Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Research Progress in Pharmacological Mechanisms, Structure-Activity Relationship and Synthesis of Sartans

Author(s): Ye-Fan Wang, Xin-Yue Ren, Wen Zhang and Guo-Wu Rao*

Volume 30, Issue 20, 2023

Published on: 21 October, 2022

Page: [2247 - 2266] Pages: 20

DOI: 10.2174/0929867329666220829101436

Price: $65

Abstract

The sartans are a new class of antihypertensive drugs as angiotensin II receptor blockers which possess plenty of advantages in treating hypertension and related pathologies. This review describes the clinical treatment, side effects, and potential therapeutic effects of sartans from 1995 to date. The synthesis, structural-activity and molecular docking with Angiotensin Type 1 receptor of imidazole derivatives, benzimidazole derivatives and other compounds are also described. With a clear Structure-Activity Relationship and abundant pharmacological effects, some types of novel Angiotensin Type 1 receptor antagonists are emerging gradually for further research in the meantime.

Keywords: Sartans, AT1 receptor blocker, Renin-Angiotensin System, Structure-Activity Relationship, Docking with AT1 receptor, Synthesis

[1]
Rao, G.W.; Guo, Y.M.; Hu, W.X. Synthesis, structure analysis, and antitumor evaluation of 3,6-dimethyl-1,2,4,5-tetrazine-1,4-dicarboxamide derivatives. ChemMedChem, 2012, 7(6), 973-976.
[http://dx.doi.org/10.1002/cmdc.201200109] [PMID: 22539490]
[2]
Rao, G.W.; Wang, C.; Wang, J.; Zhao, Z.G.; Hu, W.X. Synthesis, structure analysis, antitumor evaluation and 3D-QSAR studies of 3,6-disubstituted-dihydro-1,2,4,5-tetrazine derivatives. Bioorg. Med. Chem. Lett., 2013, 23(23), 6474-6480.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.036] [PMID: 24120541]
[3]
Rao, G.W.; Xu, G.J.; Wang, J.; Jiang, X.L.; Li, H.B. Synthesis, antitumor evaluation and docking study of novel 4-anilinoquinazoline derivatives as potential epidermal growth factor receptor (EGFR) inhibitors. ChemMedChem, 2013, 8(6), 928-933.
[http://dx.doi.org/10.1002/cmdc.201300120] [PMID: 23640754]
[4]
Jin, H.; Dan, H.G.; Rao, G.W. Research progress in quinazoline derivatives as multi-target tyrosine kinase inhibitors. Heterocycl. Commun., 2018, 24(1), 1-10.
[http://dx.doi.org/10.1515/hc-2017-0066]
[5]
Wu, Y.C.; Ren, X.Y.; Rao, G.W. Research progress of diphenyl urea derivatives as anticancer agents and synthetic methodologies. Mini Rev. Org. Chem., 2019, 16(7), 617-630.
[http://dx.doi.org/10.2174/1570193X15666181029130418]
[6]
Jain, A.; Chaturvedi, S.C. QSAR modeling of some substituted benzimidazole as angotensin II AT1 receptor antagonist. Med. Chem. Res., 2010, 19(2), 177-185.
[http://dx.doi.org/10.1007/s00044-009-9182-z]
[7]
Mavromoustakos, T.; Moutevelis-Minakakis, P.; Kokotos, C.G.; Kontogianni, P.; Politi, A.; Zoumpoulakis, P.; Findlay, J.; Cox, A.; Balmforth, A.; Zoga, A.; Iliodromitis, E. Synthesis, binding studies and in vivo biological evaluation of novel non-peptide antihypertensive analogues. Bioorg. Med. Chem., 2006, 14(13), 4353-4360.
[http://dx.doi.org/10.1016/j.bmc.2006.02.044] [PMID: 16546395]
[8]
Jani, N.V.; Ziogas, J.; Angus, J.A.; Schiesser, C.H.; Macdougall, P.E.; Grange, R.L.; Wright, C.E. Dual action molecules: Bioassays of combined novel antioxidants and angiotensin II receptor antagonists. Eur. J. Pharmacol., 2012, 695(1-3), 96-103.
[http://dx.doi.org/10.1016/j.ejphar.2012.08.003] [PMID: 22975712]
[9]
Aksoydan, B.; Kantarcioglu, I.; Erol, I.; Salmas, R.E.; Durdagi, S. Structure-based design of hERG-neutral antihypertensive oxazalone and imidazolone derivatives. J. Mol. Graph. Model., 2017, 77, 240-249.
[PMID: 28957753]
[10]
Mavromoustakos, T.; Zervou, M.; Zoumpoulakis, P.; Kyrikou, I.; Benetis, N.; Polevaya, L.; Roumelioti, P.; Giatas, N.; Zoga, A.; Minakakis, P.; Kolocouris, A.; Vlahakos, D.; Grdadolnik, S.G.; Matsoukas, J. Conformation and bioactivity. Design and discovery of novel antihypertensive drugs. Curr. Top. Med. Chem., 2004, 4(4), 385-401.
[http://dx.doi.org/10.2174/1568026043451302] [PMID: 14965308]
[11]
Rapposelli, S.; Cuboni, S.; Digiacomo, M.; Lucacchini, A.; Minutolo, F.; Letizia Trincavelli, M.; Balsamo, A. Synthesis and affinity evaluation for AT1 receptor of phenylsalicylaldoximederivatives structurally related to sartans. Heterocycles, 2008, 75(6), 1467-1477.
[http://dx.doi.org/10.3987/COM-07-11309]
[12]
Breschi, M.C.; Calderone, V.; Digiacomo, M.; Macchia, M.; Martelli, A.; Martinotti, E.; Minutolo, F.; Rapposelli, S.; Rossello, A.; Testai, L.; Balsamo, A. New NO-releasing pharmacodynamic hybrids of losartan and its active metabolite: Design, synthesis, and biopharmacological properties. J. Med. Chem., 2006, 49(8), 2628-2639.
[http://dx.doi.org/10.1021/jm0600186] [PMID: 16610806]
[13]
Takizawa, S.; Dan, T.; Uesugi, T.; Nagata, E.; Takagi, S.; van Ypersele de Strihou, C.; Miyata, T. A sartan derivative with a very low angiotensin II receptor affinity ameliorates ischemic cerebral damage. J. Cereb. Blood Flow Metab., 2009, 29(10), 1665-1672.
[http://dx.doi.org/10.1038/jcbfm.2009.82] [PMID: 19536069]
[14]
Izuhara, Y.; Sada, T.; Yanagisawa, H.; Koike, H.; Ohtomo, S.; Dan, T.; Ito, S.; Nangaku, M.; van Ypersele de Strihou, C.; Miyata, T. A novel Sartan derivative with very low angiotensin II type 1 receptor affinity protects the kidney in type 2 diabetic rats. Arterioscler. Thromb. Vasc. Biol., 2008, 28(10), 1767-1773.
[http://dx.doi.org/10.1161/ATVBAHA.108.172841] [PMID: 18658044]
[15]
Ridgway, H.; Moore, G.J.; Mavromoustakos, T.; Tsiodras, S.; Ligielli, I.; Kelaidonis, K.; Chasapis, C.T.; Gadanec, L.K.; Zulli, A.; Apostolopoulos, V.; Petty, R.; Karakasiliotis, I.; Gorgoulis, V.G.; Matsoukas, J.M. Discovery of a new generation of angiotensin receptor blocking drugs: Receptor mechanisms and in silico binding to enzymes relevant to SARS-CoV-2. Comput. Struct. Biotechnol. J., 2022, 20, 2091-2111.
[http://dx.doi.org/10.1016/j.csbj.2022.04.010] [PMID: 35432786]
[16]
García, G.; Serrano, I.; Sánchez-Alonso, P.; Rodríguez-Puyol, M.; Alajarín, R.; Griera, M.; Vaquero, J.J.; Rodríguez-Puyol, D.; Álvarez-Builla, J.; Díez-Marqués, M.L. New losartan-hydrocaffeic acid hybrids as antihypertensive-antioxidant dual drugs: Ester, amide and amine linkers. Eur. J. Med. Chem., 2012, 50, 90-101.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.043] [PMID: 22336384]
[17]
Islas, M.S.; Luengo, A.; Franca, C.A.; Merino, M.G.; Calleros, L.; Rodriguez-Puyol, M.; Lezama, L.; Ferrer, E.G.; Williams, P.A.M. Experimental and DFT characterization, antioxidant and anticancer activities of a Cu(II)–irbesartan complex: Structure–antihypertensive activity relationships in Cu(II)–sartan complexes. J. Biol. Inorg. Chem., 2016, 21(7), 851-863.
[http://dx.doi.org/10.1007/s00775-016-1384-5] [PMID: 27507083]
[18]
Janić, M.; Lunder, M.; Šabovič, M. A low-dose combination of fluvastatin and valsartan: a new “drug” and a new approach for decreasing the arterial age. BioMed Res. Int., 2015, 2015, 1-6.
[http://dx.doi.org/10.1155/2015/235709] [PMID: 25821790]
[19]
Tsiailanis, A.D.; Renziehausen, A.; Kiriakidi, S.; Vrettos, E.I.; Markopoulos, G.S.; Sayyad, N.; Hirmiz, B.; Aguilar, M.I.; Del Borgo, M.P.; Kolettas, E.; Widdop, R.E.; Mavromoustakos, T.; Crook, T.; Syed, N.; Tzakos, A.G. Enhancement of glioblastoma multiforme therapy through a novel Quercetin-Losartan hybrid. Free Radic. Biol. Med., 2020, 160, 391-402.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.08.007] [PMID: 32822744]
[20]
Regoli, D.; Plante, G.E.; Gobeil, F., Jr Impact of kinins in the treatment of cardiovascular diseases. Pharmacol. Ther., 2012, 135(1), 94-111.
[http://dx.doi.org/10.1016/j.pharmthera.2012.04.002] [PMID: 22537664]
[21]
Ranayhossaini, D.; Pagano, P.J. TrACEing angiotensin II type 1 to right ventricular hypertrophy: Are the “sartans” a viable course to treating pulmonary arterial hypertension? Am. J. Respir. Crit. Care Med., 2012, 186(8), 705-707.
[http://dx.doi.org/10.1164/rccm.201208-1480ED] [PMID: 23071186]
[22]
Inoue, T.; Node, K. Telmisartan as a metabolic sartan for targeting vascular failure. Expert Opin. Pharmacother., 2008, 9(8), 1397-1406.
[http://dx.doi.org/10.1517/14656566.9.8.1397] [PMID: 18473713]
[23]
Marquart-Elbaz, C.; Grosshans, E.; Alt, M.; Lipsker, D. Sartans, angiotensin II receptor antagonists, can induce psoriasis. Br. J. Dermatol., 2002, 147(3), 617-618.
[http://dx.doi.org/10.1046/j.1365-2133.2002.48848.x] [PMID: 12207619]
[24]
Roskiewicz, F.; Andriamanana, I.; Gras-Champel, V.; Andrejak, M.; Massy, Z.A. Iatrogenic angioedema: The role of angiotensin converting enzyme inhibitor and angiotensin II receptor blockers. Nephrol. Ther., 2007, 3(3), 89-95.
[http://dx.doi.org/10.1016/j.nephro.2007.03.003] [PMID: 17540310]
[25]
Tsepkentzi, E.; Sarafidis, K.; Sotiriadis, A.; Chatzistamatiou, K.; Drossou-Agakidou, V. Neonatal acute kidney injury following Valsartan exposure in utero: Report of two cases. Hippokratia, 2016, 20(1), 73-75.
[PMID: 27895448]
[26]
Alwan, S.; Polifka, J.E.; Friedman, J.M. Angiotensin II receptor antagonist treatment during pregnancy. Birth Defects Res. A Clin. Mol. Teratol., 2005, 73(2), 123-130.
[http://dx.doi.org/10.1002/bdra.20102] [PMID: 15669052]
[27]
Mączewski, M.; Mączewska, J.; Duda, M. Hypercholesterolaemia exacerbates ventricular remodelling after myocardial infarction in the rat: Role of angiotensin II type 1 receptors. Br. J. Pharmacol., 2008, 154(8), 1640-1648.
[http://dx.doi.org/10.1038/bjp.2008.218] [PMID: 18536757]
[28]
Sato, K.; Yamashita, T.; Kurata, T.; Fukui, Y.; Hishikawa, N.; Deguchi, K.; Abe, K. Telmisartan ameliorates inflammatory responses in SHR-SR after tMCAO. J. Stroke Cerebrovasc. Dis., 2014, 23(10), 2511-2519.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.02.019] [PMID: 25245484]
[29]
Kono, S.; Kurata, T.; Sato, K.; Omote, Y.; Hishikawa, N.; Yamashita, T.; Deguchi, K.; Abe, K. Neurovascular protection by telmisartan via reducing neuroinflammation in stroke-resistant spontaneously hypertensive rat brain after ischemic stroke. J. Stroke Cerebrovasc. Dis., 2015, 24(3), 537-547.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.09.037] [PMID: 25534368]
[30]
Villapol, S.; Saavedra, J.M. Neuroprotective effects of angiotensin receptor blockers. Am. J. Hypertens., 2015, 28(3), 289-299.
[http://dx.doi.org/10.1093/ajh/hpu197] [PMID: 25362113]
[31]
Villapol, S.; Balarezo, M.G.; Affram, K.; Saavedra, J.M.; Symes, A.J. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain, 2015, 138(11), 3299-3315.
[http://dx.doi.org/10.1093/brain/awv172] [PMID: 26115674]
[32]
Kellici, T.; Ntountaniotis, D.; Kritsi, E.; Zervou, M.; Zoumpoulakis, P.; Potamitis, C.; Durdagi, S.; Salmas, R.; Ergun, G.; Gokdemir, E.; Halabalaki, M.; Gerothanassis, I.; Liapakis, G.; Tzakos, A.; Mavromoustakos, T. Leveraging NMR and X-ray data of the free ligands to build better drugs targeting angiotensin II type 1 G-protein coupled receptor. Curr. Med. Chem., 2015, 23(1), 36-59.
[http://dx.doi.org/10.2174/0929867323666151117122116] [PMID: 26572611]
[33]
Lin, X.; Li, X.; Lin, X. A review on applications of computational methods in drug screening and design. Molecules, 2020, 25(6), 1375.
[http://dx.doi.org/10.3390/molecules25061375] [PMID: 32197324]
[34]
Kotthoff, I.; Kundrotas, P.J.; Vakser, I.A. Dockground scoring benchmarks for protein docking. Proteins, 2022, 90(6), 1259-1266.
[http://dx.doi.org/10.1002/prot.26306] [PMID: 35072956]
[35]
Sulimov, V.B.; Kutov, D.C.; Taschilova, A.S.; Ilin, I.S.; Tyrtyshnikov, E.E.; Sulimov, A.V. Docking paradigm in drug design. Curr. Top. Med. Chem., 2021, 21(6), 507-546.
[http://dx.doi.org/10.2174/1568026620666201207095626] [PMID: 33292135]
[36]
Carini, D.J.; Duncia, J.V.; Aldrich, P.E.; Chiu, A.T.; Johnson, A.L.; Pierce, M.E.; Price, W.A.; Santella, J.B., III; Wells, G.J.; Wexler, R.R. Nonpeptide angiotensin II receptor antagonists: The discovery of a series of N-(biphenylylmethyl)imidazoles as potent, orally active antihypertensives. J. Med. Chem., 1991, 34(8), 2525-2547.
[http://dx.doi.org/10.1021/jm00112a031] [PMID: 1875348]
[37]
Qing, S.U.; Zhou, L. Molecular design of non-peptide angiotensin II receptor blockers based on quantitative structure-activity relationship. Zhongguo Xin Yao Zazhi, 2006, 7, 537.
[38]
Lamanna, C.; Catalano, A.; Carocci, A.; Di Mola, A.; Franchini, C.; Tortorella, V.; Vanderheyden, P.M.L.; Sinicropi, M.S.; Watson, K.A.; Sciabola, S. AT1 receptor ligands: Virtual-screening-based design with TOPP descriptors, synthesis, and biological evaluation of pyrrolidine derivatives. ChemMedChem, 2007, 2(9), 1298-1310.
[http://dx.doi.org/10.1002/cmdc.200700082] [PMID: 17628868]
[39]
Smajić, M.; Nikolić, K.; Vujić, Z.; Ahmetović, L.; Kuntić, V. 3D-QSAR studies and pharmacophore identification of AT1 receptor antagonists. Med. Chem. Res., 2016, 25(1), 51-61.
[http://dx.doi.org/10.1007/s00044-015-1470-1]
[40]
Miura, S.I.; Nakao, N.; Hanzawa, H.; Matsuo, Y.; Saku, K.; Karnik, S.S. Reassessment of the unique mode of binding between angiotensin II type 1 receptor and their blockers. PLoS One, 2013, 8(11), e79914.
[http://dx.doi.org/10.1371/journal.pone.0079914] [PMID: 24260317]
[41]
Yanagisawa, H.; Amemiya, Y.; Kanazaki, T.; Shimoji, Y.; Fujimoto, K.; Kitahara, Y.; Sada, T.; Mizuno, M.; Ikeda, M.; Miyamoto, S.; Furukawa, Y.; Koike, H. Nonpeptide angiotensin II receptor antagonists: Synthesis, biological activities, and structure-activity relationships of imidazole-5-carboxylic acids bearing alkyl, alkenyl, and hydroxyalkyl substituents at the 4-position and their related compounds. J. Med. Chem., 1996, 39(1), 323-338.
[http://dx.doi.org/10.1021/jm950450f] [PMID: 8568823]
[42]
Zupancic, S.; Pecavar, A.; Vrbinc, M. Process for the preparation of olmesartan medoxomil. US Patent US20120184750A1, 2011.
[43]
Madasu, S.B.; Vekariya, N.A.; Koteswaramma, C.; Islam, A.; Sanasi, P.D.; Korupolu, R.B. An efficient, commercially viable, and safe process for preparation of losartan potassium, an angiotensin II receptor antagonist. Org. Process Res. Dev., 2012, 16(12), 2025-2030.
[http://dx.doi.org/10.1021/op300179u]
[44]
Seki, M.; Nagahama, M. Synthesis of angiotensin II receptor blockers by means of a catalytic system for C-H activation. J. Org. Chem., 2011, 76(24), 10198-10206.
[http://dx.doi.org/10.1021/jo202041e] [PMID: 22035509]
[45]
Larsen, R.D.; King, A.O.; Chen, C.Y.; Corley, E.G.; Foster, B.S.; Roberts, F.E.; Yang, C.; Lieberman, D.R.; Reamer, R.A.; Tschaen, D.M.; Verhoeven, T.R.; Reider, P.J.; Lo, Y.S.; Rossano, L.T.; Brookes, A.S.; Meloni, D.; Moore, J.R.; Arnett, J.F. Efficient synthesis of losartan, A nonpeptide angiotensin II receptor antagonist. J. Org. Chem., 1994, 59(21), 6391-6394.
[http://dx.doi.org/10.1021/jo00100a048]
[46]
Wu, F.H.S. Prepaeation method of Losartan metabolite EXP-3174. CN102190652A, 2011.
[47]
Ramakrishnan, A.K. A process to manufacture pure anhydrous eprosartan mesylate. IN Patent 2009CH02087 A, 2011.
[48]
Gokhale, N.G.C. Process for the preparation of eprosartan. WO Patent WO/2011/004384, 2011.
[49]
Miura, S.; Okabe, A.; Matsuo, Y.; Karnik, S.S.; Saku, K. Unique binding behavior of the recently approved angiotensin II receptor blocker azilsartan compared with that of candesartan. Hypertens. Res., 2013, 36(2), 134-139.
[http://dx.doi.org/10.1038/hr.2012.147] [PMID: 23034464]
[50]
Vyas, V.K.; Ghate, M.; Patel, K.; Qureshi, G.; Shah, S. Homology modeling, binding site identification and docking study of human angiotensin II type I (Ang II-AT1) receptor. Biomed. Pharmacother., 2015, 74, 42-48.
[http://dx.doi.org/10.1016/j.biopha.2015.07.008] [PMID: 26349961]
[51]
Ries, U.J.; Mihm, G.; Narr, B.; Hasselbach, K.M.; Wittneben, H.; Entzeroth, M.; van Meel, J.C.A.; Wienen, W.; Hauel, N.H. 6-Substituted benzimidazoles as new nonpeptide angiotensin II receptor antagonists: Synthesis, biological activity, and structure-activity relationships. J. Med. Chem., 1993, 36(25), 4040-4051.
[http://dx.doi.org/10.1021/jm00077a007] [PMID: 8258826]
[52]
Prasad, K.S.; Nayak, N.; Pillai, R.R.; Armaković, S.; Armaković, S.J. Novel synthetic approach, spectroscopic characterization and theoretical studies on global and local reactive properties of a bibenzimidazolyl derivative. J. Mol. Struct., 2017, 1147, 121-128.
[http://dx.doi.org/10.1016/j.molstruc.2017.06.073]
[53]
Kubo, K.; Kohara, Y.; Yoshimura, Y.; Inada, Y.; Shibouta, Y.; Furukawa, Y.; Kato, T.; Nishikawa, K.; Naka, T. Nonpeptide angiotensin II receptor antagonists. Synthesis and biological activity of potential prodrugs of benzimidazole-7-carboxylic acids. J. Med. Chem., 1993, 36(16), 2343-2349.
[http://dx.doi.org/10.1021/jm00068a011] [PMID: 8360879]
[54]
Porcs-Makkay, M.; Mezei, T.; Simig, G. New practical synthesis of the key intermediate of candesartan. Org. Process Res. Dev., 2007, 11(3), 490-493.
[http://dx.doi.org/10.1021/op700041z]
[55]
Rádl, S.; Černý, J.; Stach, J.; Gablíková, Z. Improved process for azilsartan medoxomil: A new angiotensin receptor blocker. Org. Process Res. Dev., 2013, 17(1), 77-86.
[http://dx.doi.org/10.1021/op3002867]
[56]
Kohara, Y.; Imamiya, E.; Kubo, K.; Wada, T.; Inada, Y.; Naka, T. A new class of angiotensin II receptor antagonists with a novel acidic bioisostere. Bioorg. Med. Chem. Lett., 1995, 5(17), 1903-1908.
[http://dx.doi.org/10.1016/0960-894X(95)00319-O]
[57]
Miura, S.; Kiya, Y.; Kanazawa, T.; Imaizumi, S.; Fujino, M.; Matsuo, Y.; Karnik, S.S.; Saku, K. Differential bonding interactions of inverse agonists of angiotensin II type 1 receptor in stabilizing the inactive state. Mol. Endocrinol., 2008, 22(1), 139-146.
[http://dx.doi.org/10.1210/me.2007-0312] [PMID: 17901125]
[58]
Ellingboe, J.W.; Antane, M.; Nguyen, T.T.; Collini, M.D.; Antane, S.; Bender, R.; Hartupee, D.; White, V.; McCallum, J.; Park, C.H. Pyrido[2,3-d]pyrimidine angiotensin II antagonists. J. Med. Chem., 1994, 37(4), 542-550.
[http://dx.doi.org/10.1021/jm00030a013] [PMID: 8120871]
[59]
Wang, D.F. Process for preparation of tasosartan. CN Patent CN101712682A, 2010.
[60]
Goossen, L.J.; Melzer, B. Synthesis of valsartan via decarboxylative biaryl coupling. J. Org. Chem., 2007, 72(19), 7473-7476.
[http://dx.doi.org/10.1021/jo701391q] [PMID: 17715979]
[61]
Reddy, B.S.; Sinha, B.K.; Mukkanti, K.; Dandala, R. New and improved manufacturing process for valsartan. Org. Process Res. Dev., 2009, 13(6), 1185-1189.
[http://dx.doi.org/10.1021/op9000912]
[62]
Ghosh, S.; Kumar, A.S.; Mehta, G.N. A short and efficient synthesis of valsartan via a Negishi reaction. Beilstein J. Org. Chem., 2010, 6, 27-27.
[http://dx.doi.org/10.3762/bjoc.6.27] [PMID: 20502651]
[63]
Wang, J.J.J. Synthesis of Irbesartan. CN Patent CN102875534A, 2013.
[64]
Bernhart, C.B. N-substituted heterocyclic derivatives, their preparation and the pharmaceutical compositions in which they are present. US Patent 5270317, 1993.
[65]
Estrada, G.O.D.; Flores, M.C.; da Silva, J.F.M.; de Souza, R.O.M.A.; e Miranda, L.S.M. 4′-Methylbiphenyl-2-carbonitrile synthesis by continuous flow Suzuki–Miyaura reaction. Tetrahedron Lett., 2012, 53(32), 4166-4168.
[http://dx.doi.org/10.1016/j.tetlet.2012.05.145]
[66]
Chen, L.; Ren, P.; Carrow, B.P. Tri(1-adamantyl)phosphine: Expanding the boundary of electron-releasing character available to organophosphorus compounds. J. Am. Chem. Soc., 2016, 138(20), 6392-6395.
[http://dx.doi.org/10.1021/jacs.6b03215] [PMID: 27164163]
[67]
Carrow, B.; Chen, L. Tri(1-adamantyl)phosphine: Exceptional catalytic effects enabled by the synergy of chemical stability, donicity, and polarizability. Synlett, 2017, 28(3), 280-288.
[http://dx.doi.org/10.1055/s-0036-1588128]
[68]
Geng, L.; Li, Y.; Qi, Z.; Fan, H.; Zhou, Z.; Chen, R.; Wang, Y.; Huang, J. Highly efficient palladium catalysts supported on nitrogen contained polymers for Suzuki-Miyaura reaction. Catal. Commun., 2016, 82, 24-28.
[http://dx.doi.org/10.1016/j.catcom.2016.04.011]
[69]
Liu, C.; Liu, C.; Li, X.M.; Gao, Z.M.; Jin, Z.L. Oxygen-promoted Pd/C-catalyzed Suzuki–Miyaura reaction of potassium aryltrifluoroborates. Chin. Chem. Lett., 2016, 27(5), 631-634.
[http://dx.doi.org/10.1016/j.cclet.2015.12.022]
[70]
Antonacci, G.; Ahlburg, A.; Fristrup, P.; Norrby, P.O.; Madsen, R. Manganese-catalyzed cross-coupling of aryl halides and grignard reagents by a radical mechanism. Eur. J. Org. Chem., 2017, 2017(32), 4758-4764.
[http://dx.doi.org/10.1002/ejoc.201700981]
[71]
Amatore, M.; Gosmini, C. Efficient cobalt-catalyzed formation of unsymmetrical biaryl compounds and its application in the synthesis of a sartan intermediate. Angew. Chem. Int. Ed., 2008, 47(11), 2089-2092.
[http://dx.doi.org/10.1002/anie.200704402] [PMID: 18260083]
[72]
Rathi, A.K.; Gawande, M.B.; Pechousek, J.; Tucek, J.; Aparicio, C.; Petr, M.; Tomanec, O.; Krikavova, R.; Travnicek, Z.; Varma, R.S.; Zboril, R. Maghemite decorated with ultra-small palladium nanoparticles (γ-Fe2O3–Pd): applications in the Heck–Mizoroki olefination, Suzuki reaction and allylic oxidation of alkenes. Green Chem., 2016, 18(8), 2363-2373.
[http://dx.doi.org/10.1039/C5GC02264A]
[73]
Ismail, M.A.H.; Barker, S.; Abou El Ella, D.A.; Abouzid, K.A.M.; Toubar, R.A.; Todd, M.H. Design and synthesis of new tetrazolyl- and carboxy-biphenylylmethyl-quinazolin-4-one derivatives as angiotensin II AT1 receptor antagonists. J. Med. Chem., 2006, 49(5), 1526-1535.
[http://dx.doi.org/10.1021/jm050232e] [PMID: 16509571]
[74]
Dubey, A.V.; Kumar, A.V. A biomimetic magnetically recoverable palladium nanocatalyst for the Suzuki cross-coupling reaction. RSC Advances, 2016, 6(52), 46864-46870.
[http://dx.doi.org/10.1039/C6RA03395D]
[75]
Patel, N.D.; Rivalti, D.; Buono, F.G.; Chatterjee, A.; Qu, B.; Braith, S.; Desrosiers, J.N.; Rodriguez, S.; Sieber, J.D.; Haddad, N.; Fandrick, K.R.; Lee, H.; Yee, N.K.; Busacca, C.A.; Senanayake, C.H. Effective BI-DIME ligand for suzuki-miyaura cross-coupling reactions in water with 500 ppm palladium loading and triton X. Asian J. Org. Chem., 2017, 6(9), 1285-1291.
[http://dx.doi.org/10.1002/ajoc.201700137]
[76]
Nallasivam, J.L.; Fernandes, R.A. Development of Unimolecular Tetrakis(piperidin-4-ol) as a Ligand for suzuki-miyaura cross-coupling reactions: Synthesis of incrustoporin and preclamol. Eur. J. Org. Chem., 2015, 2015(16), 3558-3567.
[http://dx.doi.org/10.1002/ejoc.201500353]
[77]
Chakravarty, P.K.G. Imidazole derivatives bearing acidic functional groups as angiotensin II antagonists. EP Patent 0505098A1, 1992.
[78]
Agelis, G.; Resvani, A.; Durdagi, S.; Spyridaki, K.; Tůmová, T.; Slaninová, J.; Giannopoulos, P.; Vlahakos, D.; Liapakis, G.; Mavromoustakos, T.; Matsoukas, J. The discovery of new potent non-peptide angiotensin II AT1 receptor blockers: A concise synthesis, molecular docking studies and biological evaluation of N-substituted 5-butylimidazole derivatives. Eur. J. Med. Chem., 2012, 55, 358-374.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.040] [PMID: 22889560]
[79]
Rapposelli, S.; Cuboni, S.; Digiacomo, M.; Lapucci, A.; Trincavelli, M.L.; Tuccinardi, T.; Balsamo, A. Synthesis and AT1 affinity evaluation of benzamidophenyl analogs of known AT1 receptor ligands with similar aromatic skeleton. ARKIVOC, 2008, 2008(2), 268-286.
[http://dx.doi.org/10.3998/ark.5550190.0009.229]
[80]
Moutevelis-Minakakis, P.; Gianni, M.; Stougiannou, H.; Zoumpoulakis, P.; Zoga, A.; Vlahakos, A.D.; Iliodromitis, E.; Mavromoustakos, T. Design and synthesis of novel antihypertensive drugs. Bioorg. Med. Chem. Lett., 2003, 13(10), 1737-1740.
[http://dx.doi.org/10.1016/S0960-894X(03)00251-8] [PMID: 12729654]
[81]
Vauquelin, G.; Packeu, A. Ligands, their receptors and … plasma membranes. Mol. Cell. Endocrinol., 2009, 311(1-2), 1-10.
[http://dx.doi.org/10.1016/j.mce.2009.07.022] [PMID: 19647036]
[82]
Kiriakidi, S.; Chatzigiannis, C.; Papaemmanouil, C.; Tzakos, A. G.; Mavromoustakos, T. Exploring the role of the membrane bilayer in the recognition of candesartan by its GPCR AT1 receptor. Biochim. Biophys. Acta Biomembr., 2022, 1862(3), 183142.
[http://dx.doi.org/10.1016/j.bbamem.2019.183142] [PMID: 31830465]
[83]
Chontzopoulou, E.; Tzakos, A.G.; Mavromoustakos, T. On the rational drug design for hypertension through NMR spectroscopy. Molecules, 2020, 26(1), 12.
[http://dx.doi.org/10.3390/molecules26010012] [PMID: 33375119]
[84]
Zervou, M.; Cournia, Z.; Potamitis, C.; Patargias, G.; Durdagi, S.; Grdadolnik, S.G.; Mavromoustakos, T. Insights into the molecular basis of action of the AT1 antagonist losartan using a combined NMR spectroscopy and computational approach. Biochim. Biophys. Acta Biomembr., 2014, 1838(3), 1031-1046.
[http://dx.doi.org/10.1016/j.bbamem.2013.12.012] [PMID: 24374319]
[85]
Ridgway, H.; Chasapis, C.T.; Kelaidonis, K.; Ligielli, I.; Moore, G.J.; Gadanec, L.K.; Zulli, A.; Apostolopoulos, V.; Mavromoustakos, T.; Matsoukas, J.M. Understanding the driving forces that trigger mutations in SARS-CoV-2: Mutational energetics and the role of arginine blockers in COVID-19 therapy. Viruses, 2022, 14(5), 1029.
[http://dx.doi.org/10.3390/v14051029] [PMID: 35632769]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy