Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Cannabinoids Receptors in COVID-19: Perpetrators and Victims

Author(s): Hayder M. Al-Kuraishy, Ali I. Al-Gareeb, Athanasios Alexiou* and Gaber El-Saber Batiha

Volume 30, Issue 34, 2023

Published on: 04 November, 2022

Page: [3832 - 3845] Pages: 14

DOI: 10.2174/0929867329666220829145029

Price: $65

Abstract

COVID-19 is caused by SARS-CoV-2 and leads to acute lung injury (ALI), acute respiratory distress syndrome (ARDS), and extrapulmonary manifestations in severely affected cases. However, most of the affected cases are mild or asymptomatic. Cannabinoids (CBs) such as tetrahydrocannabinol (THC) and cannabidiol (CBD), which act on G-protein-coupled receptors called CB1 and CB2, have anti-inflammatory effects. Many published studies show that CBs are effective in various inflammatory disorders, viral infections, and attenuation of ALI and ARDS. Therefore, the present narrative review aimed to summarize the possible immunological role of CBs in COVID-19. The effects of CBs are controversial, although they have beneficial effects via CB2 receptors and adverse effects via CB1 receptors against ALI, ARDS, and hyperinflammation, which are hallmarks of COVID-19. The present narrative review has shown that CBs effectively manage ALI and ARDS by suppressing pro-inflammatory cytokines, which are common in COVID-19. Therefore, CBs may be used to manage COVID-19 because of their potent anti-inflammatory effects, suppressing pro-inflammatory cytokines and inhibiting inflammatory signaling pathways.

Keywords: COVID-19, SARS-CoV-2, acute lung injury, Cannabinoids, acute respiratory distress syndrome, anti-inflammatory effects

[1]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Alzahrani, K.J.; Cruz-Martins, N.; Batiha, G.E.S. The potential role of neopterin in Covid-19: A new perspective. Mol. Cell. Biochem., 2021, 476(11), 4161-4166.
[http://dx.doi.org/10.1007/s11010-021-04232-z] [PMID: 34319496]
[2]
Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg., 2020, 76, 71-76.
[http://dx.doi.org/10.1016/j.ijsu.2020.02.034] [PMID: 32112977]
[3]
Al-Kuraishy, H.; Al-Gareeb, A.; Al-Niemi, M.; Al-Buhadily, A.; Al-Harchan, N.; Lugnier, C. COVID-19 and phosphodiesterase enzyme type 5 inhibitors. J. Microsc. Ultrastruct., 2020, 8(4), 141-145.
[http://dx.doi.org/10.4103/JMAU.JMAU_63_20] [PMID: 33623736]
[4]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Qusty, N.; Cruz-Martins, N.; El-Saber Batiha, G. Sequential doxycycline and colchicine combination therapy in Covid-19: The salutary effects. Pulm. Pharmacol. Ther., 2021, 67, 102008.
[http://dx.doi.org/10.1016/j.pupt.2021.102008] [PMID: 33727066]
[5]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Alqarni, M.; Cruz-Martins, N.; El-Saber Batiha, G. Pleiotropic effects of tetracyclines in the management of COVID-19: Emerging perspectives. Front. Pharmacol., 2021, 12, 642822.
[http://dx.doi.org/10.3389/fphar.2021.642822] [PMID: 33967777]
[6]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Almulaiky, Y.Q.; Cruz-Martins, N.; El-Saber Batiha, G. Role of leukotriene pathway and montelukast in pulmonary and extrapulmonary manifestations of Covid-19: The enigmatic entity. Eur. J. Pharmacol., 2021, 904, 174196.
[http://dx.doi.org/10.1016/j.ejphar.2021.174196] [PMID: 34004207]
[7]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Alzahrani, K.J.; Alexiou, A.; Batiha, G.E.S. Niclosamide for Covid-19: Bridging the gap. Mol. Biol. Rep., 2021, 48(12), 8195-8202.
[http://dx.doi.org/10.1007/s11033-021-06770-7] [PMID: 34664162]
[8]
Onohuean, H.; Al-kuraishy, H.M.; Al-Gareeb, A.I.; Qusti, S.; Alshammari, E.M.; Batiha, G.E.S. Covid-19 and development of heart failure: Mystery and truth. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(10), 2013-2021.
[http://dx.doi.org/10.1007/s00210-021-02147-6] [PMID: 34480616]
[9]
Grotenhermen, F. Cannabinoids. Curr. Drug Targets CNS Neurol. Disord., 2005, 4(5), 507-530.
[http://dx.doi.org/10.2174/156800705774322111] [PMID: 16266285]
[10]
Mechoulam, R. Cannabinoids research. Available from: cannabinoids.huji.ac.il
[11]
Kumar, R.N.; Chambers, W.A.; Pertwee, R.G. Pharmacological actions and therapeutic uses of cannabis and cannabinoids. Anaesthesia, 2001, 56(11), 1059-1068.
[PMID: 11703238]
[12]
Shahbazi, F.; Grandi, V.; Banerjee, A.; Trant, J.F. Cannabinoids and cannabinoid receptors: The story so far. iScience, 2020, 23(7), 101301.
[http://dx.doi.org/10.1016/j.isci.2020.101301] [PMID: 32629422]
[13]
Scherma, M.; Masia, P.; Satta, V.; Fratta, W.; Fadda, P.; Tanda, G. Brain activity of anandamide: A rewarding bliss? Acta Pharmacol. Sin., 2019, 40(3), 309-323.
[http://dx.doi.org/10.1038/s41401-018-0075-x] [PMID: 30050084]
[14]
Maccarrone, M. Metabolism of the endocannabinoid anandamide: Open questions after 25 years. Front. Mol. Neurosci., 2017, 10, 166.
[http://dx.doi.org/10.3389/fnmol.2017.00166] [PMID: 28611591]
[15]
Fazio, D.; Criscuolo, E.; Piccoli, A.; Barboni, B.; Fezza, F.; Maccarrone, M. Advances in the discovery of fatty acid amide hydrolase inhibitors: What does the future hold? Expert Opin. Drug Discov., 2020, 15(7), 765-778.
[http://dx.doi.org/10.1080/17460441.2020.1751118] [PMID: 32292082]
[16]
Bartholomäus, R.; Nicolussi, S.; Baumann, A.; Rau, M.; Simão, A.C.; Gertsch, J.; Altmann, K.H. Total synthesis of the endocannabinoid uptake inhibitor guineensine and SAR studies. ChemMedChem, 2019, 14(17), 1590-1596.
[http://dx.doi.org/10.1002/cmdc.201900390] [PMID: 31322825]
[17]
Morris, A. Developing novel chemotherapeutics: A structure-activity study of anandamide analogs and their cytotoxic profiles. Available from: http://hdl.handle.net/ 10342/7621
[18]
Di Marzo, V. New approaches and challenges to targeting the endocannabinoid system. Nat. Rev. Drug Discov., 2018, 17(9), 623-639.
[http://dx.doi.org/10.1038/nrd.2018.115] [PMID: 30116049]
[19]
Patel, S.; Hill, M.N.; Cheer, J.F.; Wotjak, C.T.; Holmes, A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci. Biobehav. Rev., 2017, 76(Pt A), 56-66.
[http://dx.doi.org/10.1016/j.neubiorev.2016.12.033] [PMID: 28434588]
[20]
Reiss, C.S. Cannabinoids and viral infections. Pharmaceuticals (Basel), 2010, 3(6), 1873-1886.
[http://dx.doi.org/10.3390/ph3061873] [PMID: 20634917]
[21]
Massi, P.; Vaccani, A.; Parolaro, D. Cannabinoids, immune system and cytokine network. Curr. Pharm. Des., 2006, 12(24), 3135-3146.
[http://dx.doi.org/10.2174/138161206777947425] [PMID: 16918439]
[22]
Tanasescu, R.; Constantinescu, C.S. Cannabinoids and the immune system: An overview. Immunobiology, 2010, 215(8), 588-597.
[http://dx.doi.org/10.1016/j.imbio.2009.12.005] [PMID: 20153077]
[23]
Croxford, J.L.; Yamamura, T. Cannabinoids and the immune system: Potential for the treatment of inflammatory diseases? J. Neuroimmunol., 2005, 166(1-2), 3-18.
[http://dx.doi.org/10.1016/j.jneuroim.2005.04.023] [PMID: 16023222]
[24]
Nagarkatti, P.; Pandey, R.; Rieder, S.A.; Hegde, V.L.; Nagarkatti, M. Cannabinoids as novel anti-inflammatory drugs. Future Med. Chem., 2009, 1(7), 1333-1349.
[http://dx.doi.org/10.4155/fmc.09.93] [PMID: 20191092]
[25]
Carrier, E.J.; Auchampach, J.A.; Hillard, C.J. Inhibition of an equilibrative nucleoside transporter by cannabidiol: A mechanism of cannabinoid immunosuppression. Proc. Natl. Acad. Sci. USA, 2006, 103(20), 7895-7900.
[http://dx.doi.org/10.1073/pnas.0511232103] [PMID: 16672367]
[26]
Ossola, C.A.; Balcarcel, N.B.; Astrauskas, J.I.; Bozzini, C.; Elverdin, J.C.; Fernández-Solari, J. A new target to ameliorate the damage of periodontal disease: The role of transient receptor potential vanilloid type1 in contrast to that of specific cannabinoid receptors in rats. J. Periodontol., 2019, 90(11), 1325-1335.
[http://dx.doi.org/10.1002/JPER.18-0766] [PMID: 31077362]
[27]
Smesny, S.; Rosburg, T.; Baur, K.; Rudolph, N.; Sauer, H. Cannabinoids influence lipid-arachidonic acid pathways in schizophrenia. Neuropsychopharmacology, 2007, 32(10), 2067-2073.
[http://dx.doi.org/10.1038/sj.npp.1301343] [PMID: 17314920]
[28]
Ruhl, T.; Corsten, C.; Beier, J.P.; Kim, B.S. The immunosuppressive effect of the endocannabinoid system on the inflammatory phenotypes of macrophages and mesenchymal stromal cells: A comparative study. Pharmacol. Rep., 2021, 73(1), 143-153.
[http://dx.doi.org/10.1007/s43440-020-00166-3] [PMID: 33026642]
[29]
Robinson, E.S.; Alves, P.; Bashir, M.M.; Zeidi, M.; Feng, R.; Werth, V.P. Cannabinoid reduces inflammatory cytokines tumor necrosis factor alpha and type I interferons in dermatomyositis in vitro. J. Invest. Dermatol., 2017, 137(11), 2445-2447.
