Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Medicinal Plants in the Regulation of PD-L1/PD-1 Immune Checkpoint of Various Human Cancer Cells: A Narrative Review

Author(s): Nur Fatin Najihah Marzuki and Yusmazura Zakaria*

Volume 19, Issue 2, 2023

Published on: 26 December, 2022

Page: [117 - 131] Pages: 15

DOI: 10.2174/1573394718666220829125338

Price: $65

Abstract

Background: Immunotherapy has garnered attention in cancer treatment following the success of recent trials in solid tumors adopting PD-L1/PD-1 checkpoint inhibition. PD-1 is a T-cell checkpoint molecule that limits autoimmune and auto-inflammatory reactivity in the normal host by suppressing adaptive immune responses. Although PD-L1 expression in the tumor is generally considered a poor prognostic marker, it has been used to screen patients for cancer therapy since it is associated with a positive response to PD-L1/PD-1 blocking antibodies.

Outline: This review focuses on the complex interconnections between cancer-reactive and selfreactive immune cells, as well as the potential contribution of a wide range of leading immunomodulatory chemical products from plant-based origins as cancer therapeutics or to foreseeably ameliorate autoimmune diseases. The natural compounds derived from plants should be used as a PD-L1/PD-1 checkpoint modulator to combat cancer cells and other chronic diseases.

Conclusion: The significance of herbal plant extracts in the regulation of the PD-L1/PD-1 checkpoint is presented in this review together with the expression of PD-L1 and PD-1 in cancer cells and diseases in human bodies.

Keywords: PD-1, PD-L1, T-cells, cancer cells, immunotherapy, medicinal plants.

[1]
Gersten O, Wilmoth JR. The cancer transition in Japan since 1951. Demogr Res 2002; 7(December): 271-306.
[http://dx.doi.org/10.4054/DemRes.2002.7.5]
[2]
Micha R, Khatibzadeh S, Shi P, et al. Global, regional, and national consumption levels of dietary fats and oils in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys. BMJ 2014; 348: g2272.
[http://dx.doi.org/10.1136/bmj.g2272] [PMID: 24736206]
[3]
Raduan SZB, Wahab RBA, Kassim DHBA, Chelum AA, Morni AABM, Abdul Aziz MWHB. Preliminary phytochemical screening of the potential medicinal plants of the melanau in Pulau Bruit, Sarawak, Malaysia. Malays Appl Biol 2018; 47(1): 195-202.
[4]
Chan YY, Lim KK, Lim KH, et al. Physical activity and overweight/obesity among Malaysian adults: Findings from the 2015 National Health and Morbidity Survey (NHMS). BMC Public Health 2017; 17(1): 733.
[http://dx.doi.org/10.1186/s12889-017-4772-z] [PMID: 28934939]
[5]
Zou YH, Zhao L, Xu YK, et al. Anti-inflammatory sesquiterpenoids from the Traditional Chinese Medicine Salvia plebeia: Regulates pro-inflammatory mediators through inhibition of NF-κB and Erk1/2 signaling pathways in LPS-induced Raw264.7 cells. J Ethnopharmacol 2018; 210(210): 95-106.
[http://dx.doi.org/10.1016/j.jep.2017.08.034] [PMID: 28847754]
[6]
Jiang X, Wang J, Deng X, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer 2019; 18(1): 10.
[http://dx.doi.org/10.1186/s12943-018-0928-4] [PMID: 30646912]
[7]
Blagodatski A, Yatsunskaya M, Mikhailova V, Tiasto V, Kagansky A, Katanaev VL. Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget 2018; 9(49): 29259-74.
[http://dx.doi.org/10.18632/oncotarget.25660] [PMID: 30018750]
[8]
Garcia OP, Fraga CM, Pereira AG, et al. Scientific basis for the industrialization of traditionally used plants of the Rosaceae family. Food Chem 2020; 330, 127197.
[http://dx.doi.org/10.1016/j.foodchem.2020.127197] [PMID: 32540521]
[9]
Glass CK, Mitchell RN. Winning the battle, but losing the war: Mechanisms and morphology of cancer-therapy-associated cardiovascular toxicity. Cardiovasc Pathol 2017; 30: 55-63.
[http://dx.doi.org/10.1016/j.carpath.2017.06.009] [PMID: 28759820]
[10]
Mao QQ, Xu XY, Shang A, et al. Phytochemicals for the prevention and treatment of gastric cancer: Effects and mechanisms. Int J Mol Sci 2020; 21(2): 570.
[http://dx.doi.org/10.3390/ijms21020570] [PMID: 31963129]
[11]
Chen SL, Yu H, Luo HM, Wu Q, Li CF, Steinmetz A. Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chin Med 2016; 11(1): 37.
[http://dx.doi.org/10.1186/s13020-016-0108-7] [PMID: 27478496]
[12]
Zinn CS, Westh H, Rosdahl VT, Couto E, Struelens M, MacGowan A, et al. An international multicenter study of antimicrobial resistance and typing of hospital Staphylococcus aureus isolates from 21 laboratories in 19 countries or states. Microb Drug Resist 2004; 10(2): 160-8.
[http://dx.doi.org/10.1089/1076629041310055] [PMID: 15256032]
[13]
Pandey M, Debnath M, Gupta S, Chikara SK. Phytomedicine: An ancient approach turning into future potential source of therapeutics. J Pharmacogn Phytother 2011; 3(2): 27-37.
[14]
Hamayun M, Khan SA, Sohn EY, Lee I-J. Folk medicinal knowledge and conservation status of some economically valued medicinal plants of District Swat, Pakistan. Lyonia 2006; 11: 101-13.
[15]
Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014; 4: 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[16]
Josephine OEO, Antoinette NCO. Herbal medicines in african traditional medicine. Herb Med 2019; 10: 191-214.
[17]
Koilpillai YJ. An overview on plant secondary metabolites: Its medicinal importance R.Devika* and Justin Koilpillai1. J Pharm Res 2012; 5(2): 984-6.
[18]
Shoker RMH. A review article: The importance of the major groups of plants secondary metabolism phenols, alkaloids, and terpenes. Int J Res Appl Sci Biotechnol 2020; 7(5): 354-8.
[http://dx.doi.org/10.31033/ijrasb.7.5.47]
[19]
Neto F, Nascimento D. Plant secondary metabolism engineering. Methods Mol Biol 2014; 2010(643): 77-93.Available from. http://www.springerlink.com/index10.1007/978-1-60761-723-5
[20]
Salinas MY, García SC, Ramírez DJL, De La TI. Phenolic compounds in maize grains and its nixtamalized products. Phenolic Compd - Nat Sources, Importance Appl 2017; pp. 215-32.
[http://dx.doi.org/10.5772/66893]
[21]
Arpita R. A review on the alkaloids an important therapeutic compound from plants. Int J Plant Biotechnol 2017; 3(2): 1-19.
[22]
Lucy BJA, Angela MD, Miriam GT, Nazizi K. Anti-nociceptive effects of the hydroethanolic extract of Alysicarpus ovalifolius in rodents. J Med Plants Res 2020; 14(5): 195-201.
[http://dx.doi.org/10.5897/JMPR2019.6769]
[23]
Cox GD, Ramadoss N, Dona C, Basu C. Therapeutic and medicinal uses of terpenes. Med Plants From Farm to Pharm 2019; pp. 333-59.
[24]
Holopainen JK, Virjamo V, Ghimire RP, Blande JD, Julkunen TR, Kivimäenpää M. Climate change effects on secondary compounds of forest trees in the northern hemisphere. Front Plant Sci 2018; 9: 1445.
[http://dx.doi.org/10.3389/fpls.2018.01445] [PMID: 30333846]
[25]
Matkowski A. Plant in vitro culture for the production of antioxidants — A review. Biotechnol Adv 2008; 26(6): 548-60.
[http://dx.doi.org/10.1016/j.biotechadv.2008.07.001] [PMID: 18682287]
[26]
Li Z, Le W, Cui Z. A novel therapeutic anticancer property of raw garlic extract via injection but not ingestion. Cell Death Discov 2018; 4(1): 108.
[http://dx.doi.org/10.1038/s41420-018-0122-x] [PMID: 30479841]
[27]
Biswas D, Mathur M, Malhotra H, Bhargava S, Malhotra B. Anticancer activity of Asparagus racemosus root extracts in non-small cell lung cancer A549 cells. Asian J Pharm Pharmacol 2018; 4(6): 764-70.
[http://dx.doi.org/10.31024/ajpp.2018.4.6.7]
[28]
Hegde K, Jazeela MAF, Poojary KV. S S. Anti-cancer potentials of the plant Aquilaria malaccensis leaves. Indian J Pharm Pharmacol 2020; 5(3): 135-40.
[http://dx.doi.org/10.18231/2393-9087.2018.0029]
[29]
Bhuyan DJ, Vuong QV, Bond DR, et al. Exploring the least studied Australian eucalypt genera: Corymbia and angophora for phytochemicals with anticancer activity against Pancreatic malignancies. Chem Biodivers 2017; 14(3), e1600291.
[http://dx.doi.org/10.1002/cbdv.201600291] [PMID: 27935659]
[30]
Zhang W, He W, Shi X, et al. An Asparagus polysaccharide fraction inhibits MDSCs by inducing apoptosis through toll-like receptor 4. Phytother Res 2018; 32(7): 1297-303.
[http://dx.doi.org/10.1002/ptr.6058] [PMID: 29532545]
[31]
Kang EJ, Lee SK, Park KK, Son SH, Kim KR, Chung WY. Liensinine and nuciferine, bioactive components of Nelumbo nucifera, inhibit the growth of breast cancer cells and breast cancer-associated bone loss. Evidence-based Complement Altern Med 2017.
[http://dx.doi.org/10.1155/2017/1583185]
[32]
Palanuvej C, Ganogpichayagrai A, Ruangrungsi N. Antidiabetic and anticancer activities of Mangifera indica cv. Okrong leaves. J Adv Pharm Technol Res 2017; 8(1): 19-24.
[http://dx.doi.org/10.4103/2231-4040.197371] [PMID: 28217550]
[33]
Batool1 R, Salahuddin1 H, Mahmood1 T. Study of anticancer and antibacterial activities of Foeniculum vulgare, Justicia adhatoda and Urtica dioica as natural curatives. Cell Mol Biol 2017; 51(1): 1.
[PMID: 28234626]
[34]
Tharmarajah L, Samarakoon SR, Ediriweera MK, et al. In vitro anticancer effect of gedunin on human teratocarcinomal (NTERA-2) cancer stem-like cells. Biomed Res Int 2017; 2017
[35]
Alvarado SJ, Sánchez SL, López MH, et al. Quercetagetin and patuletin: Antiproliferative, necrotic and apoptotic activity in tumor cell lines. Molecules 2018; 23(10): 2579.
[http://dx.doi.org/10.3390/molecules23102579] [PMID: 30304821]
[36]
Vlaisavljević S, Šibul F, Sinka I, Zupko I, Ocsovszki I, Jovanović-Šanta S. Chemical composition, antioxidant and anticancer activity of licorice from Fruska Gora locality. Ind Crops Prod 2017; 2018(112): 217-24.
[37]
Zhao Y, Jing Z, Lv J, et al. Berberine activates caspase-9/cytochrome c-mediated apoptosis to suppress triple-negative breast cancer cells in vitro and in vivo. Biomed Pharmacother 2017; 95: 18-24.
[http://dx.doi.org/10.1016/j.biopha.2017.08.045] [PMID: 28826092]
[38]
A Alasmary F, Assirey EA, El-Meligy RM, et al. Analysis of Alpina officinarum hance, chemically and biologically. Saudi Pharm J 2019; 27(8): 1107-12.
[http://dx.doi.org/10.1016/j.jsps.2019.09.007]] [PMID: 31885470]
[39]
Bouyahya A, Chadon AIC, Mouzount H, et al. Could volatile compounds from leaves and fruits of Pistacia lentiscus constitute a novel source of anticancer, antioxidant, antiparasitic and antibacterial drugs? Ind Crops Prod 2018; 2019(128): 62-9.
[40]
Jiang X, Zhu X, Huang W, et al. Garlic-derived organosulfur compound exerts antitumor efficacy via activation of MAPK pathway and modulation of cytokines in SGC-7901 tumor-bearing mice. Int Immunopharmacol 2017; 48(48): 135-45.
[http://dx.doi.org/10.1016/j.intimp.2017.05.004] [PMID: 28501767]
[41]
Aneb M, Talbaoui A, Bouyahya A, et al. In vitro cytotoxic effects and antibacterial activity of moroccan medicinal plants Aristolochia longa and Lavandula multifida. European J Med Plants 2016; 16(2): 1-13.
[http://dx.doi.org/10.9734/EJMP/2016/28534]
[42]
Esghaei M, Ghaffari H, Rahimi Esboei B, Ebrahimi Tapeh Z, Bokharaei Salim F, Motevalian M. Evaluation of anticancer activity of Camellia sinensis in the Caco-2 colorectal cancer cell line. Asian Pac J Cancer Prev 2018; 19(6): 1697-701.
[PMID: 29938468]
[43]
Yang C, Chen H, Chen H, Zhong B, Luo X, Chun J. Antioxidant and anticancer activities of essential oil from gannan navel orange peel. Molecules 2017; 22(8): 1391.
[http://dx.doi.org/10.3390/molecules22081391] [PMID: 28829378]
[44]
Hah YS, Kim JG, Cho HY, Park JS, Heo EP, Yoon TJ. Procyanidins from Vitis vinifera seeds induce apoptotic and autophagic cell death via generation of reactive oxygen species in squamous cell carcinoma cells. Oncol Lett 2017; 14(2): 1925-32.
[http://dx.doi.org/10.3892/ol.2017.6422] [PMID: 28781636]
[45]
Abdalla Y, Abdalla A, Hamza AA, Amin A. Safranal prevents liver cancer through inhibiting oxidative stress and alleviating inflammation. Front Pharmacol 2022; 12(777500), 777500.
[http://dx.doi.org/10.3389/fphar.2021.777500] [PMID: 35177980]
[46]
Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites 2012; 2(2): 303-36.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[47]
Saini RK, Chouhan R, Bagri LP, Bajpai AK. Strategies of targeting tumors and cancers. J Cancer Res Updates 2012; 1(1): 173-9.
[48]
Tietze R, Zaloga J, Unterweger H, et al. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem Biophys Res Commun 2015; 468(3): 463-70.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.022] [PMID: 26271592]
[49]
Singh A, Sahoo SK. Magnetic nanoparticles: A novel platform for cancer theranostics. Drug Discov Today 2014; 19(4): 474-81.
[http://dx.doi.org/10.1016/j.drudis.2013.10.005] [PMID: 24140592]
[50]
El-Kharrag R, Amin A, Hisaindee S, Greish Y, Karam SM. Development of a therapeutic model of precancerous liver using crocin-coated magnetite nanoparticles. Int J Oncol 2017; 50(1): 212-22.
[http://dx.doi.org/10.3892/ijo.2016.3769] [PMID: 27878253]
[51]
Wang H, Oo Khor T, Shu L, et al. Plants vs. cancer: A review on natural phytochemicals in preventing and treating cancers and their druggability. Anticancer Agents Med Chem 2012; 12(10): 1281-305.
[http://dx.doi.org/10.2174/187152012803833026] [PMID: 22583408]
[52]
Bharadvaja N. Medicinal plants in the management of cancer: A review. Int J Complement Altern Med 2017; 9(2)
[http://dx.doi.org/10.15406/ijcam.2017.09.00291]
[53]
Van VS, Williams VL, Sooka A, Burger A. Van der HL. Microbial contamination of traditional medicinal plants sold at the Faraday muthi market, Johannesburg, South Africa. S Afr J Bot 2014; 94: 95-100.
[http://dx.doi.org/10.1016/j.sajb.2014.06.002]
[54]
Teschke R, Wolff A, Frenzel C, Schulze J, Eickhoff A. Herbal hepatotoxicity: A tabular compilation of reported cases. Liver Int 2012; 32(10): 1543-56.
[http://dx.doi.org/10.1111/j.1478-3231.2012.02864.x] [PMID: 22928722]
[55]
Omage K, Azeke MA, Orhue JNE, Iseghohi SO. Toxicological implications of the therapeutic use of Acalypha wilkesiana leaves in traditional medicine. Clin Phytoscience 2017; 3(1)
[http://dx.doi.org/10.1186/s40816-017-0053-8]
[56]
Iroezindu MO, Agbaji OO, Daniyam CA, Isiguzo GC, Isichei C, Akanbi MO. Liver function test abnormalities in Nigerian patients with human immunodeficiency virus and hepatitis B virus co-infection. Int J STD AIDS 2013; 24(6): 461-7.
[http://dx.doi.org/10.1177/0956462412473889] [PMID: 23970749]
[57]
Chang SY, Voellinger JL, Van Ness KP, et al. Characterization of rat or human hepatocytes cultured in Microphysiological Systems (MPS) to identify hepatotoxicity. Toxicol In Vitro 2017; 40: 170-83.
[http://dx.doi.org/10.1016/j.tiv.2017.01.007] [PMID: 28089783]
[58]
Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res 1970; 13: 1-27.
[PMID: 4921480]
[59]
Thomas L. On immunosurveillance in human cancer. Yale J Biol Med 1982; 55(3-4): 329-33.
[PMID: 6758376]
[60]
Ribatti D. The concept of immune surveillance against tumors: The first theories. Oncotarget 2017; 8(4): 7175-80.Available from:. www.impactjournals.com/oncotarget
[61]
Mortaz E, Tabarsi P, Mansouri D, et al. Cancers related to immunodeficiencies: Update and perspectives. Front Immunol 2016; 7(SEP): 365.
[http://dx.doi.org/10.3389/fimmu.2016.00365] [PMID: 27703456]
[62]
Garner H, De Visser KE. Immune crosstalk in cancer progression and metastatic spread: A complex conversation. Nat Rev Immunol 2020; 20(8): 483-97.
[http://dx.doi.org/10.1038/s41577-019-0271-z] [PMID: 32024984]
[63]
Palucka AK, Coussens LM. The Basis of oncoimmunology. Cell 2016; 164(6): 1233-47.
[http://dx.doi.org/10.1016/j.cell.2016.01.049] [PMID: 26967289]
[64]
Albrengues J, Shields MA, Park CG, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science 2018; 361: 6409.
[http://dx.doi.org/10.1126/science.aao4227]
[65]
Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[66]
Wang Y, Li XL, Mo YZ, et al. Effects of tumor metabolic microenvironment on regulatory T cells. Mol Cancer 2018; 17(1): 168.
[http://dx.doi.org/10.1186/s12943-018-0913-y] [PMID: 29304823]
[67]
Yu J, Du W, Yan F, et al. Myeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancer. J Immunol 2013; 190(7): 3783-97.
[http://dx.doi.org/10.4049/jimmunol.1201449] [PMID: 23440412]
[68]
Chanmee T, Ontong P, Konno K, Itano N. Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 2014; 6(3): 1670-90.
[http://dx.doi.org/10.3390/cancers6031670] [PMID: 25125485]
[69]
Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26(1): 677-704.
[http://dx.doi.org/10.1146/annurev.immunol.26.021607.090331] [PMID: 18173375]
[70]
Tang Y, He Y, Shi L, et al. Co-expression of AFAP1-AS1 and PD-1 predicts poor prognosis in nasopharyngeal carcinoma. Oncotarget 2017; 8(24): 39001-11.
[http://dx.doi.org/10.18632/oncotarget.16545] [PMID: 28380458]
[71]
Moody R, Wilson K, Jaworowski A, Plebanski M. Natural compounds with potential to modulate cancer therapies and self-reactive immune cells. Cancers 2020; 12(3): 673.
[http://dx.doi.org/10.3390/cancers12030673] [PMID: 32183059]
[72]
Bie F, Tian H, Sun N, et al. Research progress of anti-PD-1/PD-L1 immunotherapy related mechanisms and predictive biomarkers in NSCLC. Front Oncol 2022; 12, 769124.
[http://dx.doi.org/10.3389/fonc.2022.769124] [PMID: 35223466]
[73]
Gong J, Chehrazi RA, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: A comprehensive review of registration trials and future considerations. J Immunother Cancer 2018; 6(1): 8.
[http://dx.doi.org/10.1186/s40425-018-0316-z] [PMID: 29357948]
[74]
Bagcchi S. Pembrolizumab for treatment of refractory melanoma. Lancet Oncol 2014; 15(10), e419.
[http://dx.doi.org/10.1016/S1470-2045(14)70348-1] [PMID: 25328942]
[75]
Boussiotis VA. Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 2016; 375(18): 1767-78.
[http://dx.doi.org/10.1056/NEJMra1514296] [PMID: 27806234]
[76]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Publ Gr 2012; p. 12.
[http://dx.doi.org/10.1038/nrc3239]
[77]
Kim CG, Kim KH, Pyo KH, et al. Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer. Ann Oncol 2019; 30(7): 1104-13.
[http://dx.doi.org/10.1093/annonc/mdz123] [PMID: 30977778]
[78]
Minion LE, Tewari KS. Cervical cancer – State of the science: From angiogenesis blockade to checkpoint inhibition. Gynecol Oncol 2018; 148(3): 609-21.
[http://dx.doi.org/10.1016/j.ygyno.2018.01.009] [PMID: 29666026]
[79]
Xu C, Chen YP, Du XJ, et al. Comparative safety of immune checkpoint inhibitors in cancer: Systematic review and network meta-analysis. BMJ 2018; 363: k4226.
[http://dx.doi.org/10.1136/bmj.k4226] [PMID: 30409774]
[80]
Mall C, Sckisel GD, Proia DA, et al. Repeated PD-1/PD-L1 monoclonal antibody administration induces fatal xenogeneic hypersensitivity reactions in a murine model of breast cancer. OncoImmunology 2016; 5(2), e1075114.
[http://dx.doi.org/10.1080/2162402X.2015.1075114] [PMID: 27057446]
[81]
Kennedy LB, Salama AKS. A review of cancer immunotherapy toxicity. CA Cancer J Clin 2020; 70(2): 86-104.
[http://dx.doi.org/10.3322/caac.21596] [PMID: 31944278]
[82]
Johnson DB, Sullivan RJ, Menzies AM. Immune checkpoint inhibitors in challenging populations. Cancer 2017; 123(11): 1904-11.
[http://dx.doi.org/10.1002/cncr.30642] [PMID: 28241095]
[83]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[84]
Barnett JC, Bean SM, Whitaker RS, et al. Ovarian cancer tumor infiltrating T-Regulatory (Treg) cells are associated with a metastatic phenotype. Gynecol Oncol 2010; 116(3): 556-62.
[http://dx.doi.org/10.1016/j.ygyno.2009.11.020] [PMID: 20006900]
[85]
Zhang X, Liu L, Gong C, Shi H, Zeng Y, Wang X. Prognostic significance of tumor-associated macrophages in solid tumor: A meta-analysis of the literature. PLoS One 2012; 7(12)
[86]
Godoy HE, Khan ANH, Vethanayagam RR, et al. Myeloid-derived suppressor cells modulate immune responses independently of NADPH oxidase in the ovarian tumor microenvironment in mice. PLoS One 2013; 8(7), e69631.
[http://dx.doi.org/10.1371/journal.pone.0069631] [PMID: 23922763]
[87]
Thibodeaux SR, Curiel TJ. Immune therapy for ovarian cancer: Promise and pitfalls. Int Rev Immunol 2011; 30(2-3): 102-19.
[http://dx.doi.org/10.3109/08830185.2011.567361] [PMID: 21557637]
[88]
Junttila MR, de Sauvage FJ. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 2013; 501(7467): 346-54.
[http://dx.doi.org/10.1038/nature12626] [PMID: 24048067]
[89]
Liu M, Matsumura N, Mandai M, et al. Classification using hierarchical clustering of tumor-infiltrating immune cells identifies poor prognostic ovarian cancers with high levels of COX expression. Mod Pathol 2009; 22(3): 373-84.
[http://dx.doi.org/10.1038/modpathol.2008.187] [PMID: 18997734]
[90]
Abiko K, Mandai M, Hamanishi J, et al. PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction. Clin Cancer Res 2013; 19(6): 1363-74.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2199] [PMID: 23340297]
[91]
Freeman GJ, Long AJ, Iwai Y, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 2000; 192(7): 1027-34.
[http://dx.doi.org/10.1084/jem.192.7.1027] [PMID: 11015443]
[92]
Suzanne L, Topalian F, Hodi S, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. J New Engl Med Establ 2012; 366(26): 2443-24454.
[93]
Abiko K, Matsumura N, Hamanishi J, et al. IFN-γ from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br J Cancer 2015; 112(9): 1501-9.
[http://dx.doi.org/10.1038/bjc.2015.101] [PMID: 25867264]
[94]
Stewart BW, Wild CP. World cancer report International Agency for Research on Cancer. 2014.Available from. https://www.ncbi.nlm.nih.gov/nlmcatalog/101630334
[95]
Katai H, Ishikawa T, Akazawa K, et al. Five-year survival analysis of surgically resected gastric cancer cases in Japan: A retrospective analysis of more than 100,000 patients from the nationwide registry of the Japanese Gastric Cancer Association (2001–2007). Gastric Cancer 2018; 21(1): 144-54.
[http://dx.doi.org/10.1007/s10120-017-0716-7] [PMID: 28417260]
[96]
Wu C, Zhu Y, Jiang J, Zhao J, Zhang XG, Xu N. Immunohistochemical localization of Programmed Death-1 Ligand-1 (PD-L1) in gastric carcinoma and its clinical significance. Acta Histochem 2006; 108(1): 19-24.
[http://dx.doi.org/10.1016/j.acthis.2006.01.003] [PMID: 16530813]
[97]
Muro K, Chung HC, Shankaran V, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol 2016; 17(6): 717-26.
[http://dx.doi.org/10.1016/S1470-2045(16)00175-3] [PMID: 27157491]
[98]
Mimura K, Teh JL, Okayama H, et al. PD-L1 expression is mainly regulated by interferon gamma associated with JAK-STAT pathway in gastric cancer. Cancer Sci 2018; 109(1): 43-53.
[http://dx.doi.org/10.1111/cas.13424] [PMID: 29034543]
[99]
Jalali S, Price-Troska T, Bothun C, et al. Reverse signaling via PD-L1 supports malignant cell growth and survival in classical Hodgkin lymphoma. Blood Cancer J 2019; 9(3): 22.
[http://dx.doi.org/10.1038/s41408-019-0185-9] [PMID: 30783096]
[100]
Harb J, Lin PJ, Hao J. Recent development of Wnt signaling pathway inhibitors for cancer therapeutics. Curr Oncol Rep 2019; 21(2): 12.
[http://dx.doi.org/10.1007/s11912-019-0763-9] [PMID: 30715618]
[101]
Lim W, Jeong M, Bazer FW, Song G. Curcumin suppresses proliferation and migration and induces apoptosis on human placental choriocarcinoma cells via ERK1/2 and SAPK/JNK MAPK signaling pathways. Biol Reprod 2016; 95(4): 83.
[http://dx.doi.org/10.1095/biolreprod.116.141630] [PMID: 27580989]
[102]
Zhao R, Song Y, Wang Y, et al. PD;‐1/PD‐L1 blockade rescue exhausted CD8+ T cells in gastrointestinal stromal tumours via the PI3K/Akt/mTOR signalling pathway. Cell Prolif 2019; 52(3), e12571.
[103]
Li P, Huang T, Zou Q, et al. FGFR2 promotes expression of PD-L1 in colorectal cancer via the JAK/STAT3 signaling pathway. J Immunol 2019; 202(10): 3065-75.
[http://dx.doi.org/10.4049/jimmunol.1801199] [PMID: 30979816]
[104]
Martin AM, Nirschl CJ, Polanczyk MJ, et al. PD-L1 expression in medulloblastoma: An evaluation by subgroup. Oncotarget 2018; 9(27): 19177-91.
[http://dx.doi.org/10.18632/oncotarget.24951] [PMID: 29721192]
[105]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[106]
Pfeiffer RM, Webb VY, Wheeler W, Gail MH. Proportion of U.S. Trends in breast cancer incidence attributable to long-term changes in risk factor distributions. Cancer Epidemiol Biomarkers Prev 2018; 27(10): 1214-22.
[http://dx.doi.org/10.1158/1055-9965.EPI-18-0098] [PMID: 30068516]
[107]
McDermott DF, Atkins MB PD. ‐1 as a potential target in cancer therapy. Cancer Med 2013; 2(5): 662-73.
[http://dx.doi.org/10.1002/cam4.106] [PMID: 24403232]
[108]
Jiang X, Zhou J, Giobbie HA, Wargo J, Hodi FS. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin Cancer Res 2013; 19(3): 598-609.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2731] [PMID: 23095323]
[109]
Cochaud S, Giustiniani J, Thomas C, et al. IL-17A is produced by breast cancer TILs and promotes chemoresistance and proliferation through ERK1/2. Sci Rep 2013; 3(1): 3456.
[http://dx.doi.org/10.1038/srep03456] [PMID: 24316750]
[110]
Ma YF, Chen C, Li D, et al. Targeting of Interleukin (IL)-17A inhibits PDL1 expression in tumor cells and induces anticancer immunity in an estrogen receptor-negative murine model of breast cancer. Oncotarget 2017; 8(5): 7614-24.
[http://dx.doi.org/10.18632/oncotarget.13819] [PMID: 27935862]
[111]
De Robles P, Fiest KM, Frolkis AD, et al. The worldwide incidence and prevalence of primary brain tumors: A systematic review and meta-analysis. Neuro-oncol 2015; 17(6): 776-83.
[http://dx.doi.org/10.1093/neuonc/nou283] [PMID: 25313193]
[112]
Louis DN, Perry A, Reifenberger G, et al. The 2016 world health organization classification of tumors of the central nervous system: A summary. Acta Neuropathol 2016; 131(6): 803-20.
[http://dx.doi.org/10.1007/s00401-016-1545-1] [PMID: 27157931]
[113]
Gieryng A, Pszczolkowska D, Walentynowicz KA, Rajan WD, Kaminska B. Immune microenvironment of gliomas. Lab Invest 2017; 97(5): 498-18.
[http://dx.doi.org/10.1038/labinvest.2017.19] [PMID: 28287634]
[114]
Löb S, Königsrainer A, Rammensee HG, Opelz G, Terness P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: Can we see the wood for the trees? Nat Rev Cancer 2009; 9(6): 445-52.
[http://dx.doi.org/10.1038/nrc2639] [PMID: 19461669]
[115]
Alsaab HO, Sau S, Alzhrani R, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome. Front Pharmacol 2017; 8: 561.
[http://dx.doi.org/10.3389/fphar.2017.00561] [PMID: 28878676]
[116]
Spranger S, Spaapen RM, Zha Y, et al. Up-regulation of PD-L1, IDO, and T(regs) in the melanoma tumor microenvironment is driven by CD8(+) T cells. Sci Transl Med 2013; 5(200), 200ra116.
[http://dx.doi.org/10.1126/scitranslmed.3006504] [PMID: 23986400]
[117]
Garcia DA, Shin DS, Moreno BH, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep 2017; 19(6): 1189-201.
[http://dx.doi.org/10.1016/j.celrep.2017.04.031] [PMID: 28494868]
[118]
Qian J, Wang C, Wang B, et al. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: Hints for glioma anti-PD-1/PD-L1 ther-apy. J Neuroinflammation 2018; 15(1): 290.
[http://dx.doi.org/10.1186/s12974-018-1330-2] [PMID: 30333036]
[119]
Lauwerys BR, Garot N, Renauld JC, Houssiau FA. Cytokine production and killer activity of NK/T-NK cells derived with IL-2, IL-15, or the combination of IL-12 and IL-18. J Immunol 2000; 165(4): 1847-53.
[http://dx.doi.org/10.4049/jimmunol.165.4.1847] [PMID: 10925263]
[120]
Schachtele SJ, Hu S, Sheng WS, Mutnal MB, Lokensgard JR. Glial cells suppress postencephalitic CD8 + T lymphocytes through PD-L1. Glia 2014; 62(10): 1582-94.
[http://dx.doi.org/10.1002/glia.22701] [PMID: 24890099]
[121]
Desai A, Sandhu S, Lai JP, Sandhu DS. Hepatocellular carcinoma in non-cirrhotic liver: A comprehensive review. World J Hepatol 2019; 11(1): 1-18.
[http://dx.doi.org/10.4254/wjh.v11.i1.1] [PMID: 30705715]
[122]
Vogel A, Cervantes A, Chau I, et al. Corrigendum: Hepatocellular carcinoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2018; 30(5): 871-3.
[http://dx.doi.org/10.1093/annonc/mdy308]
[123]
Xu F, Jin T, Zhu Y, Dai C. Immune checkpoint therapy in liver cancer. J Exp Clin Cancer Res 2018; 37(1): 110.
[http://dx.doi.org/10.1186/s13046-018-0777-4] [PMID: 29843754]
[124]
Kasamatsu T, Ino R, Takahashi N, et al. PDCD1 and CTLA4 polymorphisms affect the susceptibility to, and clinical features of chronic immune thrombocytopenia. Br J Haematol 2018; 180(5): 705-14.
[http://dx.doi.org/10.1111/bjh.15085] [PMID: 29359792]
[125]
Elhag OAO, Hu XJ, Wen YZ, et al. Reconstructed adeno-associated virus with the extracellular domain of murine PD-1 induces antitumor immunity. Asian Pac J Cancer Prev 2012; 13(8): 4031-6.
[http://dx.doi.org/10.7314/APJCP.2012.13.8.4031] [PMID: 23098512]
[126]
Butte MJ, Keir ME, Phamduy TB, Sharpe AH, Freeman GJ. Programmed death-1 ligand 1 interacts specifically with the B7-1 costimulatory molecule to inhibit T cell responses. Immunity 2007; 27(1): 111-22.
[http://dx.doi.org/10.1016/j.immuni.2007.05.016] [PMID: 17629517]
[127]
Qureshi OS, Zheng Y, Nakamura K, et al. UKPMC funders group cell extrinsic function of CTLA-4. Science (80- ) 2011; 332(6029): 600-3.
[128]
Liang L, Ge K, Zhang F, Ge Y. The suppressive effect of co-inhibiting PD-1 and CTLA-4 expression on H22 hepatomas in mice. Cell Mol Biol Lett 2018; 23(1): 58.
[http://dx.doi.org/10.1186/s11658-018-0122-0] [PMID: 30564277]
[129]
Tumeh PC, Harview CL, Yearley JH, et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014; 515(7528): 568-71.
[http://dx.doi.org/10.1038/nature13954] [PMID: 25428505]
[130]
Hirayama Y, Gi M, Yamano S, et al. Anti‐PD‐L1 treatment enhances antitumor effect of everolimus in a mouse model of renal cell carcinoma. Cancer Sci 2016; 107(12): 1736-44.
[http://dx.doi.org/10.1111/cas.13099] [PMID: 27712020]
[131]
Akinleye A, Rasool Z. Immune checkpoint inhibitors of PD-L1 as cancer therapeutics. J Hematol Oncol 2019; 12(1): 92.
[http://dx.doi.org/10.1186/s13045-019-0779-5] [PMID: 31488176]
[132]
Huang MY, Zhang LL, Ding J, Lu JJ. Anticancer drug discovery from Chinese medicinal herbs. Chin Med 2018; 13(1): 35.
[http://dx.doi.org/10.1186/s13020-018-0192-y] [PMID: 29997684]
[133]
Howes MJR. The evolution of anticancer drug discovery from plants. Lancet Oncol 2018; 19(3): 293-4.
[http://dx.doi.org/10.1016/S1470-2045(18)30136-0] [PMID: 29508748]
[134]
Wu Q, Jiang L, Li S, He Q, Yang B, Cao J. Small molecule inhibitors targeting the PD-1/PD-L1 signaling pathway. Acta Pharmacol Sin 2021; 42(1): 1-9.
[http://dx.doi.org/10.1038/s41401-020-0366-x]
[135]
Basu S, Yang J, Xu B, et al. Design, synthesis, evaluation, and structural studies of C2-symmetric small molecule inhibitors of programmed cell death-1/programmed death-ligand 1 protein-protein interaction. J Med Chem 2019; 62(15): 7250-63.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00795] [PMID: 31298541]
[136]
Han L, Yao S, Cao S, et al. Triterpenoid saponins from Anemone flaccida suppress tumor cell proliferation by regulating MAPK, PD1/PDL1, and STAT3 signaling pathways and altering cancer metabolism. OncoTargets Ther 2019; 12: 10917-30.
[http://dx.doi.org/10.2147/OTT.S212666] [PMID: 31849495]
[137]
Ganesan A, Ahmed M, Okoye I, et al. Comprehensive in vitro characterization of PD-L1 small molecule inhibitors 2019; 9(1): 12392.
[http://dx.doi.org/10.1038/s41598-019-48826-6]
[138]
Kim JH, Kim YS, Kim TI, et al. Unripe Black Raspberry (Rubus coreanus Miquel) extract and its constitute, ellagic acid induces T cell activation and antitumor immunity by blocking PD-1/PD-L1 Interaction. Foods 2020; 9(11): 1590.
[http://dx.doi.org/10.3390/foods9111590]
[139]
Phacharapiyangkul N, Wu L, Lee W, Kuo Y, Wu Y. The extracts of Astragalus membranaceus enhance chemosensitivity and reduce tumor indoleamine 2 , 3-dioxygenase expression. 2019; 16(8): 1107-15.
[140]
Shimozaki K, Sukawa Y, Beppu N, et al. Multiple immune-related adverse events and anti-tumor efficacy: Real-world data on various solid tumors. Cancer Manag Res 2020; 12: 4585-93.
[http://dx.doi.org/10.2147/CMAR.S247554] [PMID: 32606951]
[141]
Lim JW, Hwang HJ, Shin CS. Polyphenol compounds and anti-inflammatory activities of Korean black raspberry (Rubus coreanus Miquel) wines produced from juice supplemented with pulp and seed. J Agric Food Chem 2012; 60(20): 5121-7.
[http://dx.doi.org/10.1021/jf205350k] [PMID: 22563950]
[142]
He Y, Jin S, Ma Z, et al. The antioxidant compounds isolated from the fruits of chinese wild raspberry Rubus Chingii Hu. Nat Prod Res 2020; 34(6): 872-5.
[http://dx.doi.org/10.1080/14786419.2018.1504046] [PMID: 30345814]
[143]
Bang S, Quy Ha TK, Lee C, Li W, Oh WK, Shim SH. Antiviral activities of compounds from aerial parts of Salvia plebeia R. Br. J Ethnopharmacol 2016; 192: 398-405.
[http://dx.doi.org/10.1016/j.jep.2016.09.030] [PMID: 27647011]
[144]
Jang HJ, Lee SJ, Kim C, et al. Effect of sunlight radiation on the growth and chemical constituents of Salvia plebeia R. Br Molecules 2017; 22(8): 1279.
[http://dx.doi.org/10.3390/molecules22081279] [PMID: 28763025]
[145]
Bonesi M, Loizzo MR, Acquaviva R, Malfa GA, Aiello F, Tundis R. Anti-inflammatory and antioxidant agents from Salvia Genus (Lamiaceae): An assessment of the current state of knowledge. Antiinflamm Antiallergy Agents Med Chem 2017; 16(2): 70-86.
[http://dx.doi.org/10.2174/1871523016666170502121419] [PMID: 28464779]
[146]
Choi JG, Kim YS, Kim JH, et al. Anticancer effect of Salvia plebeia and its active compound by improving T-cell activity via blockade of PD-1/PD-L1 interaction in humanized PD-1 mouse model. Front Immunol 2020; 11, 598556.
[http://dx.doi.org/10.3389/fimmu.2020.598556] [PMID: 33224152]
[147]
Yang J, Li X, Xue Y, Wang N, Liu W. Anti-hepatoma activity and mechanism of corn silk polysaccharides in H22 tumor-bearing mice. Int J Biol Macromol 2014; 64: 276-80.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.11.033] [PMID: 24315949]
[148]
Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 2005; 6(4): 345-52.
[http://dx.doi.org/10.1038/ni1178] [PMID: 15785760]
[149]
Wu TT, Lu J, Zheng PQ, et al. Yiqi huayu jiedu decoction inhibits the invasion and metastasis of gastric cancer cells through TGF-β/Smad pathway. Evidence-based Complement Altern Med 2017; 2017, 1871298.
[http://dx.doi.org/10.1155/2017/1871298]
[150]
Xu R, Wu J, Zhang X, et al. Modified Bu-zhong-yi-qi decoction synergies with 5 fluorouracile to inhibits gastric cancer progress via PD-1/PD- L1-dependent T cell immunization. Pharmacol Res 2020; 152, 104623.
[151]
Jenkinson SR, Williams NA, Morgan DJ. The role of intercellular adhesion molecule-1/LFA-1 interactions in the generation of tumor-specific CD8+ T cell responses. J Immunol 2005; 174(6): 3401-7.
[http://dx.doi.org/10.4049/jimmunol.174.6.3401] [PMID: 15749873]
[152]
Takano S, Saito H, Ikeguchi M. An increased number of PD-1+ and Tim-3+ CD8+ T cells is involved in immune evasion in gastric cancer. Surg Today 2016; 46(11): 1341-7.
[http://dx.doi.org/10.1007/s00595-016-1305-9] [PMID: 26801344]
[153]
Wang Y, Ma Y, Fang Y, et al. Regulatory T cell: A protection for tumour cells. J Cell Mol Med 2012; 16(3): 425-36.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01437.x] [PMID: 21895966]
[154]
Wang CH, Lin CY, Chen JS, et al. Karnofsky performance status as a predictive factor for cancer-related fatigue treatment with Astragalus Polysaccharides (PG2) injection-A double blind, multi-center, randomized phase IV study. Cancers 2019; 11(2): 128.
[http://dx.doi.org/10.3390/cancers11020128] [PMID: 30678249]
[155]
Huang WC, Kuo KT, Bamodu OA, et al. Astragalus Polysaccharide (PG2) ameliorates cancer symptom clusters, as well as improves quality of life in patients with metastatic disease, through modulation of the inflammatory cascade. Cancers 2019; 11(8): 1054.
[http://dx.doi.org/10.3390/cancers11081054] [PMID: 31349728]
[156]
Chang HL, Kuo YH, Wu LH, et al. The extracts of Astragalus membranaceus overcome tumor immune tolerance by inhibition of tumor programmed cell death protein ligand-1 expression. Int J Med Sci 2020; 17(7): 939-45.
[http://dx.doi.org/10.7150/ijms.42978] [PMID: 32308547]
[157]
Balar AV, Weber JS. PD-1 and PD-L1 antibodies in cancer: Current status and future directions. Cancer Immunol Immunother 2017; 66(5): 551-64.
[http://dx.doi.org/10.1007/s00262-017-1954-6] [PMID: 28213726]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy