/j.colsurfb.2009.09.001] [PMID: 19782542]
[35]
Ojha, S.; Kumar, B. Formulation and optimization of chitosan nanoparticles of Dimethyl Fumarate using Box-behnken design. Int. J. Appl. Pharmac., 2016, 8(4), 10-17.
[36]
Paliwal, R.; Paliwal, S.R.; Kenwat, R.; Kurmi, B.D.; Sahu, M.K. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin. Ther. Pat., 2020, 30(3), 179-194.
[http://dx.doi.org/10.1080/13543776.2020.1720649] [PMID: 32003260]
[37]
Ojha, S.; Kumar, B. Preparation and statistical modelling of solid lipid nanoparticles of dimethyl fumarate for better management of Multiple Sclerosis. Adv. Pharm. Bull., 2018, 8(2), 225-233.
[http://dx.doi.org/10.15171/apb.2018.027] [PMID: 30023324]
[38]
Ojha, S.; Kumar, B. A review on nanotechnology based innovations in diagnosis and treatment of multiple sclerosis. J. Cellular Immunotherapy, 2018, 4(2), 56-64.
[http://dx.doi.org/10.1016/j.jocit.2017.12.001]
[39]
Lalvand, M.; Hashemi, S.J.; Bayat, M. Effect of fluconazole and terbinafine nanoparticles on the treatment of dermatophytosis induced by Trichophyton mentagrophytes in guinea pig. Iran. J. Microbiol., 2021, 13(5), 608-616.
[http://dx.doi.org/10.18502/ijm.v13i5.7424] [PMID: 34900158]
[40]
Carrasco-Esteban, E.; Domínguez-Rullán, J.A.; Barrionuevo-Castillo, J. Current role of nanoparticles in the treatment of lung cancer. J. Clin. Transl. Res., 2021, 7(2), 140-155.
[41]
Ojha, S.; Kumar, B. In-vitro and in-vivo neuroprotective study of solid lipid nanoparticles loaded with dimethyl fumarate. Asian J. Pharm., 2018, 12(1), 81-86.
[42]
Adhikari, P.; Pal, P.; Das, A.K.; Ray, S.; Bhattacharjee, A.; Mazumder, B. Nano lipid-drug conjugate: An integrated review. Int. J. Pharm., 2017, 529(1-2), 629-641.
[43]
Shrivastava, P.; Gautam, L.; Jain, A.; Vishwakarma, N.; Vyas, S.; Vyas, S.P. Lipid drug conjugates for improved therapeutic benefits. Curr. Pharm. Des., 2020, 26(27), 3187-3202.
[http://dx.doi.org/10.2174/1381612826666200311124003] [PMID: 32160838]
[44]
Banerjee, S.; Pillai, J. Solid lipid matrix mediated nanoarchitectonics for improved oral bioavailability of drugs. Expert Opin. Drug Metab. Toxicol., 2019, 15(6), 499-515.
[http://dx.doi.org/10.1080/17425255.2019.1621289] [PMID: 31104522]
[45]
Yasam, V.R.; Jakki, S.L.; Natarajan, J.; Kuppusamy, G. A review on novel vesicular drug delivery. Proniosomes. Drug Deliv., 2014, 21(4), 243-249.
[http://dx.doi.org/10.3109/10717544.2013.841783] [PMID: 24128089]
[46]
Manosroi, A.; Chutoprapat, R.; Abe, M.; Manosroi, J. Characteristics of niosomes prepared by supercritical carbon dioxide (scCO2) fluid. Int. J. Pharm., 2008, 352(1-2), 248-255.
[http://dx.doi.org/10.1016/j.ijpharm.2007.10.013] [PMID: 18036754]
[47]
Verma, S.; Singh, S.K.; Syan, N.; Mathur, P.; Valecha, V. Nanoparticle vesicular systems: A versatile tool for drug delivery. J. Chem. Pharm. Res., 2010, 2(2), 496-509.
[48]
Morales, M.P.; Bomati-Miguel, O.; Pérez de Alejo, R.; Ruiz-Cabello, J.; Veintemillas-Verdaguer, S.; O’Grady, K. Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis. J. Magn. Magn. Mater., 2003, 266(1-2), 102-109.
[http://dx.doi.org/10.1016/S0304-8853(03)00461-X]
[49]
Link, S.; El-Sayed, M.A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem., 2003, 54(1), 331-366.
[http://dx.doi.org/10.1146/annurev.physchem.54.011002.103759] [PMID: 12626731]
[50]
Jana, N.R.; Gearheart, L.; Murphy, C.J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater., 2001, 13(18), 1389-1393.
[http://dx.doi.org/10.1002/1521-4095(200109)13:18<1389:AID-ADMA1389>3.0.CO;2-F]
[51]
Atiyeh, B.S.; Costagliola, M.; Hayek, S.N.; Dibo, S.A. Effect of silver on burn wound infection control and healing: Review of the literature. Burns, 2007, 33(2), 139-148.
[http://dx.doi.org/10.1016/j.burns.2006.06.010] [PMID: 17137719]
[52]
Qin, Y. Silver-containing alginate fibres and dressings. Int. Wound J., 2005, 2(2), 172-176.
[http://dx.doi.org/10.1111/j.1742-4801.2005.00101.x] [PMID: 16722867]
[53]
McMahon, M.T.; Bulte, J.W.M. Two decades of dendrimers as versatile MRI agents: A tale with and without metals. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2018, 10(3), e1496.
[http://dx.doi.org/10.1002/wnan.1496] [PMID: 28895298]
[54]
Madadlou, A.; Jaberipour, S.; Eskandari, M.H. Nanoparticulation of enzymatically cross-linked whey proteins to encapsulate caffeine via microemulsification/heat gelation procedure. Lebensm. Wiss. Technol., 2014, 57(2), 725-730.
[http://dx.doi.org/10.1016/j.lwt.2014.02.041]
[55]
Lu, A.H.; Salabas, E.L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed., 2007, 46(8), 1222-1244.
[http://dx.doi.org/10.1002/anie.200602866] [PMID: 17278160]
[56]
Chico, L.; Crespi, V.H.; Benedict, L.X.; Louie, S.G.; Cohen, M.L. Pure carbon nanoscale devices: Nanotube heterojunctions. Phys. Rev. Lett., 1996, 76(6), 971-974.
[http://dx.doi.org/10.1103/PhysRevLett.76.971] [PMID: 10061598]
[57]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247-255.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[58]
Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y.H.; Kim, S.G.; Rinzler, A.G.; Colbert, D.T.; Scuseria, G.E.; Tománek, D.; Fischer, J.E.; Smalley, R.E. Crystalline ropes of metallic carbon nanotubes. Science, 1996, 273(5274), 483-487.
[http://dx.doi.org/10.1126/science.273.5274.483] [PMID: 8662534]
[59]
Hirlekar, R.; Yamagar, M.; Garse, H.; Vij, M.; Kadam, V. Carbon nanotubes and its applications: A review. Asian J. Pharm. Clin. Res., 2009, 2(4), 17-27.
[60]
Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol., 2003, 21(10), 1171-1178.
[http://dx.doi.org/10.1038/nbt874] [PMID: 14520402]
[61]
Sieminski, A.L.; Was, A.S.; Kim, G.; Gong, H.; Kamm, R.D. The stiffness of three-dimensional ionic self-assembling peptide gels affects the extent of capillary-like network formation. Cell Biochem. Biophys., 2007, 49(2), 73-83.
[http://dx.doi.org/10.1007/s12013-007-0046-1] [PMID: 17906362]
[62]
Bodas, D.; Khan-Malek, C. Direct patterning of quantum dots on structured PDMS surface. Sens. Actuators B Chem., 2007, 128(1), 168-172.
[http://dx.doi.org/10.1016/j.snb.2007.05.043]
[63]
Yokota, H.; Tsunashima, K.; Iizuka, K.; Okamoto, H. Direct electron beam patterning and molecular beam epitaxy growth of InAs: Site definition of quantum dots. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom., 2008, 26(3), 1097-1099.
[http://dx.doi.org/10.1116/1.2839675]
[64]
Murcia, M.J.; Shaw, D.L.; Long, E.C.; Naumann, C.A. Fluorescence correlation spectroscopy of CdSe/ZnS quantum dot optical bioimaging probes with ultra-thin biocompatible coatings. Opt. Commun., 2008, 281(7), 1771-1780.
[http://dx.doi.org/10.1016/j.optcom.2007.07.069] [PMID: 19572039]
[65]
Mittal, A.K.; Chisti, Y.; Banerjee, U.C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv., 2013, 31(2), 346-356.
[http://dx.doi.org/10.1016/j.biotechadv.2013.01.003] [PMID: 23318667]
[66]
Mohanpuria, P.; Rana, N.K.; Yadav, S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res., 2008, 10(3), 507-517.
[http://dx.doi.org/10.1007/s11051-007-9275-x]
[67]
Mondal, S.; Roy, N.; Laskar, R.A.; Sk, I.; Basu, S.; Mandal, D.; Begum, N.A. Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids Surf. B Biointerfaces, 2011, 82(2), 497-504.
[http://dx.doi.org/10.1016/j.colsurfb.2010.10.007] [PMID: 21030220]
[68]
Gueritte, F.; Fahy, J. The vinca alkaloids. In: Anticancer Agents from Natural Products; Cragg, G.M.; Kingston, D.G.I.; Newman, D.J., Eds.; Brunner-Routledge Psychology Press, Taylor & Francis Group: Boca Raton, 2005; p. 23.
[http://dx.doi.org/10.1201/9781420039658.ch7]
[69]
Zhu, Y.; Liu, R.; Huang, H.; Zhu, Q. Vinblastine-loaded nanoparticles with enhanced tumor-targeting efficiency and decreasing toxicity: Developed by one-step molecular imprinting process. Mol. Pharm., 2019, 16(6), 2675-2689.
[70]
Zu, Y.; Zhang, Y.; Zhao, X.; Zhang, Q.; Liu, Y.; Jiang, R. Optimization of the preparation process of vinblastine sulfate (VBLS)-loaded folate-conjugated bovine serum albumin (BSA) nanoparticles for tumor-targeted drug delivery using response surface methodology (RSM). Int. J. Nanomedicine, 2009, 4, 321-333.
[http://dx.doi.org/10.2147/IJN.S8501] [PMID: 20054435]
[71]
Albermani, M.; Alwani, A.I.; Mukhtar, A.I. Vinblastine based iron oxide nano drug delivery system. J. Glob. Pharma Technol., 2017, 9, 90-96.
[72]
Lee, K.H.; Xiao, Z. Podophyllotoxins and analogs. In: Anticancer Agents from Natural Products; Cragg, G.M.; Kingston, D.G.I.; Newman, D.J., Eds.; Brunner-Routledge Psychology Press, Taylor & Francis Group: Boca Raton, 2005; p. 71.
[http://dx.doi.org/10.1201/9781420039658.ch5]
[73]
Snehalatha, M.; Venugopal, K.; Saha, R.N. Etoposide-loaded PLGA and PCL nanoparticles I: Preparation and effect of formulation variables. Drug Deliv., 2008, 15(5), 267-275.
[http://dx.doi.org/10.1080/10717540802174662]
[74]
Pimple, S.; Manjappa, A.S.; Ukawala, M.; Murthy, R.S.R. PLGA nanoparticles loaded with etoposide and quercetin dihydrate individually: In vitro cell line study to ensure advantage of combination therapy. Cancer Nanotechnol., 2012, 3(1-6), 25-36.
[http://dx.doi.org/10.1007/s12645-012-0027-y] [PMID: 26069494]
[75]
Martin, B.; Seguin, J.; Annereau, M.; Fleury, T.; Lai-Kuen, R.; Neri, G.; Lam, A.; Bally, M.; Mignet, N.; Corvis, Y. Preparation of parenteral nanocrystal suspensions of etoposide from the excipient free dry state of the drug to enhance in vivo antitumoral properties. Sci. Rep., 2020, 10(1), 18059.
[http://dx.doi.org/10.1038/s41598-020-74809-z] [PMID: 33093456]
[76]
Kingston, D.G.I. Taxol and its analogs. In: Anticancer Agents from Natural Products; Cragg, G.M.; Kingston, D.G.I.; Newman, D.J., Eds.; Brunner-Routledge Psychology Press, Taylor &Francis Group: Boca Raton, 2005; p. 89.
[http://dx.doi.org/10.1201/9781420039658.ch6]
[77]
Chowdhury, N.; Singh, M. Current development of oral taxane formulations: A review. Crit. Rev. Ther. Drug Carrier Syst., 2020, 37(3), 205-227.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2020029699] [PMID: 32749138]
[78]
Loiseau, A.; Boudon, J.; Mirjolet, C.; Créhange, G.; Millot, N. Taxane-grafted metal-oxide nanoparticles as a new theranostic tool against cancer: The promising example of docetaxel-functionalized titanate nanotubes on prostate tumors. Adv. Healthc. Mater., 2017, 6(16), 1700245.
[http://dx.doi.org/10.1002/adhm.201700245] [PMID: 28516460]
[79]
Bowerman, C.J.; Byrne, J.D.; Chu, K.S.; Schorzman, A.N.; Keeler, A.W.; Sherwood, C.A.; Perry, J.L.; Luft, J.C.; Darr, D.B.; Deal, A.M.; Napier, M.E.; Zamboni, W.C.; Sharpless, N.E.; Perou, C.M.; DeSimone, J.M. Docetaxel-loaded PLGA nanoparticles improve efficacy in taxane-resistant triple-negative breast cancer. Nano Lett., 2017, 17(1), 242-248.
[http://dx.doi.org/10.1021/acs.nanolett.6b03971] [PMID: 27966988]
[80]
Zhang, M.; Li, M.; Du, L.; Zeng, J.; Yao, T.; Jin, Y. Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer. Int. J. Pharm., 2020, 578, 119177.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119177] [PMID: 32105724]
[81]
Do, V.Q.; Park, K.H.; Park, J.M.; Lee, M.Y. Comparative in vitro toxicity study of docetaxel and nanoxel, a docetaxel-loaded micellar formulation using cultured and blood cells. Toxicol. Res., 2019, 35(2), 201-207.
[http://dx.doi.org/10.5487/TR.2019.35.2.201] [PMID: 31015902]
[82]
Borgå, O.; Lilienberg, E.; Bjermo, H.; Hansson, F.; Heldring, N.; Dediu, R. Pharmacokinetics of total and unbound paclitaxel after administration of paclitaxel micellar or nab-paclitaxel: An open, randomized, cross-over, explorative study in breast cancer patients. Adv. Ther., 2019, 36(10), 2825-2837.
[http://dx.doi.org/10.1007/s12325-019-01058-6] [PMID: 31432461]
[83]
Rahier, N.J.; Thomas, C.J.; Hecht, S.M. Camptothecin and its analogs. In: Anticancer Agents from Natural Products; Cragg, G.M.; Kingston, D.G.I.; Newman, D.J., Eds.; Brunner-Routledge Psychology Press, Taylor & Francis Group: Boca Raton, 2005.
[84]
Landgraf, M.; Lahr, C.A.; Kaur, I.; Shafiee, A.; Sanchez-Herrero, A.; Janowicz, P.W.; Ravichandran, A.; Howard, C.B.; Cifuentes-Rius, A.; McGovern, J.A.; Voelcker, N.H.; Hutmacher, D.W. Targeted camptothecin delivery via silicon nanoparticles reduces breast cancer metastasis. Biomaterials, 2020, 240, 119791.
[http://dx.doi.org/10.1016/j.biomaterials.2020.119791] [PMID: 32109589]
[85]
Ghanbari, M.M.; Kaceli, T.; Mondal, A.; Farzaei, M.H.; Bishayee, A. Recent advances in improved anticancer efficacies of camptothecin nano-formulations: A systematic review. Biomedicines, 2021, 9(5), 480.
[86]
Min, K.H.; Kim, J.H.; Bae, S.M.; Shin, H.; Kim, M.S.; Park, S.; Lee, H.; Park, R.W.; Kim, I.S.; Kim, K.; Kwon, I.C.; Jeong, S.Y.; Lee, D.S. Tumoral acidic pH-responsive MPEG-poly(β-amino ester) polymeric micelles for cancer targeting therapy. J. Control. Release, 2010, 144(2), 259-266.
[http://dx.doi.org/10.1016/j.jconrel.2010.02.024] [PMID: 20188131]
[87]
Botella, P.; Abasolo, I.; Fernández, Y.; Muniesa, C.; Miranda, S.; Quesada, M.; Ruiz, J.; Schwartz, S., Jr; Corma, A. Surface-modified silica nanoparticles for tumor-targeted delivery of camptothecin and its biological evaluation. J. Control. Release, 2011, 156(2), 246-257.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.039] [PMID: 21756949]
[88]
Itokawa, H.; Ibraheim, Z.Z.; Qiao, Y.F.; Takeya, K. Anthraquinones, naphthohydroquinones and naphthohydroquinone dimers from Rubia cordifolia and their cytotoxic activity. Chem. Pharm. Bull., 1993, 41(10), 1869-1872.
[http://dx.doi.org/10.1248/cpb.41.1869] [PMID: 8281583]
[89]
Rouëssé, J.; Spielmann, M.; Turpin, F.; Le Chevalier, T.; Azab, M.; Mondésir, J.M. Phase II study of elliptinium acetate salvage treatment of advanced breast cancer. Eur. J. Cancer, 1993, 29(6), 856-859.
[http://dx.doi.org/10.1016/S0959-8049(05)80424-1] [PMID: 8484977]
[90]
Guzmán, M. Cannabinoids: Potential anticancer agents. Nat. Rev. Cancer, 2003, 3(10), 745-755.
[http://dx.doi.org/10.1038/nrc1188] [PMID: 14570037]
[91]
Galve-Roperh, I.; Sánchez, C.; Cortés, M.L.; del Pulgar, T.G.; Izquierdo, M.; Guzmán, M. Anti-tumoral action of cannabinoids: Involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat. Med., 2000, 6(3), 313-319.
[http://dx.doi.org/10.1038/73171] [PMID: 10700234]
[92]
Greish, K.; Mathur, A.; Al Zahrani, R.; Elkaissi, S.; Al Jishi, M.; Nazzal, O.; Taha, S.; Pittalà, V.; Taurin, S. Synthetic cannabinoids nano-micelles for the management of triple negative breast cancer. J. Control. Release, 2018, 291, 184-195.
[http://dx.doi.org/10.1016/j.jconrel.2018.10.030] [PMID: 30367922]
[93]
Aparicio-Blanco, J.; Sebastián, V.; Benoit, J.P.; Torres-Suárez, A.I. Lipid nanocapsules decorated and loaded with cannabidiol as targeted prolonged release carriers for glioma therapy: In vitro screening of critical parameters. Eur. J. Pharm. Biopharm., 2019, 134, 126-137.
[http://dx.doi.org/10.1016/j.ejpb.2018.11.020] [PMID: 30472144]
[94]
Aparicio-Blanco, J.; Romero, I.A.; Male, D.K.; Slowing, K.; García-García, L.; Torres-Suárez, A.I. Cannabidiol enhances the passage of lipid nanocapsules across the blood-brain barrier both in vitro and in vivo. Mol. Pharm., 2019, 16(5), 1999-2010.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01344] [PMID: 30865462]
[95]
Ho, Y.C.; Yang, S.F.; Peng, C.Y.; Chou, M.Y.; Chang, Y.C. Epigallocatechin-3-gallate inhibits the invasion of human oral cancer cells and decreases the productions of matrix metalloproteinases and urokinase-plasminogen activator. J. Oral Pathol. Med., 2007, 36(10), 588-593.
[http://dx.doi.org/10.1111/j.1600-0714.2007.00588.x] [PMID: 17944751]
[96]
Nishikawa, T.; Nakajima, T.; Moriguchi, M.; Jo, M.; Sekoguchi, S.; Ishii, M.; Takashima, H.; Katagishi, T.; Kimura, H.; Minami, M.; Itoh, Y.; Kagawa, K.; Okanoue, T. A green tea polyphenol, epigalocatechin-3-gallate, induces apoptosis of human hepatocellular carcinoma, possibly through inhibition of Bcl-2 family proteins. J. Hepatol., 2006, 44(6), 1074-1082.
[http://dx.doi.org/10.1016/j.jhep.2005.11.045] [PMID: 16481065]
[97]
Kupchan, S.M.; Baxter, R.L. Mezerein: Antileukemic principle isolated from Daphne mezereum L. Science, 1975, 187(4177), 652-653.
[http://dx.doi.org/10.1126/science.1114315] [PMID: 1114315]
[98]
Zeng, L.; Yan, J.; Luo, L.; Ma, M.; Zhu, H. Preparation and characterization of (-)-Epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells. Sci. Rep., 2017, 28, 45521.
[99]
Safwat, M.A.; Kandil, B.A.; Elblbesy, M.A.; Soliman, G.M.; Eleraky, N.E. Epigallocatechin-3-gallate-loaded gold nanoparticles: preparation and evaluation of anticancer efficacy in ehrlich tumor-bearing mice. Pharmaceuticals, 2020, 13(9), 254.
[http://dx.doi.org/10.3390/ph13090254] [PMID: 32961982]
[100]
Coyle, T.; Levante, S.; Shetler, M.; Winfield, J. In vitro and in vivo cytotoxicity of gossypol against central nervous system tumor cell lines. J. Neurooncol., 1994, 19(1), 25-35.
[http://dx.doi.org/10.1007/BF01051046] [PMID: 7815102]
[101]
Gilbert, N.E.; O’Reilly, J.E.; Chang, C.J.G.; Lin, Y.C.; Brueggemeier, R.W. Antiproliferative activity of gossypol and gossypolone on human breast cancer cells. Life Sci., 1995, 57(1), 61-67.
[http://dx.doi.org/10.1016/0024-3205(95)00243-Y] [PMID: 7596222]
[102]
Liang, X.S.; Rogers, A.J.; Webber, C.L.; Ormsby, T.J.; Tiritan, M.E.; Matlin, S.A.; Benz, C.C. Developing gossypol derivatives with enhanced antitumor activity. Invest. New Drugs, 1995, 13(3), 181-186.
[http://dx.doi.org/10.1007/BF00873798] [PMID: 8729944]
[103]
Zhang, X.Q.; Huang, X.F.; Mu, S.J.; An, Q.X.; Xia, A.J.; Chen, R.; Wu, D.C. Inhibition of proliferation of prostate cancer cell line, PC-3, in vitro and in vivo using (-)-gossypol. Asian J. Androl., 2010, 12(3), 390-399.
[http://dx.doi.org/10.1038/aja.2009.87] [PMID: 20081872]
[104]
Jin, C.L.; Chen, M.L.; Wang, Y.; Kang, X.C.; Han, G.Y.; Xu, S.L. Preparation of novel (-)-gossypol nanoparticles and the effect on growth inhibition in human prostate cancer PC-3 cells in vitro. Exp. Ther. Med., 2015, 9(3), 675-678.
[http://dx.doi.org/10.3892/etm.2015.2172] [PMID: 25667612]
[105]
Liu, H.; Zhang, R.; Zhang, D.; Zhang, C.; Zhang, Z.; Fu, X.; Luo, Y.; Chen, S.; Wu, A.; Zeng, W.; Qu, K.; Zhang, H.; Wang, S.; Shi, H. Cyclic RGD-Decorated Liposomal Gossypol AT-101 Targeting for Enhanced Antitumor Effect. Int. J. Nanomedicine, 2022, 17, 227-244.
[http://dx.doi.org/10.2147/IJN.S341824] [PMID: 35068931]
[106]
Summerlin, N.; Soo, E.; Thakur, S.; Qu, Z.; Jambhrunkar, S.; Popat, A. Resveratrol nanoformulations: Challenges and opportunities. Int. J. Pharm., 2015, 479(2), 282-290.
[http://dx.doi.org/10.1016/j.ijpharm.2015.01.003]
[107]
El-Far, S.W.; Helmy, M.W.; Khattab, S.N.; Bekhit, A.A.; Hussein, A.A.; Elzoghby, A.O. Phytosomal bilayer-enveloped casein micelles for codelivery of monascus yellow pigments and resveratrol to breast cancer. Nanomedicine, 2018, 13(5), 481-499.
[http://dx.doi.org/10.2217/nnm-2017-0301] [PMID: 29376765]
[108]
Meng, J.; Guo, F.; Xu, H.; Liang, W.; Wang, C.; Yang, X.D. Combination therapy using co-encapsulated resveratrol and paclitaxel in liposomes for drug resistance reversal in breast cancer cells in vivo. Sci. Rep., 2016, 6(1), 22390.
[http://dx.doi.org/10.1038/srep22390] [PMID: 26947928]
[109]
Feng, M.; Zhong, L.X.; Zhan, Z.Y.; Huang, Z.H.; Xiong, J.P. Enhanced antitumor efficacy of resveratrol-loaded nanocapsules in colon cancer cells: Physicochemical and biological characterization. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(2), 375-382.
[PMID: 28165548]
[110]
Alecu, M.; Ursaciuc, C.; Hãlãlãu, F.; Coman, G.; Merlevede, W.; Waelkens, E.; de Witte, P. Photodynamic treatment of basal cell carcinoma and squamous cell carcinoma with hypericin. Anticancer Res., 1998, 18(6B), 4651-4654.
[PMID: 9891535]
[111]
Wada, A.; Sakaeda, T.; Takara, K.; Hirai, M.; Kimura, T.; Ohmoto, N.; Zhou, J.; Nakamura, T.; Kobayashi, H.; Okamura, N.; Yagami, T.; Okumura, K. Effects of St John’s wort and hypericin on cytotoxicity of anticancer drugs. Drug Metab. Pharmacokinet., 2002, 17(5), 467-474.
[http://dx.doi.org/10.2133/dmpk.17.467] [PMID: 15618698]
[112]
Zhen, H.S.; Zhou, Y.Y.; Yuan, Y.F.; Zhong, Z.G.; Liang, C.Y.; Qiu, Q. [Study on anticancer effect in vivo of active fraction from Nervilia fordii Zhong Yao Cai, 2007, 30(9), 1095-1098.
[PMID: 18236753]
[113]
Narisa, K.; Jenny, M.W.; Heather, M.A.C. Cytotoxic Effect of Four Thai Edible Plants on Mammalian Cell Proliferation. Thai. Pharm. Health Sci. J., 2006, 1(3), 189.
[114]
Roy, M.K.; Nakahara, K.; Na, T.V.; Trakoontivakorn, G.; Takenaka, M.; Isobe, S.; Tsushida, T. Baicalein, a flavonoid extracted from a methanolic extract of Oroxylum indicum inhibits proliferation of a cancer cell line in vitro via induction of apoptosis. Pharmazie, 2007, 62(2), 149-153.
[PMID: 17341037]
[115]
Jeena, K.J.; Joy, K.L.; Kuttan, R. Effect of Emblica officinalis, Phyllanthus amarus and Picrorrhiza kurroa on N-nitrosodiethylamine induced hepatocarcinogenesis. Cancer Lett., 1999, 136(1), 11-16.
[http://dx.doi.org/10.1016/S0304-3835(98)00294-8] [PMID: 10211933]
[116]
Sardoiwala, M.N.; Kushwaha, A.C.; Dev, A.; Shrimali, N.; Guchhait, P.; Karmakar, S.; Roy Choudhury, S. Hypericin-loaded transferrin nanoparticles induce PP2A-regulated BMI1 degradation in colorectal cancer-specific chemo-photodynamic therapy. ACS Biomater. Sci. Eng., 2020, 6(5), 3139-3153.
[http://dx.doi.org/10.1021/acsbiomaterials.9b01844]
[117]
Han, X.; Taratula, O.; Taratula, O.; Xu, K.; St Lorenz, A.; Moses, A.; Jahangiri, Y.; Yu, G.; Farsad, K. Biodegradable Hypericin-Containing Nanoparticles for Necrosis Targeting and Fluorescence Imaging. Mol. Pharm., 2020, 17(5), 1538-1545.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b01238] [PMID: 32212709]
[118]
Zhu, X.L.; Wang, S.S.; Li, L.H.; Zhang, H.J.; Xia, T.; Lyu, X.Y. Preparation and characterization of glycyrrhetinic acid-modified nano graphene oxide drug delivery system. Zhongguo Zhongyao Zazhi, 2019, 44(21), 4621-4626.
[PMID: 31872656]
[119]
Li, M.; Wang, Y.; Jiang, S.; Gao, Y.; Zhang, W.; Hu, S.; Cheng, X.; Zhang, C.; Sun, P.; Ke, W.; Wang, G.; Song, Z.; Zhang, Y.; Zheng, Q.C. Biodistribution and biocompatibility of glycyrrhetinic acid and galactose-modified chitosan nanoparticles as a novel targeting vehicle for hepatocellular carcinoma. Nanomedicine, 2020, 15(2), 145-161.
[http://dx.doi.org/10.2217/nnm-2018-0455] [PMID: 31782335]
[120]
Tian, Q.; Zhang, C.N.; Wang, X.H.; Wang, W.; Huang, W.; Cha, R.T.; Wang, C.H.; Yuan, Z.; Liu, M.; Wan, H.Y.; Tang, H. Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials, 2010, 31(17), 4748-4756.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.042] [PMID: 20303163]
[121]
Parhi, P.; Suklabaidya, S.; Kumar Sahoo, S. Enhanced anti-metastatic and anti-tumorigenic efficacy of Berbamine loaded lipid nanoparticles in vivo. Sci. Rep., 2017, 7(1), 5806-5810.
[http://dx.doi.org/10.1038/s41598-017-05296-y] [PMID: 28724926]
[122]
Park, S.H.; Sung, J.H.; Kim, E.J.; Chung, N. Berberine induces apoptosis via ROS generation in PANC-1 and MIA-PaCa2 pancreatic cell lines. Braz. J. Med. Biol. Res., 2015, 48(2), 111-119.
[http://dx.doi.org/10.1590/1414-431x20144293] [PMID: 25517919]
[123]
Sahibzada, M.U.K.; Sadiq, A.; Faidah, H.S.; Khurram, M.; Amin, M.U.; Haseeb, A. Berberine nanoparticles with enhanced in vitro bioavailability: Characterization and antimicrobial activity. Drug Des. Devel. Ther., 2018, 12(10), 303-312.
[124]
Hashemzaei, M.; Far, A.D.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; Nikitovic, D.; Anisimov, N.Y.; Spandidos, D.A.; Tsatsakis, A.M.; Rezaee, R. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol. Rep., 2017, 38(2), 819-828.
[http://dx.doi.org/10.3892/or.2017.5766] [PMID: 28677813]
[125]
Tang, S.M.; Deng, X.T.; Zhou, J.; Li, Q.P.; Ge, X.X.; Miao, L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother., 2020, 121, 109604.
[http://dx.doi.org/10.1016/j.biopha.2019.109604] [PMID: 31733570]
[126]
Kos, J.; Obermajer, N.; Doljak, B.; Kocbek, P.; Kristl, J. Inactivation of harmful tumour-associated proteolysis by nanoparticulate system. Int. J. Pharm., 2009, 381(2), 106-112.
[http://dx.doi.org/10.1016/j.ijpharm.2009.04.037] [PMID: 19422896]
[127]
Cirstoiu-Hapca, A.; Buchegger, F.; Bossy, L.; Kosinski, M.; Gurny, R.; Delie, F. Nanomedicines for active targeting: Physico-chemical characterization of paclitaxel-loaded anti-HER2 immunonanoparticles and in vitro functional studies on target cells. Eur. J. Pharm. Sci., 2009, 38(3), 230-237.
[http://dx.doi.org/10.1016/j.ejps.2009.07.006] [PMID: 19632322]
[128]
Patil, Y.B.; Toti, U.S.; Khdair, A.; Ma, L.; Panyam, J. Single-step surface functionalization of polymeric nanoparticles for targeted drug delivery. Biomaterials, 2009, 30(5), 859-866.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.056] [PMID: 19019427]
[129]
Abdelmoneem, M.A.; Mahmoud, M.; Zaky, A.; Helmy, M.W.; Sallam, M.; Fang, J.Y.; Elkhodairy, K.A.; Elzoghby, A.O. Decorating protein nanospheres with lactoferrin enhances oral COX-2 inhibitor/herbal therapy of hepatocellular carcinoma. Nanomedicine, 2018, 13(19), 2377-2395.
[http://dx.doi.org/10.2217/nnm-2018-0134] [PMID: 30346255]
[130]
Koh, B. Park, S.B.; Yoon, E.; Yoo, H.M.; Lee, D.; Heo, J.N.; Ahn, S. αVβ3-Targeted Delivery of Camptothecin-Encapsulated Carbon Nanotube-Cyclic RGD in 2D and 3D Cancer Cell Culture. J. Pharm. Sci., 2019, 108(11), 3704-3712.
[http://dx.doi.org/10.1016/j.xphs.2019.07.011] [PMID: 31348936]
[131]
Souza, L.G.; Silva, E.J.; Martins, A.L.L.; Mota, M.F.; Braga, R.C.; Lima, E.M.; Valadares, M.C.; Taveira, S.F.; Marreto, R.N. Development of topotecan loaded lipid nanoparticles for chemical stabilization and prolonged release. Eur. J. Pharm. Biopharm., 2011, 79(1), 189-196.
[http://dx.doi.org/10.1016/j.ejpb.2011.02.012] [PMID: 21352915]
[132]
Glassman, D.C.; Palmaira, R.L.; Covington, C.M.; Desai, A.M.; Ku, G.Y.; Li, J.; Harding, J.J.; Varghese, A.M.; O’Reilly, E.M.; Yu, K.H. Nanoliposomal irinotecan with fluorouracil for the treatment of advanced pancreatic cancer, a single institution experience. BMC Cancer, 2018, 18(1), 693.
[http://dx.doi.org/10.1186/s12885-018-4605-1] [PMID: 29945562]
[133]
Zhao, X.; Wang, G.; Zhang, B.; Li, H.; Nie, Q.; Zang, C.; Zhao, X. Development of Silymarin nanocrystals lyophilized power applying nanosuspension technology. Zhongguo Zhongyao Zazhi, 2009, 34(12), 1503-1508.
[PMID: 19777833]
[134]
Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev., 2002, 54(Suppl. 1), S131-S155.
[http://dx.doi.org/10.1016/S0169-409X(02)00118-7] [PMID: 12460720]
[135]
Safer, A.M.; Leporatti, S.; Jose, J.; Soliman, M.S. Conjugation Of EGCG and chitosan NPs As A novel nano-drug delivery system. Int. J. Nanomedicine, 2019, 14, 8033-8046.
[http://dx.doi.org/10.2147/IJN.S217898] [PMID: 31632016]
[136]
Frias, I.; Neves, A.; Pinheiro, M.; Reis, S. Design, development, and characterization of lipid nanocarriers-based epigallocatechin gallate delivery system for preventive and therapeutic supplementation. Drug Des. Devel. Ther., 2016, 10(10), 3519-3528.
[http://dx.doi.org/10.2147/DDDT.S109589] [PMID: 27826184]
[137]
Riva, A.; Ronchi, M.; Petrangolini, G.; Bosisio, S.; Allegrini, P. Improved oral absorption of quercetin from quercetin Phytosome®, a new delivery system based on food grade lecithin. Eur. J. Drug Metab. Pharmacokinet., 2019, 44(2), 169-177.
[http://dx.doi.org/10.1007/s13318-018-0517-3] [PMID: 30328058]
[138]
Freag, M.S.; Saleh, W.M.; Abdallah, O.Y. Self-assembled phospholipid-based phytosomal nanocarriers as promising platforms for improving oral bioavailability of the anticancer celastrol. Int. J. Pharm., 2018, 535(1-2), 18-26.
[http://dx.doi.org/10.1016/j.ijpharm.2017.10.053]
[139]
Zhang, Y.Q.; Shen, Y.; Liao, M.M.; Mao, X.; Mi, G.J.; You, C.; Guo, Q.Y.; Li, W.J.; Wang, X.Y.; Lin, N.; Webster, T.J. Galactosylated chitosan triptolide nanoparticles for overcoming hepatocellular carcinoma: Enhanced therapeutic efficacy, low toxicity, and validated network regulatory mechanisms. Nanomedicine, 2019, 15(1), 86-97.
[http://dx.doi.org/10.1016/j.nano.2018.09.002] [PMID: 30244085]
[140]
Zhang, H.; Liu, X.; Wu, F.; Qin, F.; Feng, P.; Xu, T.; Li, X.; Yang, L. A novel Prostate-Specific Membrane-Antigen (PSMA) targeted micelle-encapsulating wogonin inhibits prostate cancer cell proliferation via inducing intrinsic apoptotic pathway. Int. J. Mol. Sci., 2016, 17(5), 676.
[141]
Hong, C.; Wang, D.; Liang, J.; Guo, Y.; Zhu, Y.; Xia, J.; Qin, J.; Zhan, H.; Wang, J. Novel ginsenoside-based multifunctional liposomal delivery system for combination therapy of gastric cancer. Theranostics, 2019, 9(15), 4437-4449.
[http://dx.doi.org/10.7150/thno.34953] [PMID: 31285771]
[142]
Hafez, D.A.; Elkhodairy, K.A.; Teleb, M.; Elzoghby, A.O. Nanomedicine-based approaches for improved delivery of phyto-therapeutics for cancer therapy. Expert Opin. Drug Deliv., 2020, 17(3), 279-285.
[http://dx.doi.org/10.1080/17425247.2020.1723542] [PMID: 31997666]
[143]
Yallapu, M.M.; Othman, S.F.; Curtis, E.T.; Bauer, N.A.; Chauhan, N.; Kumar, D.; Jaggi, M.; Chauhan, S.C. Curcumin-loaded magnetic nanoparticles for breast cancer therapeutics and imaging applications. Int. J. Nanomedicine, 2012, 7, 1761-1779.
[PMID: 22619526]
[144]
Elwakil, A.M.M.; Mabrouk, M.T.; Helmy, M.W.; Abdelfattah, E.Z.A.; Khiste, S.K.; Elkhodairy, K.A.; Elzoghby, A.O. Inhalable lactoferrin-chondroitin nanocomposites for combined delivery of doxorubicin and ellagic acid to lung carcinoma. Nanomedicine, 2018, 13(16), 2015-2035.
[http://dx.doi.org/10.2217/nnm-2018-0039] [PMID: 30191764]
[145]
Bhandari, R.; Paliwal, J.K.; Kuhad, A. Naringenin and its nanocarriers as potential phytotherapy for autism spectrum disorders. J. Funct. Foods, 2018, 47, 361-375.
[http://dx.doi.org/10.1016/j.jff.2018.05.065]
[146]
Bhoomika, R.; Ramesh, K.G.; Anita, A.M. Phyto-pharmacology of Achyranthes aspera: A review. Pharmacogn. Rev., 2007, 1(1), 143.
[147]
Chakraborty, A.; Brantner, A.; Mukainaka, T.; Nobukuni, Y.; Kuchide, M.; Konoshima, T.; Tokuda, H.; Nishino, H. Cancer chemopreventive activity of Achyranthes aspera leaves on Epstein-Barr virus activation and two-stage mouse skin carcinogenesis. Cancer Lett., 2002, 177(1), 1-5.
[http://dx.doi.org/10.1016/S0304-3835(01)00766-2] [PMID: 11809524]
[148]
Scharfenberg, K.; Wagner, R.; Wagner, K.G. The cytotoxic effect of ajoene, a natural product from garlic, investigated with different cell lines. Cancer Lett., 1990, 53(2-3), 103.
[http://dx.doi.org/10.1016/0304-3835(90)90201-8]
[149]
Thomson, M.; Ali, M. Garlic [Allium sativum]: A review of its potential use as an anti-cancer agent. Curr. Cancer Drug Targets, 2003, 3(1), 67-81.
[http://dx.doi.org/10.2174/1568009033333736] [PMID: 12570662]
[150]
Geethangili, M.; Rao, Y.K.; Fang, S.H.; Tzeng, Y.M. Cytotoxic constituents from Andrographis paniculata induce cell cycle arrest in jurkat cells. Phytother. Res., 2008, 22(10), 1336-1341.
[http://dx.doi.org/10.1002/ptr.2493] [PMID: 18546141]
[151]
Ajaya Kumar, R.; Sridevi, K.; Vijaya Kumar, N.; Nanduri, S.; Rajagopal, S. Anticancer and immunostimulatory compounds from Andrographis paniculata. J. Ethnopharmacol., 2004, 92(2-3), 291-295.
[http://dx.doi.org/10.1016/j.jep.2004.03.004] [PMID: 15138014]
[152]
Lannuzel, A.; Michel, P.P.; Caparros-Lefebvre, D.; Abaul, J.; Hocquemiller, R.; Ruberg, M. Toxicity of Annonaceae for dopaminergic neurons: Potential role in atypical parkinsonism in Guadeloupe. Mov. Disord., 2002, 17(1), 84-90.
[http://dx.doi.org/10.1002/mds.1246] [PMID: 11835443]
[153]
Muriel, J.M. Herbs or natural products that decrease cancer growth. Oncol. Nursing Forum, 2004, 31(4), E75.
[154]
Kamakura, M.; Sakaki, T. A hypopharyngeal gland protein of the worker honeybee Apis mellifera L. enhances proliferation of primary-cultured rat hepatocytes and suppresses apoptosis in the absence of serum. Protein Expr. Purif., 2006, 45(2), 307-314.
[http://dx.doi.org/10.1016/j.pep.2005.08.004] [PMID: 16290177]
[155]
Bei, C.; Bindu, T.; Remant, K.C.; Peisheng, X. Dual secured nano-melittin for the safe and effective eradication of cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(1), 25-29.
[http://dx.doi.org/10.1039/C4TB01401D] [PMID: 25734006]
[156]
Lee, Y.J.; Kang, S.J.; Kim, B.M.; Kim, Y.J.; Woo, H.D.; Chung, H.W. Cytotoxicity of honeybee (Apis mellifera) venom in normal human lymphocytes and HL-60 cells. Chem. Biol. Interact., 2007, 169(3), 189-197.
[http://dx.doi.org/10.1016/j.cbi.2007.06.036] [PMID: 17658502]
[157]
Wang, J.; Ito, H.; Shimura, K. Enhancing effect of antitumor polysaccharide from Astralagus or Radix hedysarum on C3 cleavage production of macrophages in mice. Department of Pharmacology, Mie University School of Medicine, Japan. Mem. Inst. Oswaldo Cruz, 1991, 86(2), 159.
[PMID: 1842410]
[158]
Cho, W.C.S.; Leung, K.N. In vitro and in vivo anti-tumor effects of Astragalus membranaceus. Cancer Lett., 2007, 252(1), 43-54.
[http://dx.doi.org/10.1016/j.canlet.2006.12.001] [PMID: 17223259]
[159]
Chu, D.T.; Lepe-Zuniga, J.; Wong, W.L.; LaPushin, R.; Mavligit, G.M. Fractionated extract of Astragalus membranaceus, a Chinese medicinal herb, potentiates LAK cell cytotoxicity generated by a low dose of recombinant interleukin-2. J. Clin. Lab. Immunol., 1988, 26(4), 183-187.
[PMID: 3264344]
[160]
Sundararajan, P.; Dey, A.; Smith, A.; Doss, A.G.; Rajappan, M.; Natarajan, S. Studies of anticancer and antipyretic activity of Bidens pilosa whole plant. Afr. Health Sci., 2006, 6(1), 27-30.
[PMID: 16615823]
[161]
Cheng, G.; Zhang, Y.; Zhang, X.; Tang, H.F.; Cao, W.D.; Gao, D.K.; Wang, X.L. Tubeimoside V (1), a new cyclic bisdesmoside from tubers of Bolbostemma paniculatum, functions by inducing apoptosis in human glioblastoma U87MG cells. Bioorg. Med. Chem. Lett., 2006, 16(17), 4575-4580.
[http://dx.doi.org/10.1016/j.bmcl.2006.06.020] [PMID: 16784856]
[162]
Gruenwald, J.; Brendler, T.; Jaenicke, C.; Nontvale, N.J. PDR for herbal medicines Med. Econom., 1998, 77
[163]
Pittella, F.; Dutra, R.; Junior, D.; Lopes, M.T.; Barbosa, N. Antioxidant and cytotoxic activities of Centella asiatica (L). Urb. Int. J. Mol. Sci., 2009, 10(9), 3713-3721.
[http://dx.doi.org/10.3390/ijms10093713] [PMID: 19865514]
[164]
Morita, H.; Yamamiya, T.; Takeya, K.; Itokawa, H. New antitumor bicyclic hexapeptides, RA-XI, -XII, -XIII and -XIV from Rubia cordifolia. Chem. Pharm. Bull.(Tokyo),, 1992, 40(5), 1352-1354.
[http://dx.doi.org/10.1248/cpb.40.1352] [PMID: 1394660]
[165]
Morita, H.; Yamamiya, T.; Takeya, K.; Itokawa, H.; Sakuma, C.; Yamada, J.; Suga, T. Conformational recognition of RA-XII by 80S ribosomes. A differential line broadening study in 1H NMR spectroscopy. Chem. Pharm. Bull.(Tokyo),, 1993, 41(4), 781-783.
[http://dx.doi.org/10.1248/cpb.41.781] [PMID: 8508481]
[166]
Itokawa, H.; Wang, X.; Lee, K.H. Homoharringtonine and related compounds. In: Anticancer Agents from Natural Products; Cragg, G.M.; Kingston, D.G.I.; Newman, D.J., Eds.; Brunner-Routledge Psychology Press, Taylor & Francis Group: Boca Raton, 2005.
[167]
Nizamutdinova, I.T.; Lee, G.W.; Lee, J.S.; Cho, M.K.; Son, K.H.; Jeon, S.J.; Kang, S.S.; Kim, Y.S.; Lee, J.H.; Seo, H.G.; Chang, K.C.; Kim, H.J. Tanshinone I suppresses growth and invasion of human breast cancer cells, MDA-MB-231, through regulation of adhesion molecules. Carcinogenesis, 2008, 29(10), 1885-1892.
[http://dx.doi.org/10.1093/carcin/bgn151] [PMID: 18586687]
[168]
Parajuli, P.; Joshee, N.; Rimando, A.; Mittal, S.; Yadav, A. In vitro antitumor mechanisms of various Scutellaria extracts and constituent flavonoids. Planta Med., 2009, 75(1), 41-48.
[http://dx.doi.org/10.1055/s-0028-1088364] [PMID: 19031366]
[169]
Agarwal, R.; Agarwal, C.; Ichikawa, H.; Singh, R.P.; Aggarwal, B.B. Anticancer potential of silymarin: From bench to bed side. Anticancer Res., 2006, 26(6B), 4457-4498.
[PMID: 17201169]
[170]
Kim, S.; Choi, J.H.; Lim, H.I.; Lee, S.K.; Kim, W.W.; Kim, J.S.; Kim, J.H.; Choe, J.H.; Yang, J.H.; Nam, S.J.; Lee, J.E. Silibinin prevents TPA-induced MMP-9 expression and VEGF secretion by inactivation of the Raf/MEK/ERK pathway in MCF-7 human breast cancer cells. Phytomedicine, 2009, 16(6-7), 573-580.
[http://dx.doi.org/10.1016/j.phymed.2008.11.006] [PMID: 19181503]
[171]
Xu, W.; Liu, J.; Li, C.; Wu, H.Z.; Liu, Y.W. Kaempferol-7-O-β-d-glucoside (KG) isolated from Smilax china L. rhizome induces G2/M phase arrest and apoptosis on HeLa cells in a p53-independent manner. Cancer Lett., 2008, 264(2), 229-240.
[http://dx.doi.org/10.1016/j.canlet.2008.01.044] [PMID: 18343026]
[172]
Li, Y.L.; Gan, G.P.; Zhang, H.Z.; Wu, H.Z.; Li, C.L.; Huang, Y.P.; Liu, Y.W.; Liu, J.W. A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer effects on human cancer cell lines. J. Ethnopharmacol., 2007, 113(1), 115-124.
[http://dx.doi.org/10.1016/j.jep.2007.05.016] [PMID: 17606345]
[173]
Deng, X.K.; Yin, W.; Li, W.D.; Yin, F.Z.; Lu, X.Y.; Zhang, X.C.; Hua, Z.C.; Cai, B.C. The anti-tumor effects of alkaloids from the seeds of Strychnos nux-vomica on HepG2 cells and its possible mechanism. J. Ethnopharmacol., 2006, 106(2), 179-186.
[http://dx.doi.org/10.1016/j.jep.2005.12.021] [PMID: 16442763]
[174]
Rao, P.S.; Ramanadham, M.; Prasad, M.N.V. Anti-proliferative and cytotoxic effects of Strychnos nux-vomica root extract on human multiple myeloma cell line - RPMI 8226. Food Chem. Toxicol., 2009, 47(2), 283-288.
[http://dx.doi.org/10.1016/j.fct.2008.10.027] [PMID: 19027818]
[175]
Sigstedt, S.; Hooten, C.; Callewaert, M.; Jenkins, A.; Romero, A.; Pullin, M.; Kornienko, A.; Lowrey, T.; Slambrouck, S.; Steelant, W. Evaluation of aqueous extracts of Taraxacum officinale on growth and invasion of breast and prostate cancer cells. Int. J. Oncol., 2008, 32(5), 1085-1090.
[http://dx.doi.org/10.3892/ijo.32.5.1085] [PMID: 18425335]
[176]
Gresham, L.; Ross, J.; Izevbigie, E. Vernonia amygdalina: Anticancer activity, authentication, and adulteration detection. Int. J. Environ. Res. Public Health, 2008, 5(5), 342-348.
[http://dx.doi.org/10.3390/ijerph5050342] [PMID: 19151428]
[177]
Ali, M.; Shuaib, M.; Ansari, S.H. Withanolides from the stem bark of Withania somnifera. Phytochemistry, 1997, 44(6), 1163-1168.
[http://dx.doi.org/10.1016/S0031-9422(96)00656-5]
[178]
Chakraborti, S.K.; De Barun, K.; Bandyopadhyay, T. Variations in the antitumour constituents ofWithania somnifera dunal. Experientia, 1974, 30(8), 852-853.
[http://dx.doi.org/10.1007/BF01938320] [PMID: 4416850]
[179]
Devi, P.U.; Akagi, K.; Ostapenko, V.; Tanaka, Y.; Sugahara, T.; Withaferin, A. A new radiosensitizer from the Indian medicinal plant Withania somnifera. Int. J. Radiat. Biol., 1996, 69(2), 193-197.
[http://dx.doi.org/10.1080/095530096146020] [PMID: 8609455]
[180]
Katiyar, S.K.; Agarwal, R.; Mukhtar, H. Inhibition of tumor promotion in SENCAR mouse skin by ethanol extract of Zingiber officinale rhizome. Cancer Res., 1996, 56(5), 1023-1030.
[PMID: 8640756]
[181]
Abdullah, S.; Abidin, S.A.Z.; Murad, N.A; Suzana, M.; Ngah, W.Z.W.;; Yusof, Y.A.M. inger extract (Zingiber officinale) triggers apoptosis and G0/G1 cells arrest in HCT 116 and HT 29 colon cancer cell lines. Afr Afr. J. Biochem. Res, 2010, 4(4), 134.

© 2024 Bentham Science Publishers | Privacy Policy