[http://dx.doi.org/10.1016/j.jid.2017.05.035] [PMID: 28652111]
[30]
Henshaw, F.R.; Dewsbury, L.S.; Lim, C.K.; Steiner, G.Z. The effects of cannabinoids on pro- and anti-inflammatory cytokines: A systematic review of in vivo studies. Cannabis Cannabinoid Res., 2021, 6(3), 177-195.
[http://dx.doi.org/10.1089/can.2020.0105] [PMID: 33998900]
[31]
Irrera, N.; D’Ascola, A.; Pallio, G.; Bitto, A.; Mazzon, E.; Mannino, F.; Squadrito, V.; Arcoraci, V.; Minutoli, L.; Campo, G.M.; Avenoso, A.; Bongiorno, E.B.; Vaccaro, M.; Squadrito, F.; Altavilla, D. β-Caryophyllene mitigates collagen antibody induced arthritis (CAIA) in mice through a cross-talk between CB2 and PPAR-γ receptors. Biomolecules, 2019, 9(8), 326.
[http://dx.doi.org/10.3390/biom9080326] [PMID: 31370242]
[32]
Celorrio, M.; Rojo-Bustamante, E.; Fernández-Suárez, D.; Sáez, E.; Estella-Hermoso de Mendoza, A.; Müller, C.E.; Ramírez, M.J.; Oyarzábal, J.; Franco, R.; Aymerich, M.S. GPR55: A therapeutic target for Parkinson’s disease? Neuropharmacology, 2017, 125, 319-332.
[http://dx.doi.org/10.1016/j.neuropharm.2017.08.017] [PMID: 28807673]
[33]
Bujak, J.K.; Kosmala, D.; Szopa, I.M.; Majchrzak, K.; Bednarczyk, P. Inflammation, cancer and immunity—implication of TRPV1 channel. Front. Oncol., 2019, 9, 1087.
[http://dx.doi.org/10.3389/fonc.2019.01087] [PMID: 31681615]
[34]
Latko, M.; Czyrek, A.; Porębska, N.; Kucińska, M.; Otlewski, J.; Zakrzewska, M.; Opaliński, Ł. Cross-talk between fibroblast growth factor receptors and other cell surface proteins. Cells, 2019, 8(5), 455.
[http://dx.doi.org/10.3390/cells8050455] [PMID: 31091809]
[35]
Murphy, N.; Cowley, T.R.; Blau, C.W.; Dempsey, C.N.; Noonan, J.; Gowran, A.; Tanveer, R.; Olango, W.M.; Finn, D.P.; Campbell, V.A.; Lynch, M.A. The fatty acid amide hydrolase inhibitor URB597 exerts anti-inflammatory effects in hippocampus of aged rats and restores an age-related deficit in long-term potentiation. J. Neuroinflammation, 2012, 9(1), 581.
[http://dx.doi.org/10.1186/1742-2094-9-79] [PMID: 22537429]
[36]
Chiurchiù, V.; Scipioni, L.; Arosio, B.; Mari, D.; Oddi, S.; Maccarrone, M. Anti-inflammatory effects of fatty acid amide hydrolase inhibition in monocytes/macrophages from alzheimer’s disease patients. Biomolecules, 2021, 11(4), 502.
[http://dx.doi.org/10.3390/biom11040502] [PMID: 33810505]
[37]
Shamran, H.; Singh, N.P.; Zumbrun, E.E.; Murphy, A.; Taub, D.D.; Mishra, M.K.; Price, R.L.; Chatterjee, S.; Nagarkatti, M.; Nagarkatti, P.S.; Singh, U.P. Fatty acid amide hydrolase (FAAH) blockade ameliorates experimental colitis by altering microRNA expression and suppressing inflammation. Brain Behav. Immun., 2017, 59, 10-20.
[http://dx.doi.org/10.1016/j.bbi.2016.06.008] [PMID: 27327245]
[38]
Maggirwar, S.B.; Khalsa, J.H. The link between cannabis use, immune system, and viral infections. Viruses, 2021, 13(6), 1099.
[http://dx.doi.org/10.3390/v13061099] [PMID: 34207524]
[39]
Karmaus, P.W.F.; Chen, W.; Crawford, R.; Kaplan, B.L.F.; Kaminski, N.E. Δ9-tetrahydrocannabinol impairs the inflammatory response to influenza infection: role of antigen-presenting cells and the cannabinoid receptors 1 and 2. Toxicol. Sci., 2013, 131(2), 419-433.
[http://dx.doi.org/10.1093/toxsci/kfs315] [PMID: 23152191]
[40]
Sun, L.J.; Yu, J.W.; Wan, L.; Zhang, X.Y.; Shi, Y.G.; Chen, M.Y. Endocannabinoid system activation contributes to glucose metabolism disorders of hepatocytes and promotes hepatitis C virus replication. Int. J. Infect. Dis., 2014, 23, 75-81.
[http://dx.doi.org/10.1016/j.ijid.2013.12.017] [PMID: 24704332]
[41]
Huemer, H.P.; Lassnig, C.; Bernhard, D.; Sturm, S.; Nowotny, N.; Kitchen, M.; Pavlic, M. Cannabinoids lead to enhanced virulence of the smallpox vaccine (vaccinia) virus. Immunobiology, 2011, 216(6), 670-677.
[http://dx.doi.org/10.1016/j.imbio.2010.11.001] [PMID: 21131094]
[42]
Tahamtan, A.; Samieipoor, Y.; Nayeri, F.S.; Rahbarimanesh, A.A.; Izadi, A.; Rashidi-Nezhad, A.; Tavakoli-Yaraki, M.; Farahmand, M.; Bont, L.; Shokri, F.; Mokhatri-Azad, T.; Salimi, V. Effects of cannabinoid receptor type 2 in respiratory syncytial virus infection in human subjects and mice. Virulence, 2018, 9(1), 217-230.
[http://dx.doi.org/10.1080/21505594.2017.1389369] [PMID: 28992427]
[43]
Armas-Rillo, L.; Valera, M.S.; Marrero-Hernández, S.; Valenzuela-Fernández, A. Membrane dynamics associated with viral infection. Rev. Med. Virol., 2016, 26(3), 146-160.
[http://dx.doi.org/10.1002/rmv.1872] [PMID: 26817660]
[44]
Athanasiou, A.; Clarke, A.B.; Turner, A.E.; Kumaran, N.M.; Vakilpour, S.; Smith, P.A.; Bagiokou, D.; Bradshaw, T.D.; Westwell, A.D.; Fang, L.; Lobo, D.N.; Constantinescu, C.S.; Calabrese, V.; Loesch, A.; Alexander, S.P.H.; Clothier, R.H.; Kendall, D.A.; Bates, T.E. Cannabinoid receptor agonists are mitochondrial inhibitors: A unified hypothesis of how cannabinoids modulate mitochondrial function and induce cell death. Biochem. Biophys. Res. Commun., 2007, 364(1), 131-137.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.107] [PMID: 17931597]
[45]
Silva, J.P.; Araújo, A.M.; de Pinho, P.G.; Carmo, H.; Carvalho, F. Synthetic cannabinoids JWH-122 and THJ-2201 disrupt endocannabinoid-regulated mitochondrial function and activate apoptotic pathways as a primary mechanism of in vitro nephrotoxicity at in vivo relevant concentrations. Toxicol. Sci., 2019, 169(2), 422-435.
[http://dx.doi.org/10.1093/toxsci/kfz050] [PMID: 30796436]
[46]
Peterson, P.K.; Gekker, G.; Hu, S.; Cabral, G.; Lokensgard, J.R. Cannabinoids and morphine differentially affect HIV-1 expression in CD4+ lymphocyte and microglial cell cultures. J. Neuroimmunol., 2004, 147(1-2), 123-126.
[http://dx.doi.org/10.1016/j.jneuroim.2003.10.026] [PMID: 14741442]
[47]
Abrams, D.I.; Hilton, J.F.; Leiser, R.J.; Shade, S.B.; Elbeik, T.A.; Aweeka, F.T.; Benowitz, N.L.; Bredt, B.M.; Kosel, B.; Aberg, J.A.; Deeks, S.G.; Mitchell, T.F.; Mulligan, K.; Bacchetti, P.; McCune, J.M.; Schambelan, M. Short-term effects of cannabinoids in patients with HIV-1 infection: A randomized, placebo-controlled clinical trial. Ann. Intern. Med., 2003, 139(4), 258-266.
[http://dx.doi.org/10.7326/0003-4819-139-4-200308190-00008] [PMID: 12965981]
[48]
Kim, H.J.; Shin, A.H.; Thayer, S.A. Activation of cannabinoid type 2 receptors inhibits HIV-1 envelope glycoprotein gp120-induced synapse loss. Mol. Pharmacol., 2011, 80(3), 357-366.
[http://dx.doi.org/10.1124/mol.111.071647] [PMID: 21670103]
[49]
Kumar, V.; Torben, W.; Mansfield, J.; Alvarez, X.; Vande Stouwe, C.; Li, J.; Byrareddy, S.N.; Didier, P.J.; Pahar, B.; Molina, P.E.; Mohan, M. Cannabinoid attenuation of intestinal inflammation in chronic SIV-infected rhesus macaques involves T cell modulation and differential expression of micro-RNAs and pro-inflammatory genes. Front. Immunol., 2019, 10, 914.
[http://dx.doi.org/10.3389/fimmu.2019.00914] [PMID: 31114576]
[50]
Tahamtan, A.; Tavakoli-Yaraki, M.; Shadab, A.; Rezaei, F.; Marashi, S.M.; Shokri, F.; Mokhatri-Azad, T.; Salimi, V. The role of cannabinoid receptor 1 in the immunopathology of respiratory syncytial virus. Viral Immunol., 2018, 31(4), 292-298.
[http://dx.doi.org/10.1089/vim.2017.0098] [PMID: 29461930]
[51]
Tahamtan, A.; Samadizadeh, S.; Rastegar, M.; Nakstad, B.; Salimi, V. Respiratory syncytial virus infection: Why does disease severity vary among individuals? Expert Rev. Respir. Med., 2020, 14(4), 415-423.
[http://dx.doi.org/10.1080/17476348.2020.1724095] [PMID: 31995408]
[52]
Beji, C.; Loucif, H.; Telittchenko, R.; Olagnier, D.; Dagenais-Lussier, X.; van Grevenynghe, J. Cannabinoid-induced immunomodulation during viral infections: A focus on mitochondria. Viruses, 2020, 12(8), 875.
[http://dx.doi.org/10.3390/v12080875] [PMID: 32796517]
[53]
Bhatt, H.K.; Song, D.; Musgrave, G.; Rao, P.S.S. Cannabinoid-induced changes in the immune system: The role of microRNAs. Int. Immunopharmacol., 2021, 98, 107832.
[http://dx.doi.org/10.1016/j.intimp.2021.107832] [PMID: 34107381]
[54]
Nagre, N. Activation of cannabinoid-2 receptor protects against pseudomonas aeruginosa induced acute lung injury and inflammation. TP113 Acute Lung Injury Repair, American Thoracic Society 2021 InternationalSan Diego, CA2021, 2021, pp. A4363-A4363.
[http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A4363]
[55]
Zawatsky, C.N.; Abdalla, J.; Cinar, R. Synthetic cannabinoids induce acute lung inflammation via cannabinoid receptor 1 activation. ERJ Open Res., 2020, 6(3), 00121-2020.
[http://dx.doi.org/10.1183/23120541.00121-2020] [PMID: 32832534]
[56]
Conuel, E.J.; Chieng, H.C.; Fantauzzi, J.; Pokhrel, K.; Goldman, C.; Smith, T.C.; Tiwari, A.; Chopra, A.; Judson, M.A. Cannabinoid oil vaping-associated lung injury and its radiographic appearance. Am. J. Med., 2020, 133(7), 865-867.
[http://dx.doi.org/10.1016/j.amjmed.2019.10.032] [PMID: 31751528]
[57]
Liu, A.P.; Yuan, Q.H.; Zhang, B.; Yang, L.; He, Q.W.; Chen, K.; Liu, Q.S.; Li, Z.; Zhan, J. Cannabinoid receptor 2 activation alleviates septic lung injury by promoting autophagy via inhibition of inflammatory mediator release. Cell. Signal., 2020, 69, 109556.
[http://dx.doi.org/10.1016/j.cellsig.2020.109556] [PMID: 32027949]
[58]
Zeng, J.; Li, X.; Cheng, Y.; Ke, B.; Wang, R. Activation of cannabinoid receptor type 2 reduces lung ischemia reperfusion injury through PI3K/Akt pathway. Int. J. Clin. Exp. Pathol., 2019, 12(11), 4096-4105.
[PMID: 31933805]
[59]
Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Vitoretti, L.B.; Mariano-Souza, D.P.; Quinteiro-Filho, W.M.; Akamine, A.T.; Almeida, V.I.; Quevedo, J.; Dal-Pizzol, F.; Hallak, J.E.; Zuardi, A.W.; Crippa, J.A.; Palermo-Neto, J. Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: Role for the adenosine A2A receptor. Eur. J. Pharmacol., 2012, 678(1-3), 78-85.
[http://dx.doi.org/10.1016/j.ejphar.2011.12.043] [PMID: 22265864]
[60]
Chen, M.; Yan, X.T.; Ye, L.; Tang, J.J.; Zhang, Z.Z.; He, X.H. Dexmedetomidine ameliorates lung injury induced by intestinal ischemia/reperfusion by upregulating cannabinoid receptor 2, followed by the activation of the phosphatidylinositol 3-kinase/Akt pathway. Oxid. Med. Cell. Longev., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/6120194] [PMID: 32655771]
[61]
Mohammed, A.; Alghetaa, H.K.; Zhou, J.; Chatterjee, S.; Nagarkatti, P.; Nagarkatti, M. Protective effects of Δ 9 tetrahydrocannabinol against enterotoxininduced acute respiratory distress syndrome are mediated by modulation of microbiota. Br. J. Pharmacol., 2020, 177(22), 5078-5095.
[http://dx.doi.org/10.1111/bph.15226] [PMID: 32754917]
[62]
Mohammed, A.; Alghetaa, F.K. H.; Miranda, K.; Wilson, K.; P Singh, N.; Cai, G.; Putluri, N.; Nagarkatti, P.; Nagarkatti, M. 9-tetrahydrocannabinol prevents mortality from acute respiratory distress syndrome through the induction of apoptosis in immune cells, leading to cytokine storm suppression. Int. J. Mol. Sci., 2020, 21(17), 6244.
[http://dx.doi.org/10.3390/ijms21176244] [PMID: 32872332]
[63]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Faidah, H.; Al-Maiahy, T.J.; Cruz-Martins, N.; Batiha, G.E.S. The looming effects of estrogen in Covid-19: A rocky rollout. Front. Nutr., 2021, 8, 649128.
[http://dx.doi.org/10.3389/fnut.2021.649128] [PMID: 33816542]
[64]
Vitiello, A.; Ferrara, F. Colchicine and SARS-CoV-2: Management of the hyperinflammatory state. Respir. Med., 2021, 178, 106322.
[http://dx.doi.org/10.1016/j.rmed.2021.106322] [PMID: 33550151]
[65]
Boligan, K.F.; von Gunten, S. Innate lymphoid cells in asthma: cannabinoids on the balance. Allergy, 2017, 72(6), 839-841.
[http://dx.doi.org/10.1111/all.13145] [PMID: 28226397]
[66]
García-Baos, A.; Alegre-Zurano, L.; Cantacorps, L.; Martín-Sánchez, A.; Valverde, O. Role of cannabinoids in alcohol-induced neuroinflammation. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 104, 110054.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110054] [PMID: 32758518]
[67]
Luo, W.; Li, Y.X.; Jiang, L.J.; Chen, Q.; Wang, T.; Ye, D.W. Targeting JAK-STAT signaling to control cytokine release syndrome in COVID-19. Trends Pharmacol. Sci., 2020, 41(8), 531-543.
[http://dx.doi.org/10.1016/j.tips.2020.06.007] [PMID: 32580895]
[68]
Satarker, S.; Tom, A.A.; Shaji, R.A.; Alosious, A.; Luvis, M.; Nampoothiri, M. JAK-STAT pathway inhibition and their implications in COVID-19 therapy. Postgrad. Med., 2021, 133(5), 489-507.
[http://dx.doi.org/10.1080/00325481.2020.1855921] [PMID: 33245005]
[69]
van den Berg, D.F.; te Velde, A.A. Severe COVID-19: NLRP3 inflammasome dysregulated. Front. Immunol., 2020, 11, 1580.
[http://dx.doi.org/10.3389/fimmu.2020.01580] [PMID: 32670297]
[70]
Freeman, T.L.; Swartz, T.H. Targeting the NLRP3 inflammasome in severe COVID-19. Front. Immunol., 2020, 11, 1518.
[http://dx.doi.org/10.3389/fimmu.2020.01518] [PMID: 32655582]
[71]
Yu, W.; Jin, G.; Zhang, J.; Wei, W. Selective activation of cannabinoid receptor 2 attenuates myocardial infarction via suppressing NLRP3 inflammasome. Inflammation, 2019, 42(3), 904-914.
[http://dx.doi.org/10.1007/s10753-018-0945-x] [PMID: 30554372]
[72]
Han, J.H.; Shin, H.; Rho, J.G.; Kim, J.E.; Son, D.H.; Yoon, J.; Lee, Y.J.; Park, J.H.; Song, B.J.; Choi, C.S.; Yoon, S.G.; Kim, I.Y.; Lee, E.K.; Seong, J.K.; Kim, K.W.; Kim, W. Peripheral cannabinoid 1 receptor blockade mitigates adipose tissue inflammation via NLRP3 inflammasome in mouse models of obesity. Diabetes Obes. Metab., 2018, 20(9), 2179-2189.
[http://dx.doi.org/10.1111/dom.13350] [PMID: 29740969]
[73]
Grimes, J.M.; Grimes, K.V. p38 MAPK inhibition: A promising therapeutic approach for COVID-19. J. Mol. Cell. Cardiol., 2020, 144, 63-65.
[http://dx.doi.org/10.1016/j.yjmcc.2020.05.007] [PMID: 32422320]
[74]
Faubert Kaplan, B.L.; Kaminski, N.E. Cannabinoids inhibit the activation of ERK MAPK in PMA/Io-stimulated mouse splenocytes. Int. Immunopharmacol., 2003, 3(10-11), 1503-1510.
[http://dx.doi.org/10.1016/S1567-5769(03)00163-2] [PMID: 12946447]
[75]
Greenhough, A.; Patsos, H.A.; Williams, A.C.; Paraskeva, C. The cannabinoid δ 9 tetrahydrocannabinol inhibits RASMAPK and PI3KAKT survival signalling and induces BADmediated apoptosis in colorectal cancer cells. Int. J. Cancer, 2007, 121(10), 2172-2180.
[http://dx.doi.org/10.1002/ijc.22917] [PMID: 17583570]
[76]
Liu, C.; Sadat, S.H.; Ebisumoto, K.; Sakai, A.; Panuganti, B.A.; Ren, S.; Goto, Y.; Haft, S.; Fukusumi, T.; Ando, M.; Saito, Y.; Guo, T.; Tamayo, P.; Yeerna, H.; Kim, W.; Hubbard, J.; Sharabi, A.B.; Gutkind, J.S.; Califano, J.A. Cannabinoids promote progression of HPV-positive head and neck squamous cell carcinoma via p38 MAPK activation. Clin. Cancer Res., 2020, 26(11), 2693-2703.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3301] [PMID: 31932491]
[77]
Derkinderen, P.; Ledent, C.; Parmentier, M.; Girault, J.A. Cannabinoids activate p38 mitogen-activated protein kinases through CB1 receptors in hippocampus. J. Neurochem., 2001, 77(3), 957-960.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00333.x] [PMID: 11331425]
[78]
El Biali, M.; Broers, B.; Besson, M.; Demeules, J. Cannabinoids and COVID-19. Med. Cannabis Cannabinoids, 2020, 3(2), 111-115.
[http://dx.doi.org/10.1159/000510799] [PMID: 34671712]
[79]
Khalid, S.; Almalki, F.A.; Hadda, T.B.; Bader, A.; Abu-Izneid, T.; Berredjem, M.; Elsharkawy, E.R.; Alqahtani, A.M. Medicinal applications of cannabinoids extracted from Cannabis sativa (L.): A new route in the fight against covid-19? Curr. Pharm. Des., 2021, 27(13), 1564-1578.
[http://dx.doi.org/10.2174/1381612826666201202125807] [PMID: 33267756]
[80]
Zheng, Y.; Li, R.; Liu, S. Immunoregulation with mTOR inhibitors to prevent COVID19 severity: A novel intervention strategy beyond vaccines and specific antiviral medicines. J. Med. Virol., 2020, 92(9), 1495-1500.
[http://dx.doi.org/10.1002/jmv.26009] [PMID: 32410266]
[81]
Utomo, W.K.; de Vries, M.; Braat, H.; Bruno, M.J.; Parikh, K.; Comalada, M.; Peppelenbosch, M.P.; van Goor, H.; Fuhler, G.M. Modulation of human peripheral blood mononuclear cell signaling by medicinal cannabinoids. Front. Mol. Neurosci., 2017, 10, 14.
[http://dx.doi.org/10.3389/fnmol.2017.00014] [PMID: 28174520]
[82]
Wargo, K.A.; Geveden, B.N.; McConnell, V.J. Cannabinoid-induced pancreatitis: a case series. JOP, 2007, 8(5), 579-583.
[PMID: 17873462]
[83]
Mazza, M.G.; De Lorenzo, R.; Conte, C.; Poletti, S.; Vai, B.; Bollettini, I.; Melloni, E.M.T.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; Benedetti, F. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav. Immun., 2020, 89, 594-600.
[http://dx.doi.org/10.1016/j.bbi.2020.07.037] [PMID: 32738287]
[84]
Stampanoni Bassi, M.; Gilio, L.; Maffei, P.; Dolcetti, E.; Bruno, A.; Buttari, F.; Centonze, D.; Iezzi, E. Exploiting the multifaceted effects of cannabinoids on mood to boost their therapeutic use against anxiety and depression. Front. Mol. Neurosci., 2018, 11, 424.
[http://dx.doi.org/10.3389/fnmol.2018.00424] [PMID: 30515077]
[85]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Qusti, S.; Alshammari, E.M.; Gyebi, G.A.; Batiha, G.E.S. Covid-19-induced dysautonomia: A menace of sympathetic storm. ASN Neuro, 2021, 13
[http://dx.doi.org/10.1177/17590914211057635] [PMID: 34755562]
[86]
Marchalant, Y.; Brothers, H.M.; Norman, G.J.; Karelina, K.; DeVries, A.C.; Wenk, G.L. Cannabinoids attenuate the effects of aging upon neuroinflammation and neurogenesis. Neurobiol. Dis., 2009, 34(2), 300-307.
[http://dx.doi.org/10.1016/j.nbd.2009.01.014] [PMID: 19385063]
[87]
Nichols, J.M.; Kaplan, B.L.F. Immune responses regulated by cannabidiol. Cannabis Cannabinoid Res., 2020, 5(1), 12-31.
[http://dx.doi.org/10.1089/can.2018.0073] [PMID: 32322673]
[88]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Mostafa-Hedeab, G.; Kasozi, K.I.; Zirintunda, G.; Aslam, A.; Allahyani, M.; Welburn, S.C.; Batiha, G.E.S. Effects of β-blockers on the sympathetic and cytokines storms in Covid-19. Front. Immunol., 2021, 12, 749291.
[http://dx.doi.org/10.3389/fimmu.2021.749291] [PMID: 34867978]
[89]
Leite-Avalca, M.C.G.; Lomba, L.A.; Bastos-Pereira, A.L.; Brito, H.O.; Fraga, D.; Zampronio, A.R. Involvement of central endothelin ETA and cannabinoid CB1 receptors and arginine vasopressin release in sepsis induced by cecal ligation and puncture in rats. Shock, 2016, 46(3), 290-296.
[http://dx.doi.org/10.1097/SHK.0000000000000598] [PMID: 26925810]
[90]
Barna, I.; Csabai, K.; Makara, G.; Zelena, D. CANNABINOID-MEDIATED REGULATION OF THE HYPOTHALAMO-PITUITARY-ADRENAL AXIS in rats: AGE DEPENDENT ROLE OF VASOPRESSIN. Endocr. Regul., 2009, 43(1), 13-21.
[http://dx.doi.org/10.4149/endo_2009_01_13] [PMID: 19309234]
[91]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Qusti, S.; Alshammari, E.M.; Atanu, F.O.; Batiha, G.E.S. Arginine vasopressin and pathophysiology of COVID-19: An innovative perspective. Biomed. Pharmacother., 2021, 143, 112193.
[http://dx.doi.org/10.1016/j.biopha.2021.112193] [PMID: 34543987]
[92]
Luce, V.; Fernandez Solari, J.; Rettori, V.; De Laurentiis, A. The inhibitory effect of anandamide on oxytocin and vasopressin secretion from neurohypophysis is mediated by nitric oxide. Regul. Pept., 2014, 188, 31-39.
[http://dx.doi.org/10.1016/j.regpep.2013.12.004] [PMID: 24342802]
[93]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Butnariu, M.; Batiha, G.E.S. The crucial role of prolactin-lactogenic hormone in Covid-19. Mol. Cell. Biochem., 2022, 477(5), 1381-1392.
[http://dx.doi.org/10.1007/s11010-022-04381-9] [PMID: 35147901]
[94]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-hussaniy, H.A.; Al-Harcan, N.A.H.; Alexiou, A.; Batiha, G.E.S. Neutrophil Extracellular Traps (NETs) and Covid-19: A new frontiers for therapeutic modality. Int. Immunopharmacol., 2022, 104, 108516.
[http://dx.doi.org/10.1016/j.intimp.2021.108516] [PMID: 35032828]
[95]
Wang, B.; Li, D.; Fiselier, A.; Kovalchuk, I.; Kovalchuk, O. New AKT-dependent mechanisms of anti-COVID-19 action of high-CBD Cannabis sativa extracts. Cell Death Discov., 2022, 8(1), 110.
[http://dx.doi.org/10.1038/s41420-022-00876-y] [PMID: 35277472]
[96]
Wang, B.; Kovalchuk, A.; Li, D.; Rodriguez-Juarez, R.; Ilnytskyy, Y.; Kovalchuk, I.; Kovalchuk, O. In search of preventive strategies: novel high-CBD Cannabis sativa extracts modulate ACE2 expression in COVID-19 gateway tissues. Aging (Albany NY), 2020, 12(22), 22425-22444.
[PMID: 33221759]
[97]
Salles, É.L.; Khodadadi, H.; Jarrahi, A.; Ahluwalia, M.; Paffaro, V.A., Jr; Costigliola, V.; Yu, J.C.; Hess, D.C.; Dhandapani, K.M.; Baban, B. Cannabidiol (CBD) modulation of apelin in acute respiratory distress syndrome. J. Cell. Mol. Med., 2020, 24(21), 12869-12872.
[http://dx.doi.org/10.1111/jcmm.15883] [PMID: 33058425]
[98]
Nguyen, L.C.; Yang, D.; Nicolaescu, V.; Best, T.J.; Gula, H.; Saxena, D.; Gabbard, J.D.; Chen, S.N.; Ohtsuki, T.; Friesen, J.B.; Drayman, N.; Mohamed, A.; Dann, C.; Silva, D.; Robinson-Mailman, L.; Valdespino, A.; Stock, L.; Suárez, E.; Jones, K.A.; Azizi, S.A.; Demarco, J.K.; Severson, W.E.; Anderson, C.D.; Millis, J.M.; Dickinson, B.C.; Tay, S.; Oakes, S.A.; Pauli, G.F.; Palmer, K.E.; Meltzer, D.O.; Randall, G.; Rosner, M.R. Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Sci. Adv., 2022, 8(8), eabi6110.
[http://dx.doi.org/10.1126/sciadv.abi6110] [PMID: 35050692]
[99]
Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; Wang, T.T.; Schwartz, R.E.; Lim, J.K.; Albrecht, R.A.; tenOever, B.R. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell, 2020, 181(5), 1036-1045.e9.
[http://dx.doi.org/10.1016/j.cell.2020.04.026] [PMID: 32416070]
[100]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; El-Saber Batiha, G. The possible role of ursolic acid in Covid-19: A real game changer. Clin. Nutr. ESPEN, 2022, 47, 414-417.
[http://dx.doi.org/10.1016/j.clnesp.2021.12.030] [PMID: 35063236]
[101]
El-Saber Batiha, G.; Al-Gareeb, A.I.; Saad, H.M.; Al-kuraishy, H.M. COVID-19 and corticosteroids: a narrative review. Inflammopharmacology, 2022, 30(4), 1189-1205. Epub ahead of print
[http://dx.doi.org/10.1007/s10787-022-00987-z] [PMID: 35562628]
[102]
Dobovišek, L.; Hojnik, M.; Ferk, P. Overlapping molecular pathways between cannabinoid receptors type 1 and 2 and estrogens/androgens on the periphery and their involvement in the pathogenesis of common diseases (Review). Int. J. Mol. Med., 2016, 38(6), 1642-1651.
[http://dx.doi.org/10.3892/ijmm.2016.2779] [PMID: 27779654]
[103]
Rossi, F.; Bellini, G.; Luongo, L.; Mancusi, S.; Torella, M.; Tortora, C.; Manzo, I.; Guida, F.; Nobili, B.; de Novellis, V.; Maione, S. The 17-β-oestradiol inhibits osteoclast activity by increasing the cannabinoid CB2 receptor expression. Pharmacol. Res., 2013, 68(1), 7-15.
[http://dx.doi.org/10.1016/j.phrs.2012.10.017] [PMID: 23142558]
[104]
Franks, L.N.; Ford, B.M.; Prather, P.L. Selective estrogen receptor modulators: Cannabinoid receptor inverse agonists with differential CB1 and CB2 selectivity. Front. Pharmacol., 2016, 7, 503.
[http://dx.doi.org/10.3389/fphar.2016.00503] [PMID: 28066250]
[105]
Kumar, P.; Song, Z.H. Identification of raloxifene as a novel CB2 inverse agonist. Biochem. Biophys. Res. Commun., 2013, 435(1), 76-81.
[http://dx.doi.org/10.1016/j.bbrc.2013.04.040] [PMID: 23611779]
[106]
Kerbrat, A.; Ferré, J.C.; Fillatre, P.; Ronzière, T.; Vannier, S.; Carsin-Nicol, B.; Lavoué, S.; Vérin, M.; Gauvrit, J.Y.; Le Tulzo, Y.; Edan, G. Acute neurologic disorder from an inhibitor of fatty acid amide hydrolase. N. Engl. J. Med., 2016, 375(18), 1717-1725.
[http://dx.doi.org/10.1056/NEJMoa1604221] [PMID: 27806235]
[107]
Burstein, S. Eicosanoids as mediators of cannabinoid action. In: Marijuana/Cannabinoids; , 2019; 2019, pp. 73-92.
[http://dx.doi.org/10.1201/9780429276279-3]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy